ebook img

Recommender Systems for Learning PDF

84 Pages·2013·1.051 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recommender Systems for Learning

SpringerBriefs in Electrical and Computer Engineering Series Editors Stan Zdonik Peng Ning Shashi Shekhar Jonathan Katz Xindong Wu Lakhmi C. Jain David Padua Xuemin Shen Borko Furht V. S. Subrahmanian Martial Hebert Katsushi Ikeuchi Bruno Siciliano For furthervolumes: http://www.springer.com/series/10059 Nikos Manouselis Hendrik Drachsler • Katrien Verbert Erik Duval • Recommender Systems for Learning 123 Nikos Manouselis Katrien Verbert Agro-KnowTechnologies KULeuven Athens Leuven Greece Belgium Hendrik Drachsler ErikDuval OpenUniversity oftheNetherlands KULeuven Heerlen Leuven The Netherlands Belgium ISSN 2191-8112 ISSN 2191-8120 (electronic) ISBN 978-1-4614-4360-5 ISBN 978-1-4614-4361-2 (eBook) DOI 10.1007/978-1-4614-4361-2 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012940235 (cid:2)TheAuthors2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Recommender systems are extremely popular as a research and application area, with various interesting application domains such as e-commerce, entertainment, and others. Nevertheless, it was only around early 2000 when the first notable applications appeared in the domain of education, since relevant work was generally considered to be connected to the area of adaptive educational systems. Today, research around recommender systems in an educational context has significantly increased. Responding to a growing interest, this book expands the relevantchapteronRecommenderSystemsinTechnologyEnhancedLearning(by Manouselis, Drachsler, Vuorikari, Hummel and Koper) that was published in the Springer Recommender Systems Handbook (2011) to provide an extensive and in-depth analysis of the recommender systems currently found in the relevant literature. The book briefly introduces recommender systems for learning and discusses a wide and representative sample of issues that people working on systems should be expecting to face. It serves as an overview of work in this domainandthereforeespeciallyaddressespeoplewhoarestudyingorresearching relevant topics and want to position their work in the overall landscape. Thebibliographycoveredbythisbookisavailableinanopengroupcreatedat the Mendeley research platform1 and will continue to be enriched with additional references.Wewouldliketoencouragethereadertosignupforthisgroupandto connecttothecommunityofpeopleworkingonthesetopics,gainingaccesstothe 1 http://www.mendeley.com/groups/1969281/recommender-systems-for-learning/ v vi Preface collectedblibliographybutalsocontributingpointerstonewrelevantpublications within this very fast emerging domain. Wehopethatyouwillenjoyreadingthisbookasmuchasweenjoyedworking on it. Nikos Manouselis Hendrik Drachsler Katrien Verbert Erik Duval Acknowledgments Wewouldliketothankallthepeoplewhohaveinspiredthisworkandcontributed to the discussion around these topics in various fora and opportunities. Particular appreciationisreservedforourco-authorsofthechapteruponwhichthisworkhas developed and expanded: Riina Vuorikari, Hans Hummel, and Rob Koper. We also thank Laura Gavrilut for her supportin proof-reading the final version of the book. The work presented in this book has been carried out with European Commissionfundingsupport.Morespecifically,theworkofNikosManouselishas been supported by the EU projects CIP PSP VOA3R (http://www.voa3r.eu) and FP7 agINFRA (http://www.aginfra.eu). The work of Hendrik Drachsler was fundedbytheNeLLLfundingbodyinthecontextoftheAlterEgoproject.Katrien Verbert is a Postdoctoral Fellow of the Research Foundation Flanders (FWO). Part of this work was also supported by the SIG dataTEL of the European Association of Technology Enhanced Learning and the former dataTEL Theme Team of the STELLAR Network of Excellence (grant agreement no. 231913). Thispublicationreflectstheviewsonlyoftheauthors,andthefundingbodiesand agencies cannot be held responsible for any use that may be made of the information contained therein. vii Contents 1 Introduction and Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Recommender Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Relevant Systems in Educational Applications . . . . . . . . . . . . . 6 1.3.1 Adaptive Educational Hypermedia . . . . . . . . . . . . . . . . 6 1.3.2 Learning Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.3 Educational Data Mining and Learning Analytics. . . . . . 10 1.3.4 Similarities and Differences. . . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 TEL as a Recommendation Context . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 TEL Recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Defining the TEL Recommendation Problem. . . . . . . . . 21 2.1.2 Identifying the TEL Recommendation Goals . . . . . . . . . 24 2.1.3 Identifying the TEL Context Variables . . . . . . . . . . . . . 28 2.2 Data Sets to Support TEL Recommendation. . . . . . . . . . . . . . . 29 2.2.1 Collecting TEL Data Sets . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 Collected Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.3 Usefulness for TEL Recommender Systems. . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Survey and Analysis of TEL Recommender Systems. . . . . . . . . . . 37 3.1 Framework for Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 General Overview of Sample . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Analysis According to Framework . . . . . . . . . . . . . . . . 52 3.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ix x Contents 4 Challenges and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1 Challenges for TEL Recommendation . . . . . . . . . . . . . . . . . . . 63 4.1.1 Pedagogy and Cognition . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1.3 Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.1.4 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.5 Visualisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.6 Virtualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Acronyms AEH Adaptive Educational Hypermedia CAM Contextualised Attention Metadata CSCL Computer Supported Collaborative Learning EDM Educational Data Mining IR Information Retrieval ITS Intelligent Tutoring System KSA Knowledge, Skills, Abilities LAK Learning and Knowledge Analytics LMS Learning Management System LOM Learning Object Metadata MCDM Multi-Criteria Decision Making MUPPLE Mash-Up Personal Learning Environment OAI Open Archives Initiative PSLC Pittsburgh Science of Learning Center TEL Technology Enhanced Learning VLE Virtual Learning Environments xi Chapter 1 Introduction and Background Abstract Inthischapter,westartwithashortintroductiontotheincreasethathas beenwitnessedinthepastfewyearsinapplicationsofrecommendersystemsatthe TELdomain.Thenweprovidesomebackgroundontheareaofrecommendersys- tems,bydefiningrecommendersystemsandoutliningtheirbasictypes.Acompari- sonwithrelevantworkinTEListried,particularlyfocusingonadaptiveeducational hypermedia, learning networks, educational data mining, and learning analytics. Adiscussionontheirsimilaritiesanddifferencesisalsomade,sothatrelevantwork canbebetterpositionedintheTELresearchlandscape. 1.1 Introduction Technologyenhancedlearning(TEL)aimstodesign,developandtestsociotechnical innovationsthatwillsupportandenhancelearningpracticesofbothindividualsand organisations.Itisthereforeanapplicationdomainthatgenerallycoverstechnologies thatsupportallformsofteachingandlearningactivities.Sinceinformationretrieval (intermsofsearchingforrelevantlearningresourcestosupportteachersorlearners) isapivotalactivityinTEL,thedeploymentofrecommendersystemshasattracted increasedinterest. This should be more or less expected since a traditional problem in TEL has beenthebetterfindabilityof(mainly)digitallearningresources.Forinstance,digital learning content is being regularly produced, organised and published in different typesofTELenvironmentssuchas(Ochoa2011): 1. LearningObjectRepositorieslikeLearningResourceExchange,1Connexions2 orMaricopaExchange3; 1http://lreforschools.eun.org 2http://cnx.org 3http://www.mcli.dist.maricopa.edu/mlx/ N.Manouselisetal.,RecommenderSystemsforLearning, 1 SpringerBriefsinElectricalandComputerEngineering, DOI:10.1007/978-1-4614-4361-2_1,©TheAuthors2013

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.