ebook img

Recognition of the Intrinsically Flexible Addiction Antidote MazE by a Dromedary Single Domain ... PDF

12 Pages·2003·0.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recognition of the Intrinsically Flexible Addiction Antidote MazE by a Dromedary Single Domain ...

THEJOURNALOFBIOLOGICALCHEMISTRY Vol.278,No.16,IssueofApril18,pp.14101–14111,2003 ©2003byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedinU.S.A. Recognition of the Intrinsically Flexible Addiction Antidote MazE by a Dromedary Single Domain Antibody Fragment STRUCTURE,THERMODYNAMICSOFBINDING,STABILITY,ANDINFLUENCEON INTERACTIONSWITHDNA* Receivedforpublication,September25,2002,andinrevisedform,January14,2003 Published,JBCPapersinPress,January17,2003,DOI10.1074/jbc.M209855200 JurijLah‡§¶,IrinaMarianovsky(cid:1),GadGlaser(cid:1),HannaEngelberg-Kulka**,Jo¨rgKinne‡‡, LodeWyns‡,andRemyLoris‡§§ Fromthe‡DepartmentofUltrastructure,VrijeUniversiteitBrussel,Paardenstraat65,B-1640St.GenesiusRode, Belgium,the§FacultyofChemistryandChemicalTechnology,UniversityofLjubljana,Askerceva5,1000Ljubljana, Slovenia,theDepartmentsof(cid:1)CellularBiochemistryand**MolecularBiology,HebrewUniversity-HadassahMedical School,EinKerem,Jerusalem,91120Israel,andthe‡‡CentralVeterinaryResearchLaboratories,P.O.Box591, Dubai,UnitedArabEmirates TheEscherichiacolimazEFoperondefinesachromo- encoding for a stable toxin and its labile antidote. Toxin and somaladdictionmodulethatprogramscelldeathunder antidote are co-expressed. Their expression is auto-regulated variousstressconditions.Itencodesthetoxicandlong- at the level of transcription either by a non-covalent complex lived MazF and the labile antidote MazE. The denatur- formed between toxin and antidote or by the antidote alone ation of MazE is a two-state reversible dimer-monomer (3–18). In the absence of co-expression the antidote is rapidly transition.Atlowerconcentrationsthedenaturedstate degradedbyaspecificprotease,enablingthetoxintoattackits issignificantlypopulated.Thisleadstoanewaspectof target.Thetargetofthetoxinisknownonlyintheplasmidic theregulationofMazEconcentration,whichmaydecide ccdAB and kid-kis systems. In ccdAB, CcdB on plasmid F aboutthelifeanddeathofthecell.InteractionsofMazE attackstheAsubunitofgyrase,whereasinthekid-kissystem withadromedaryantibodydomain,cAbMaz1(previous- KidonplasmidR1targetsDnaB(19–21). lyusedasacrystallizationaid),aswellaswithpromoter Until recently, attention was paid mainly to the extrachro- DNAwerestudiedusingmicrocalorimetricandspectro- scopictechniques.UniquefeaturesofcAbMaz1enablea mosomal (plasmid) addiction modules, which are responsible specificenthalpy-drivenrecognitionofMazEand,thus, for the death that occurs upon accidental plasmid loss (3–8). a significant stabilization of its dimeric native confor- However,theE.colichromosomealsocontainsseveraloperons mation.TheMazEdimerandtheMazEdimer-cAbMaz1 homologous to those found in plasmid addiction systems (22– complexshowverysimilarbindingcharacteristicswith 25). The first discovered regulable prokaryotic chromosomal promoter DNA, i.e. three binding sites with apparent addiction module is the mazEF system (or chpA), which en- affinities in micromolar range and highly exothermic codesfortoxicandlong-livedMazFandanti-toxicandshort-lived bindingaccompaniedbylargenegativeentropycontri- MazE(6,9,25).Incontrasttotheextra-chromosomaladdiction butions.AworkingmodelfortheMazE-DNAassemblyis modules that are triggered by plasmid loss, death mediated by proposed on the basis of the structural and binding thechromosomalmazEFisachievedunderseveralstresscondi- data.Bothbindingandstabilitystudiesleadtoapicture tionsthatpreventmazEFexpression.Itwasinitiallyfoundthat of MazE solution structure that is significantly more themazEFmoduleisunderthecontrolof3(cid:1),5(cid:1)-guanosinebispy- unfoldedthanthestructureobservedinacrystalofthe rophosphate (ppGpp) (25, 26), the amino acid starvation signal MazE-cAbMaz1complex. producedbyRelAprotein(27).OverproductionofppGppleadsto inhibitionoftheexpressionofmazEFand,thereby,tocelldeath (25, 26). However, inhibition of mazEF expression, and thus Ingeneral,programmedcelldeathisrequiredfortheelimi- induction of cell death, can also be achieved by using general nationofthesuperfluousorpotentiallyharmfulcells(1,2).In inhibitors of transcription and/or translation like antibiotics Escherichiacoli,celldeathisprogrammedbygeneticelements (rifampicin,chloramphenicolandspectinomycin)(28,29)andthe called “addiction modules” (3–8). These consist of two genes toxicproteinDoc(30).Ineachcase(ppGpp(25,26),antibiotics (28,29)andtheDocprotein(30)),theinhibitionofgeneexpres- *ThisworkwassupportedbytheVlaamsInteruniversitairInstituut sionleadstoalackofthelabileMazEand,thereby,allowsthe voorBiotechnologie(VIB),theFondsvoorWetenschappelijkOnderzoek actionofthemorestableMazFtokillthecells. Vlaanderen(FWO),andIsraelScienceFoundationGrants467/99-19(to To improve our understanding of addiction systems at the G.G.)and215/99-2(toH.E.-K.),whichwereadministeredbytheIsrael molecularlevel,structuralandalsothermodynamiccharacter- Academy of Science and Humanities. The costs of publication of this article were defrayed in part by the payment of page charges. This izationoftheproteinsinvolvedisneeded.Thelatterisdifficult articlemustthereforebeherebymarked“advertisement”inaccordance toachievebecauseoftheproblemsofexpressionofthetoxins with18U.S.C.Section1734solelytoindicatethisfact. and the labile character of the antidotes. Therefore, for some ¶Recipientofashort-termfellowshipasvisitingscientistfromthe timeonlyacrystalstructureofthetoxinCcdBhasbeenknown FondsvoorWetenschappelijkOnderzoekVlaanderenandtowhomcor- respondenceshouldbeaddressed:UniversityofLjubljana,Facultyof (31).Thethermodynamicinformationonaddictionproteinsis Chemistry and Chemical Technology, Askerceva 5, 1000 Ljubljana, alsoratherscarce,andoftenonlypartialanswersareavailable Slovenia.Tel.:386-1-2419-414;Fax:386-1-2419-437;E-mail:jurij.lah@ (10,32–34). uni-lj.si §§PostdoctoralfellowoftheFondsvoorWetenschappelijkOnderzoek Antibodies and their derivative fragments have long been Vlaanderen. used as tools in a variety of applications in fundamental re- Thispaperisavailableonlineathttp://www.jbc.org 14101 This is an Open Access article under the CC BY license. 14102 MazE-Dromedary Antibody and MazE-DNA Interactions search,biotechnology,diagnosis,andhumantherapy(35,36). recordedbetween290and480nm((cid:2) (cid:4)280nm).InthecaseofDNA ext In contrast to conventional IgG molecules, one type of the titration with MazE at 25°C the emission spectrum was recorded antibodiesgeneratedbycamels,dromedaries,andllamas(cam- between310and380nm((cid:2)ext(cid:4)300nm).The1.5(cid:1)MDNAoligomer containingthepromotersequencewastitratedbya21(cid:1)Msolutionof elids) is formed by two heavy chains but has no light chains MazEdimer. (37). Particularly interesting are camelid single variable do- Circular Dichroism (CD) Spectropolarimetry—CD spectra were re- main antibody fragments (V H), which contain the smallest corded on J-715 spectropolarimeter (JASCO, Tokyo, Japan). MazE (cid:3) H antigen-binding unit with a molecular size of (cid:2)15 kDa. They cAbMaz1titrationswereperformedat25and45°Cbyincrementally arecharacterizedbyhigh-yieldproduction,highsolubility,and injecting4–20(cid:1)laliquotsofcAbMaz1solutioninto2mlof(cid:5)1(cid:1)MMazE dimersolution(1-cmcuvette)inthesamebuffer.Aftereachinjection, highthermodynamicstability(38,39). theellipticity,(cid:3),wasmonitoredbetween210and260nm(Fig.3).The AsMazEalonehasalargefractionofunstructuredpolypep- denaturation of MazE, cAbMaz1, and their tetrameric complex was tide,aMazE-specificVHH(cAbMaz1)fragmenthasbeenused followedbyrecordingthefarUV(205–260nm)CDspectraatdifferent asacrystallizationaid,leadingtothefirstcrystalstructureof temperatureswiththetemperaturestepof2or1°Catthetransition an addiction antidote.1 In the current paper we focus on the region (Fig. 7). The temperature of the sample was controlled by a thermodynamicsoftheMazE-cAbMaz1andMazE-DNA(MazE sensor built into the cuvette holder and connected to a Haake N3 (Gebrueder Haake, Karlsruhe, Germany) circulating bath which ad- promoter)interactingsystemsandcorrelateitwiththestruc- justedthetemperatureofthesamplewithanaccuracyof0.1°C.The ture. The research described here is the first example of a concentrationsofMazE,cAbMaz1,andtheirtetramericcomplexina characterizationofMazEbindinganddenaturationenergetics. 0.1-or0.2-cmcuvettewereabout10(cid:1)M. Differential Scanning Calorimetry (DSC)—The thermally induced EXPERIMENTALPROCEDURES transitions of MazE, cAbMaz1, and their tetrameric complex were Preparation of the Proteins and MazE Promoter DNA—Expression measuredusingaNano-IIDSCdifferentialscanningcalorimeter(Cal- and purification of MazE and the cAbMaz1 fragment are described orimetrySciences,Provo,UT).Theheatingratewas1°C/min,andthe elsewhere.1MazEandcAbMaz1solutionsforspectroscopicandcalori- concentrationofproteinsinthemeasuringcell(0.33ml)wasabout10 metricmeasurementswerepreparedbyextensivedialysisagainst50 (cid:1)M.Toobtainthepresentedthermograms((cid:6)CPversusTcurves,Fig. mM sodium cacodylic buffer, pH 6.9, containing 150 mM NaCl and a 6a),theheatcapacityoftheproteininthenativestatewassubtracted 10-mindegassingofthesamplesolutionsbeforethemeasurements.For fromtherawsignal(correctedforbuffercontribution).Thetransition DNAbindingstudies,thesamebufferwithoutadditionalsaltwasused. enthalpies(cid:6)H wereobtainedbyintegrationof(cid:6)C versusTcurves. cal P Concentrationsofa98-residue-long,Histag-fusedMazEproteinanda Two consecutive temperature scans were carried out to observe the 135-residue-longcAbMaz1antibody(Fig.1)weredeterminedspectro- extentofreversibility,whichwashigherthan0.8foralltheproteins. photometricallybymeasuringabsorbanceat280nm.Thecorrespond- FL,CD,andCalorimetricTitrations—Changesinthespectralprop- ing extinction coefficients were obtained from MazE and cAbMaz1 erties(Figs.3and4)suggestthatthecAbMaz1-MazEcomplexforma- amino acid compositions by the method introduced by Gill and von tionisaccompaniedbystructuralalterationsofMazEor/andcAbMaz1. Hippel(41)(www.expasy.ch). Moreover, binding of the first cAbMaz1 molecule to one MazE dimer The50-basepair,double-strandedoligonucleotide(5(cid:1)-TGCTCGTAT- binding site influences the binding of the second one to the other CTACAATGTAGATTGATATATACTGTATCTACATATGATAG-3(cid:1) and available site. Thus, the spectral changes (CD and FL) and the heat 3(cid:1)-ACGAGCATAGATGTTACATCTAACTATATATGACATAGATGTA- effects seen during titration experiments may contain contributions TACTATC-5(cid:1)) containing the MazE promoter sequence (underlined) fromdirectbindingandstructuralchanges.TodescribethecAbMaz1- was purchased from Invitrogen. To evaluate the specificity of MazE MazE association, a mass action model that includes the mentioned bindingtothepromoterDNA,the107-bpcontrol(notrelatedtomazEF contributionsisproposed,asshownbelowinReaction1, module) DNA was used. The same DNA was used as a control (not related)DNAinthestudiesoftheccdABaddictionmoduleaswell(32). K1 K2 Lyophilizedsinglestrandsweredissolvedin50mMsodiumcacodylate, M2(cid:4)AO¢¡M(cid:1)2A(cid:1)(cid:4)AO¢¡M(cid:7)2A(cid:7)2 pH6.9,andextensivelydialyzedagainstthesamebuffer.Theconcen- trationsofsinglestrandsweredeterminedbyUVabsorptionspectros- REACTION 1 copyat260nmbyusingextinctioncoefficientscalculatedonthebasis ofthenearestneighborapproximation(42).Theduplexeswereobtained withK1andK2definedinEquations1and2,respectively, bymixingthecorrespondingsinglestrandsinthe1:1molarratio. Isothermal Titration Calorimetry (ITC)2—The heat accompanying K (cid:5)[M(cid:1)2A(cid:1)] (Eq.1) MazE(cid:3)cAbMaz1,DNA(cid:3)MazE,andDNA(cid:3)MazE-cAbMaz1associ- 1 [M2][A] ations was measured by an Omega isothermal titration calorimeter (MicroCal,Northampton,MA).InMazE(cid:3)cAbMaz1experimentsat25, K (cid:5) [M(cid:7)2A(cid:7)2] (Eq.2) 35, 45, and 55°C the MazE dimer solution (1.33 ml) was titrated by 2 [M(cid:1)2A(cid:1)][A] cAbMaz1solutioninthesamebufferusingamotor-driven250-(cid:1)lsy- ringe. cAbMaz1 concentration was about 100 (cid:1)M, whereas the MazE and where M2, A, M(cid:1)2A(cid:1), and M(cid:7)2A(cid:7)2 represent the MazE dimer, the dimerconcentrationinthetitrationcellwas4.8(cid:1)M.DNA(cid:3)MazEand cAbMaz1monomer,andtheirtrimericandtetramericcomplexesinthe DNA (cid:3) MazE-cAbMaz1 experiments were performed at 25°C. MazE nativestate,respectively.Quantitiesinthesquarebracketsaretheequi- dimerandMazE-cAbMaz1concentrationswerearound50(cid:1)M,whereas libriummolarconcentrations;K1andK2arethecorrespondingapparent association constants. Overall change in the thermodynamic quantity theDNAconcentrationinthetitrationcellwasabout50timeslower. (standard Gibbs free energy, (cid:6)G°; standard enthalpy, (cid:6)H°; standard Eachinjectiongeneratedaheatburst,withtheareaunderthecurve entropy, (cid:6)S°) for the presented process can be expressed as a sum of being proportional to the heat of interaction (Fig. 5a). The titration contributions of the M(cid:7) (cid:3) 2A(cid:7) association as rigid bodies in the final curves (Figs. 5b and 8) were constructed by subtraction of the heat 2 conformationandothercontributionswhichinvolvetheconformational effectsthataccompanytheliganddilution. changes, FluorescenceSpectroscopy(FL)—FLspectrawererecordedusingan AMINCO-BowmanSeries2luminescencespectrometer(SpectronicIn- (cid:6)G°(cid:5)(cid:6)G °(cid:4)(cid:6)G ° (Eq.3) struments Rochester, NY) equipped with a thermally controlled cell rb other holderandacuvetteof1cmpathlength.MazE(cid:3)cAbMaz1titrations (cid:6)G °(cid:5)(cid:8)RTln(cid:9)(cid:10)M(cid:7)A(cid:7)(cid:11)/(cid:10)M(cid:7)(cid:11)(cid:10)A(cid:7)(cid:11)2(cid:12) (Eq.4) wereperformedat25°Cand45°Cbyincrementallyinjecting4–20-(cid:1)l rb 2 2 2 aliquotsofcAbMaz1solutioninto2mlof0.5–1(cid:1)MMazEdimersolution (cid:6)G °(cid:5)(cid:8)RTln([M(cid:7)]/[M])(cid:4)2ln([A(cid:7)]/[A])] (Eq.5) in the same buffer. After each injection, FL emission spectrum was other 2 2 asshownaboveinEquations3,4,and5.Itfollowsthatthecontri- butionsofconformationaleffects(other)canbeestimatedasadiffer- 1R.Loris,I.Marianovsky,J.Lah,T.Laermans,H.Engelberg-Kulka, ence between experimentally obtained(cid:6)G°,(cid:6)H°, andT (cid:6)S°and the G.Glaser,S.Muyldermans,andL.Wyns,submittedforpublication. corresponding (cid:6)Grb°, (cid:6)Hrb°, andT (cid:6)Srb°, which were estimated by 2Theabbreviationsusedare:ITC,isothermaltitrationcalorimetry; M(cid:1)2(cid:1)A(cid:1)2(cid:1)-structure-basedcalculations. FL,fluorescencespectroscopy;CD,circulardichroism;DSC,diffferen- Byassuminglineardependenceofameasuredphysicalproperty(F) tialscanningcalorimetry;ASA,accessiblesurfacearea. on the concentration of individual components in ideal solution, it is MazE-Dromedary Antibody and MazE-DNA Interactions 14103 possible, by subtracting the contributions of M and A, to obtain the 2 differenceinphysicalproperty((cid:6)F),whichcanbeexpressedasshown below(43)inEquation6, (cid:2) 2 (cid:6)F(cid:5) (cid:6)fi[M(cid:1)2A(cid:1)i] where (cid:6)fi(cid:5)fM(cid:1)2A(cid:1)i (cid:6)fM2(cid:6)ifA i(cid:4)1 and if i(cid:5)1 f (cid:1)(cid:5)(cid:1) and if i(cid:5)2 f (cid:1)(cid:5)(cid:7) (Eq.6) wheref ,f ,andf areconcentration-independentphysicalprop- ertiesofMM2 ,AAandMM(cid:1)(cid:1)2AA(cid:1)i(cid:1),respectively.Ineachofthetechniquesused 2 2 i inthiswork,thedescribedpropertieshavespecificphysicalmeaningas definedinthefollowing:(i)FL(Fig.3b),where(cid:6)Fisdifferencefluores- cence and (cid:6)f depends on the optical path length, quantum yields, i intensityofincidentlight,andmolarextinctioncoefficientsofM ,A, 2 andM(cid:1) A(cid:1);(ii)CD,where(cid:6)F(cid:4)(cid:6)(cid:3)(cid:4)differenceellipticityand(cid:6)f isthe 2 i i productbetweendifferencemolarellipticityofM(cid:1) A(cid:1) andopticalpath FIG.1.Aminoacidsequenceofcabmaz1alignedwithtypesof 2 i length;(iii)ITC(Fig.8),where(cid:6)F(cid:4)Q(cid:4)cumulativeheateffectgiven othercamelidVHHdomainsofknownthree-dimensionalstruc- per mole of added ligand at single injection and (cid:6)f is the product ture.Thelimitsoftheframeworkregionsweredeterminedbasedon between(cid:6)Hi°(standardenthalpyofM(cid:1)2A(cid:1)icomplexforimation)andthe nthaelHsuispetarpilossaitrieonnootfsthhoewsntr.u(cid:9)c-tsutrraensdosfaarlleVinHdHicafrtaegdmbyenatrsr.oTwhse.RCe-steidrumeis- volumeofsolutioninthemeasuringcelldividedbytheamountofadded thatmakeupthespecificsignatureforaV Hdomainareindicated. ligandperinjection.IntheITC,thedifferentialformofEquation6is H usuallyusedwherethesignalisgivenas(cid:6)H(enthalpychangegiven permoleofaddedligandatsingleinjection)and(cid:6)f as(cid:6)H°(Fig.5b). whereallquantitiesaredefinedbyReaction2andEquations7and8. InthecaseofDNA(cid:3)M titration,themodelthaitassumiesbinding TakingintoaccountReaction2andEquations7and8,thetemperature RofeMac2tioonni1deanntdicaElqsuiatetsioonnsD12NanAdw6asfoursie(cid:4)d.1T.hemodelwasderivedfrom pTrhoefiirlevcaalnuebsedweesrceriboebdtaiinnteedrmbysoffitptainrgamoeftethrse(cid:6)mHo°d(eTl1⁄2f)u,n(cid:6)cCtiPo°n,a(nCdDT1(cid:4)⁄2. Equation 9; DSC (cid:4) Equation 10) to the experimental temperature It follows from Reaction 1 and Equation 6 that spectroscopic and profilesusingthepreviouslymentionednon-linear(cid:7)2regressionproce- calorimetrictitrationcurves(Figs.3b,5b,and8)canbeatgiventotal concentrationsofM andAdescribedonlyintermsofparameters(cid:6)f dure(44). 2 i Structure-based Thermodynamic Calculations—The non-polar and K. Their values were obtained by fitting the model functions i (ASA ) and polar accessible surface areas (ASA ) of proteins were (Equation6)totheexperimentaltitrationcurvesusingthenon-linear N P calculatedwiththeprogramNACCESS,version2.1(48).TheASAof procedure based on Levenberg-Marquardt minimization of the non- weighted(cid:7)2function(44). nativeproteinswasobtainedfromthecrystalstructureoftheMazE- cAbMaz1complex(probesize(cid:4)1.4Å).ASAofthedenaturedproteins Temperature-dependentCDandDSC—Ourresultsrevealthatallmon- wasestimatedasthesumoftheaccessibilitiesoftheproteinresiduesin itoreddenaturationprocessescanbeadequatelydescribedasreversible anextendedAla-X-Alatripeptide.(cid:6)C °valueswerecalculatedfrom twostatetransitions,aspresentedinReaction2andEquation7, P,rb changes in non-polar and polar accessible areas from the equation K introducedbyMurphyandFreire(49), Nn ¢O¡ nD (cid:6)C °(cid:4)0.45[calmol(cid:8)1K(cid:8)1A˚(cid:8)2](cid:1)(cid:6)ASA P,rb N REACTION 2 (cid:8)0.26[calmol(cid:8)1K(cid:8)1Å(cid:8)2](cid:1)(cid:6)ASA (Eq.11) (cid:3) (cid:4) P (cid:6)G°(cid:5) (cid:6)RTlnK(cid:5) (cid:6)RTln (cid:9)n(cid:8)(cid:12)n(cid:10)P(cid:11)n(cid:8)1 (Eq.7) whichisshownaboveinEquation11.Forbindinganddenaturationof 1(cid:6)(cid:8) theproteinsstudiedhere,thecombinationofEquation11andsimilar relationsintroducedbySpolarandRecord(50),Myersetal.(51),and swthaeter,ewNhnirleepDrecsoernrtessMpo2n(dns(cid:4)to2)t,hAe(Mna(cid:4)zE1)aannddMcA(cid:7)b2MA(cid:7)a2z(1n(cid:4)in4t)hiendtheneantautrievde vMaalukehsaatasdtzheosaenodbtPairniveadlobvyE(5q2u)atrieosnu1lt1sailnonteh.eThseamenethaavlepryacghea(cid:6)ngCeP,frobr° state. K is the equilibrium constant of denaturation, (cid:6)G° is the corre- M(cid:7) (cid:3)A(cid:7)(rigidbody)associationwascalculatedas(53,54)asshownin spondingstandardGibbsfreeenergychange,nisthenumberofsubunits Eq2uation12, towhicheachproteindissociatesupondenaturation,(cid:8)isthedegree ofdenaturation,and[P]isthetotalproteinconcentrationgivenper (cid:6)H ° (cid:4) (cid:8)8.44[cal mol(cid:8)1A˚(cid:8)2](cid:1)(cid:6)ASA moleofproteininitsnativestate.(cid:6)G°canalsobeexpressedbythe rb N integratedGibbs-HelmholtzequationshownbelowinEquation8, (cid:3) 31.4[cal mol(cid:8)1A˚(cid:8)2](cid:1)(cid:6)ASA (cid:3) (cid:6)C °(T (cid:8) 333.15) (Eq.12) P P,rb (cid:5) (cid:6) (cid:7) (cid:6)G°(cid:9)T (cid:12) 1 1 andtheentropychangeuponrigidbodyassociationwascalculatedasa (cid:6)G°(cid:5)T 1⁄2 (cid:4)(cid:6)H°(cid:9)T (cid:12) (cid:6) sumofthreecontributions(53–55), T 1⁄2 T T 1⁄2 1⁄2 (cid:6) (cid:3) (cid:4)(cid:7)(cid:8) (cid:6)S °(cid:5)(cid:6)S °(cid:4)(cid:6)S °(cid:4)(cid:6)S ° (Eq.13) rb sol sc mix (cid:4)(cid:6)CP° 1(cid:6)TT1⁄2(cid:6)ln TT1⁄2 (Eq.8) wobhtiacihneadreassh:o(cid:6)wCna,b°olvne(Tin/38E5q.u15a)tio(n551,35.6T)h.eTshoelvtaetriomnttheramt,r(cid:6)efSlesoclt°s,wthaes Prb riisnefetwhreheniccchoertr(cid:6)eemHsp°p(oeTnr1ad⁄2)tinuigrsesTtth1a⁄e2n(dtsrataarndnsdihatierodantetcenamtphpaaeclriptayytuocrfheadanetgn(cid:8)ea(cid:4)taus0rs.a5ut)mi,oanenddatt(cid:6)oCthbPee° sachulaamnnignoeev,einrpsreioadlcienhceh,aamainnindcoodnaifsocuirdlmfiadintei-obtnhoaneldepenrdotrtceoyipnsyt-,epi(cid:6)rnoSets)ec,i°n,swcainalistnecgrafalictcuselas(teiedxdeclaucshdtainhinge independent of temperature. According to the model (Reaction 2 and conformationalentropybyitschangeinASAnormalizedtoitsASAin Equation7),(cid:8)canbeexpressedasafunctionofellipticity,(cid:3)(measured Ala-X-Alatripeptide(54),i.e.(cid:13)((cid:6)ASAscssc°/ASAAla-X-Ala).ssc°wastaken atsinglewavelength),asshowninEquation9, fromLeeetal.(57).(cid:6)Smix°wascalculatedasa“cratic”term(58)that reflects the mixing of solvent and solute molecules and effectively ac- (cid:3)(cid:8) (cid:3) countsfortheentropychangesduetochangesintranslational/rotational (cid:8)(cid:4) (cid:3) (cid:8) (cid:3)N (Eq.9) degrees of freedom upon binding (54, 55). For the M(cid:7)2 (cid:3) A(cid:7) 7 M(cid:7)2A(cid:7) D N reactionusinga1Mstandardstate,thisequalsRln(1/55.5). where(cid:3) and(cid:3) aretheellipticitiesofthenativeanddenaturedstate, N D respectively,whichareassumedtobelinearfunctionsoftemperature. RESULTS InthecaseofDSC,themeasured(cid:6)C (nativestateisareferencestate) StructureofcAbMaz1andItsInteractionwithMazE P canbeexpressedas(45–47)asshowninEquation10, Initially,weraisedanimmuneresponseagainstMazEina (cid:8)(cid:9)1 (cid:6) (cid:8)(cid:12) ((cid:6)H°(cid:9)T )(cid:3)(cid:6)C °(T(cid:6)T ))2 dromedaryinordertoidentifyV Hdomainsthatcouldbeused (cid:6)C (cid:5)(cid:8)(cid:6)C °(cid:4) 1⁄2 P 1⁄2 (Eq.10) H P P n(cid:8)(cid:8)(n(cid:8)1) RT2 as aids for the crystallization of MazE. Cloning the V H rep- H 14104 MazE-Dromedary Antibody and MazE-DNA Interactions FIG.2.Panela,overallviewofthecrystalstructureoftheMazE-cAbMaz1complex.TwocAbMaz1molecules(green)areboundtoidenticalsites onoppositesidesoftheMazEdimer(redandblue).Panelb,stereoviewoftheepitopeonMazErecognizedbycAbMaz1.Residuesinteractingwith the antibody are shown as ball-and-stick figures. The epitope consists of two stretches (18–24 and 35–40) coming from two different MazE monomers.Panelc,left,Trp-9(ingreen)ofMazE,whichisinvolvedincreatingtheMazEdimerviaplanarstackingwithitself.TheMazEdimer consistsoftwomonomerspresentedinlightanddarktones,respectively.ThecAbMaz1isnotshownbecauseitdoesnotcomeclosetoTrp-9.Panel c,right,Trp-102(ingreen)ofcAbMaz1(lighttone)interactingwithMazEdimer(darktone).ItinteractswithPro-18,Leu-21Ala-24,andThr-20 ofoneMazEmonomerandwithLeu-37oftheother. ertoireinaphagedisplayvectorandisolatingtheMazEbind- cAbMaz1anddiscussedthestructurewithemphasisonMazE.1 ersresultedintheidentificationofasinglegenefragmentthat Here we analyze the complex in terms of its inter-protein encodes a V H (cAbMaz1) that interacts with MazE with contacts. All three hypervariable regions (H1, H2, and H3) of H highaffinity. cAbMaz1areinvolvedintheinteractionwithMazE.However, TheaminoacidsequenceofcAbMaz1isshowninFig.1and H1playsonlyamarginalrole(60Å2buried),whereasH2(190 contains all the V H-specific features that distinguish V H Å2 buried) and H3 (270 Å2 buried) have the largest contribu- H H domains from classic V domains. We have recently reported tion.IncontrasttomanyotherV Hdomains,theinteractions H H the successful crystallization of MazE in complex with involvemainlysidechainratherthanmainchainatoms.Itwas MazE-Dromedary Antibody and MazE-DNA Interactions 14105 suggested previously (59) that the preferential use of main fromthehydrophobiccoreofMazE(Fig.2b).Theepitoperec- chainatomsbyV Hdomainscouldcompensateforthelackof ognizedbycAbMaz1consistsoftwopolypeptidestretches.Most H contribution to binding from H1 as well as the missing V of the interactions involve the short (cid:8)-helix (18–24), of which L domain. about 340 Å2 gets buried upon complexation. The remaining LikemostothercamelidV Hdomains,theH1conformation 180Å2ofburiedsurfacecomesfromresidues(35–40).Itshould H is unique, resembling neither the canonical structures ob- be noted that these two stretches come from two different servedinclassicalV domainsnoranyoftheH1conformations monomers forming the MazE dimer. Thus, cAbMaz1 specifi- H of other camelid V Hs with the known three-dimensional callyrecognizesthedimerandis,assuch,expectedtostabilize H structure.TheH2conformation,ontheotherhand,isofcanon- thedimericfoldedconformationofMazE. ical type 2A and closely resembles that of cabhcg (60) and cabamb9 (61). This conformation is the one most commonly ThermodynamicsofcAbMaz1BindingtoMazE observedforcamelidVHH’s. ItcanbeseenfromacrystalstructurethatMazEexistsasa TheMazEdimercontainstwostructurallyidenticalbinding dimerinasolidstate.Itwasprovenbygelfiltrationin50mM sites(Fig.2a)fortheantibodyfragment.cAbMaz1recognizesa sodium cacodylic buffer (pH 6.9) that MazE exists as a dimer cluster of hydrophobic, mainly aromatic residues that extend also in solution and that its dimeric state does not change under the experimental conditions applied in the binding studies. Fluorescence Spectroscopy—Fig. 3a shows raw FL emission spectrathatcorrespondtothetitrationoftheMazEdimer(M ) 2 by cAbMaz1 (A) at 45°C. It can be seen that the intensity changes more rapidly when the A/M molar ratio (r) is(cid:10)1, 2 whereasatr(cid:14)1thechangesarelesspronounced.TheMazE(cid:3) cAbMaz1 association is accompanied by a blue shift of FL maximum. The shift is about 8 nm in comparison with the corresponding sum of FL spectra of “total MazE” and “total cAbMaz1”atr(cid:4)1(Fig3a).Atr(cid:4)2theblueshiftisreduced to (cid:5)5 nm. The FL spectral changes (induced intensity, blue shift)areaconsequenceofdifferentenvironmentsofTrpresi- dues in the bound and free state of MazE and cAbMaz1. Ac- cording to the crystal structure, the ordered part of MazE contains a single tryptophane (Trp-9) that does not interact withtheantibodybutisinvolvedincreatingtheMazEdimer viaplanarstackingwithitself(Fig.2c).BytitrationofMazEto thebuffersolution,weobservedlineardependenceofFLinten- sity on MazE concentration with no spectral shift. This is an additional proof that the oligomeric state of MazE stays the same in the concentration range used in FL measurements. cAbMaz1containsthreetryptophanesofwhichone,Trp-102,is important for binding MazE. In the complex, it interacts hy- drophobically with Pro-18, Leu-21, Ala-24, and Thr-20 of one MazE monomer and with Leu-37 of the other (Fig 2c). There- fore,theblueshiftandtheintensitychangescanbeinterpreted asarisingfromtheshieldingofTrp-102fromitscontactwith water. Because of the fact that FL spectral properties accom- panyingbindingaredifferentatr(cid:15)1andr(cid:14)1andthatboth cAbMaz1bindingsitesonMazEarestructurallyidentical,the differencesaremostprobablycausedbystructuralchangesin MazEand/orcAbMaz1. BysubtractionofthecontributionsofMazEdimer(M )and FIG.3. FL spectra accompanying MazE (M2) (cid:1) cAbMaz1 (A) cAbMaz1(A)ateachtitrationpoint,thedifferencespectr2aand titrationat45°CatA/M molarratiorvaryingbetween0and 3.5.Dottedlinesrepresentt2hespectrauptor(cid:4)1andfulllinesatr(cid:14) the corresponding titration curve at 350 nm (Fig. 3b) were 1.Theboldlinerepresentsasumofthespectraof“total”M and“total” constructed.Observationsofspectraandtitrationcurvessug- A atr (cid:4) 1 (panel a). The corresponding titration curves2at 350 nm gestthatAbindstoM intwodistinctivebindingmodes.This 2 measuredat25°C((cid:2))and45°C(E)arepresentedinpanelb.Linesare hypothesiswastestedandprovedbyfittingofthemodelfunc- graphsofthebestfittedmodelfunction(Equation6).Speciationdia- tion(Equation6)totheexperimentaltitrationcurve.Itcanbe gramsat25°C(dottedline)and45°C(fullline)calculatedfromthebest seeninFig.3bthatmodelfunctionwithK andK asadjust- fittedvaluesofapparentbindingconstants(Reaction1andEquations 1 2 1and2)arepresentedinpanelc.(cid:8)isthefractionofeachMazEspecies. able parameters correlates well with the experimental curves TABLE I ComparisonofthebindingparametersK andK 1 2 ApparentequilibriumconstantsK andK accompanyingbindingofthefirstandthesecondcAbMaz1moleculetoMazEdimerobtainedbymodel 1 2 analysisofcalorimetric(ITC),fluorimetric(FL),andspectropolarimetric(CD)titrationcurves. ITC ITC ITC ITC FL FL CD T(°C) 25 35 45 55 25 45 45 KK12((MM(cid:8)(cid:8)11))aa 94..99(cid:1)(cid:1)110087 23..77(cid:1)(cid:1)110087 62..81(cid:1)(cid:1)110077 15..79(cid:1)(cid:1)110076 61..75(cid:1)(cid:1)110087 86..39(cid:1)(cid:1)110076 51..91(cid:1)(cid:1)110077 aTherelativeparametererrorsare0.07–0.3forITCand0.15–0.5forFLandCD. 14106 MazE-Dromedary Antibody and MazE-DNA Interactions FIG.4. CD spectra accompanying MazE (M2) (cid:1) cAbMaz1 (A) titrationat25°CatA/M molarratiorvaryingbetween0and3. Dottedlinesrepresentthe2spectrauptor(cid:4)1andsolidlinesatr(cid:14)1. TheboldlineisthespectraoffreecAbMaz1(A)inits1(cid:1)Msolution. measured at 25 and 45°C. The obtained K values are about 1 oneorderofmagnitudehigherthanthevaluesofK (TableI), 2 whichstronglysuggeststhatthebindingoftwoAmoleculesto M isanti-cooperative.Thisallostericeffectcanbeseenmore 2 clearly in speciation diagram (Fig. 3c) calculated from the fitted K and K values at 25 and 45°C. Up to r (cid:2) 0.5 1 2 lowering of free M concentration is a consequence of M(cid:1) A(cid:1) 2 2 formation, whereas at r (cid:14) 0.5 the M(cid:7) A(cid:7) complex starts to 2 2 form and finally becomes the predominating species in solu- tionatr(cid:14)1.5(Fig.3c).InourFLtitrationexperimentsthe initial concentrations of M2 were in the 0.5–1 (cid:1)M range, whichenabledustoobtainreliableK andK incaseswhen 1 2 theirvalueswerelowerthan(cid:2)108M(cid:8)1.Asignificantdepend- enceofthemodelfunction(Equation6)onK (K )islostatK 1 2 1 (K2) (cid:14)108 M(cid:8)1 and, therefore, the value of K1 determined at 25°C (Table I) should be considered only as a best lower estimate of the apparent binding constant. CDSpectropolarimetry—ThefarUVCDspectrathataccom- panythetitrationofM byAat25°CarepresentedinFig.4. 2 TheintensityoftheCDsignalaround220nmdecreaseswithr up to r (cid:2) 1 and increases at r (cid:14) 1. This fully supports the cAontoclMus2iooncscumrsadineitnwtohdeifcfaesreenotfFbiLndspinegctmroosdcoeps.yTthhaetcbhianndginesgionf el Fa)IGa.n5d.TtyhpeiccaolrrceasloproinmdeitnrgicbMinadziEng(Mis2o)t(cid:3)hecrAmbMataz515(°AC)t(i(cid:2)tr)at(pioann(eplabn)-, the far UV CD spectra induced by binding correspond to the wherethesolidlinerepresentsthebestfittedmodelfunction(Equation changesinthesecondarystructureofM and/orAuponforma- 6).(cid:6)Hvaluesareexpressedinkcal/molofaddedA.Thecorresponding tion of M(cid:1)2A(cid:1) and M(cid:7)2A(cid:7)2. Theoreticall2y, the changes of each wthheerrmeotdhyensaymmibcoplsroEfil(e(cid:6)Gof°M),2(cid:2)(cid:3)((cid:6)AHa°s)s,oacniadti(cid:6)on(Ti(cid:6)sSpr°e)sceonrtreedspinonpdatnoetlhce, typeofthesecondarystructureuponbindingcanbeestimated bindingofthefirstAmol1ecule,and1(cid:1)((cid:6)G °),f((cid:6)1H °)andŒ(T(cid:6)S °) fromthefarUVCDspectra.Fig.4showsthatCDspectrumof correspondtothebindingofthesecondon2e.Inthec2aseof(cid:6)H°sol2id Ahasan“unusual”shape,whichhasoftenbeenobservedinthe llainteesd,awrehelirneeaasrinretghreescsaisoensloinfe(cid:6)sGfr°oamndwhTi(cid:6)cSh°(cid:6)tChPe,i°linvaelsuseesrvweerjueisctaalcsua- antibody family but never explained in terms of secondary guidetotheeye.Thethermodynami icparameitersofM (cid:3)Aassociation structure(38).ProteinswithsuchunusualCDspectraarenot asrigid-bodies((cid:6)G °,(cid:6)H °,andT(cid:6)S °)obtainedfro2mthestructure- rb rb rb involved in the databases of proteins (with known conforma- basedcalculations(Equations11–13)arepresentedasdottedlines. tions and CD spectra) used for estimation of the secondary structure.Therefore,acomparisonofthemeasuredCDspec- advantage over spectroscopic methods, the model function for trawiththosecalculatedfromthedatabasewouldbemean- description of the ITC signal besides K and K (Table I) also 1 2 ingless. Raw CD spectra (Fig. 4) were analyzed in the same containstwootherthermodynamicparameters,(cid:6)H °and(cid:6)H ° 1 2 wayasthecorrespondingFLspectra.Fromtheshapesofthe (apparentstandardenthalpiesofbinding).Thisenabledusto corresponding titration curves we were able to detect two describethebindingofthefirstandthesecondAmoleculeto differentbindingmodesofAbothat25and45°C.Becauseof M withathermodynamicprofile(Fig.5c)thatincludesappar- 2 high affinities of A, the starting concentration of M was ent standard Gibbs free energies of binding (cid:6)G ° and (cid:6)G ° 2 1 2 chosen as low as possible to get reliable K and K values (Equation 8) and the corresponding apparent standard entro- 1 2 from the model analysis (Equation 6). The changes in CD piesofbinding(cid:6)S °and(cid:6)S °calculatedfromGibbsequation 1 2 signal upon titration were still well measurable at an M ((cid:6)G°(cid:4)(cid:6)H°(cid:8)T(cid:6)S°;i(cid:4) 1,2).Fromthetemperaturedepend- 2 i i i concentration of (cid:5)1 (cid:1)M (Fig. 4). However, the quality of the ence of (cid:6)H1° and (cid:6)H2° (Fig. 5c) the standard heat capacity titrationcurvesobtainedbysubtractionwastoolowfortrust- changes(cid:6)C °and(cid:6)C °werecalculatedastheslopesofthe P,1 P,2 worthymodelanalysis.Therefore,wewereonlyabletoesti- linearregression(cid:6)H°versusTlines((cid:6)C °(cid:4)((cid:11)(cid:6)H°/(cid:11)T) ;i(cid:4) i P,1 i P mate K and K from CD titration at 45°C (Table I). 1, 2). Because of the very high affinity binding of the first A 1 2 Isothermal Titration Calorimetry—ITC experiments pre- moleculetoM at25,35,and45°Candtheappliedconcentra- 2 sented in Fig. 5 were performed at 25, 35, 45, and 55°C and tion conditions, almost all added A is bound at r (cid:15) 1 and, analyzedintermsofthesamemodelasthecorrespondingFL therefore, the evaluation of K by a straightforward fitting 1 andCDtitrations(Reaction1andEquations1,2,and6).Asan procedure was not possible (see also FL spectroscopy). At all MazE-Dromedary Antibody and MazE-DNA Interactions 14107 TABLE II Comparisonofthermodynamicparametersofdenaturation Thermodynamic parametersofMazE(M ),cAbMaz1(A),and their tetramericcomplex(M(cid:7) A(cid:7) )denaturationob2tainedbymodelanalysisof 2 2 DSCthermogramsandspectropolarimetric(CD)temperatureprofiles.a T1⁄2 (cid:6)H°(T1⁄2) (cid:6)CP° DSC CD Calb DSC CD DSC (cid:6)ASAc °C kcal/mol kcal/molK M 77.7 76.7 67 68 69 1.5 2.1 2 A 75.5 75.0 110 114 103 2.0 1.7 M(cid:7) A(cid:7) 79.1 79.8 375 333 327 6.0 5.8 2 2 aTherelativeparametererrorsareestimatedtobeabout0.005for T1⁄b2,M0.o0d5elfoirnd(cid:6)eHp°e(nTd1⁄e2)n,tan(cid:6)dH0.1vfaolru(cid:6)esCPd°etvearlmueins.edbyintegrationofthe cal correspondingDSCthermograms. cThevalueswerecalculatedonthebasisofchangesinsolventacces- sibleareas(cid:6)ASAfromEquation11. StabilityofMazE,cAbMaz1,andTheirComplexes The thermodynamic stability of MazE, cAbMaz1, and their tetrameric complex was studied by DSC and temperature-de- pendent CD spectropolarimetry. Usually it is described in terms of the standard Gibbs free energy change, (cid:6)G°, which corresponds to the reversible denaturation of a given protein. (cid:6)G°asafunctionoftemperature,T,wascalculatedfromEqua- tion8. DifferentialScanningCalorimetry(DSC)—Thermogramsfor M , A, and M(cid:7) A(cid:7) (Fig. 6a) were described in terms of the 2 2 2 equilibriumtwo-statemodel(Reaction2andEquation7).For M and A, the model function (Equation 10) correlates well 2 with the experimental data. Moreover, model-independent transition enthalpy ((cid:6)H ) values for M and A show good cal 2 agreementwith(cid:6)H°(T ),indicatingthatthetwo-stateapprox- 1⁄2 imationisapplicablefordescriptionoftheirdenaturationpro- cesses(TableII).Therefore,theparametersT ,(cid:6)H°(T ),and 1⁄2 1⁄2 (cid:6)C °(TableII)derivedfrommodelanalysisofDSCdatawere P used in interpretation of the thermodynamic stability of M theFirIGt.e6t.raPmaneerlica,coDmSpCletxhe(Mrm(cid:7)2oAg(cid:7)r2a)m. (cid:6)sCoPfMisaezxEp(rMes2s)e,dcAinbMkacaz1l/K(Am)oalnodf and A (Fig. 6b). In the case of M(cid:7)2A(cid:7)2, (cid:6)H°(T1⁄2) is somewha2t monomeric unit. Full lines represent graphs of the best fitted model lower than (cid:6)H , indicating that the model that takes into cal function (Equation 10). Panel b, comparison of the thermodynamic account only native M(cid:7) A(cid:7) and denatured M and A is too stabilityofM ,AandM(cid:7) A(cid:7) .ThestandardGibbsfreeenergychange 2 2 2 2 2 simple for description of the DSC thermogram. Namely, be- upondenaturationversustemperaturediagramsisdeterminedonthe basis of parameters obtained by the analysis of the DSC transition cause of high affinities of A to M2, at applied concentrations curves (Equations 7, 8 and 10). The dotted line is a sum of stability and lower T M(cid:7) A(cid:7) is practically the only protein species in curves,M2(cid:3)2A.Panelc,thetransitiontemperature,T1⁄2,asafunction solution.Howev2er,f2romextrapolationofbindingconstantsby of decadic logarithm of protein concentration, log[P], calculated for reversibletwo-statedenaturationofM andM(cid:7) A(cid:7) (Equation7). Equation8,itfollowsthatatT,wherethedenaturationoccurs 2 2 2 (Fig.6a),thepresenceofM(cid:1) A(cid:1)aswellasfreeM andAmay 2 2 notbeneglectedanymore.Becausethethermogramisthesum appliedtemperaturesthefittingwassuccessfulinobtainingall ofthecontributionsofallthespeciesinsolutionandonlythe othermodelparameters,i.e.K2,(cid:6)H1°,and(cid:6)H2°.At55°Cthe Ademnaotluecrualteiosn,tohfeM(cid:6)(cid:7)H2A°((cid:7)T2in)vooflMve(cid:7)sAth(cid:7)eiisntheirgahcetriotnhaenntphraeldpiyctoefdtwbyo mvailnueedobfyKt1h(eTamboledeIl)awnaaslylsoiws.eTnhoeugohbttaoinbeedaKccuarantdel(cid:6)yHde°teart- thedescribedanalysis(1E⁄2quatio2n72).Asthedenaturationtran- 55°C in combination with (cid:6)C ° enabled us t1o calculat1e K sitionsofallspeciesoccurinthesameTinterval,thedeconvo- P,1 1 lutionofthethermogrambasedonmultiplecontributionsisnot valuesat25,35,and45°CfromEquation8.TableIshowsthat possible.However,becausetheenthalpyofAbindingtoM was K valuesarehigherthanK .Theyareingoodagreementwith 2 1 2 determined by ITC, we were able to estimate that the inte- the values determined by the fitting of FL and CD titration grated (cid:6)H is (cid:15)5% (experimental error) different from the curveswiththesamemodel.Thissupportstheconclusionmade denaturatiocanlenthalpyofM(cid:7) A(cid:7) .Apparently,themultiplespe- in the case of FL and CD that the binding of A to M is 2 2 2 cies contributions affect the shape of the thermogram anti-cooperative.Furthermore,theanti-cooperativebindingef- ((cid:6)H°(T )) more than the corresponding integrated area fect is lowered when the temperature rises (the difference ((cid:6)H ).1⁄2Therefore, (cid:6)H instead of (cid:6)H°(T ) was used in the betweenK1andK2isreduced;TableI).ByextrapolationofK1 calcucallationofthethermcaoldynamicstability1o⁄2fM(cid:7)2A(cid:7)2(Fig.6b). andK2viaEquation8itcanbeshownthatthisallostericeffect Temperature-dependent CD Spectropolarimetry—The dena- is lost above 80°C. The binding of both A molecules is highly turation of M , A, and M(cid:7) A(cid:7) (Fig. 7a) was monitored by 2 2 2 exothermicwith(cid:6)H °being1–2kcal/mollowerthan(cid:6)H °.The measuringfarUVCDspectraatdifferenttemperatures.Atthe 1 2 (cid:6)H °and(cid:6)H °valuesbecomemoreexothermicathighertem- end of the M(cid:7) A(cid:7) transition, the corresponding CD spectrum 1 2 2 2 peratures, resulting in negative (cid:6)C ° and (cid:6)C ° values of (Fig.7a)isequaltothesumofindividualCDspectraofdena- P,1 P,2 (cid:8)0.25(cid:16)0.04and(cid:8)0.18(cid:16)0.01kcal/mol,respectively. tured M and A, suggesting that two M and two A domains 14108 MazE-Dromedary Antibody and MazE-DNA Interactions dissociate from M(cid:7) A(cid:7) upon melting. The denaturation tem- 2 2 peratureprofiles(Fig.7b)constructedfromthecorresponding meltingcurvesatasinglewavelengthweredescribedinterms of an appropriate two state model (Equations 7–9) to obtain (cid:6)H°(T ) and T values. They are very close to those derived 1⁄2 1⁄2 from DSC (Table II). Despite the fact that the fitted model functions (Equation 9) display good agreement with experi- mentalmeltingcurves(Fig.7b)wewereabletoestimate(cid:6)C ° P onlyfordenaturationofM ((cid:6)C °(cid:4)(1.9(cid:16)0.5)kcal/molK).It 2 P can be shown by simulation of the model melting curves that theirshapesdonotdependsignificantlyonparameter(cid:6)C °in P thecaseofsharptransitions(high(cid:6)H°(T )),so(cid:6)C °cannotbe 1⁄2 P obtainedbythemodelanalysisofAandM(cid:7) A(cid:7) meltingcurves. 2 2 BindingofMazEtoItsPromoterDNAandthe InfluenceofcAbMaz1 To characterize the binding of M to its promoter DNA at 2 25°C, FL spectroscopic titrations and ITC were employed. In addition,asignificantdifferencebetweenthefarUVCDspec- tra of free M and M bound to DNA in the 230–220 nm 2 2 wavelengthrangewasobserved.However,duetohighabsorp- tionofDNA,thespectrabelow220nmwerenotgoodenough even for qualitative analysis. The M promoter consists two 2 alternatingpalindromesequences(Fig.9a),whichwereprevi- ously found to be responsible for binding of a MazE-MazF FIG.7. Panel a, far UV CD spectra of tetrameric MazE-cAbMaz1 complexaswellasMazE(M2)alone(9). cthomespulemxo(Mft2(cid:7)hAe2(cid:7)C)Dmesapseuctrreadoffrdomena4t0urtoed9M5°aCzE.Tahned(cid:2)cAsbyMmabzo1ls(2reMp(cid:3)res2eAn)t. Fluorescence Spectroscopy—M binding to promoter DNA 2 Inset,thecorrespondingmeltingcurveconstructedatsinglewavelength was characterized by a significant quenching of Trp fluores- (332nm).Panelb,degreeofdenaturation(cid:8)obtainedfromCDmelting cenceaccompaniedbyasmallblueshiftofFLmaximum(2nm curvesasafunctionofTforM (f),A((cid:2)),andM(cid:7) A(cid:7) ((cid:1)).Fulllinesare 2 2 2 atM /DNAratioof3).TheemissionFLspectrawereanalyzed graphsofthebestfittedmodelfunction(Equation9). 2 inthesamewayasinM (cid:3)Atitrations(Fig.3).Theresulting 2 titrationcurveispresentedinFig.8.Themodelfunctionbased mational effects. Thus, the thermodynamic parameters ob- onM dimerbindingtotheindependentsitesonDNA(Equa- tainedfrommodelanalysisofFL,CD,andITCsignalscontain 2 tion 6) gave the best agreement for the value of apparent contributionsfrombothdirectbinding(rigidbodyassociation) binding constant, K (cid:4) (2.8 (cid:16) 0.8)(cid:1)106 M(cid:8)1, and the number of andconformationalchangesofMazEand/orcAbMaz1.Inthis bindingsitesonDNA,n(cid:4)3.1(cid:16)0.1.Wehavetriedtoemploy studyanattemptwasmadetoseparatethetwocontributions. morecomplicatedmodels(includingdifferenttypesofbinding It was shown that the structure-based thermodynamic calcu- sites and cooperativity) for description of FL titration curves. lationsgivereliableestimatesofthermodynamicparametersof However,thereciprocalcorrelationbetweenadjustableparam- binding in the systems where the conformational effects are eterswastoohigh,meaningthatthedatacouldbeequallywell negligible (54, 62). Therefore, they were used to describe the fittedbydifferentsetsofmodelparameters.Becausethephys- ‘‘rigid body’’ association of cAbMaz1 with MazE. In the calcu- ical meaning of parameters obtained by these models is com- lations,theconformationalstatesofcAbMaz1andMazEwere pletelylost,westicktoamodelofindependentidenticalsites. definedbythecrystalstructureoftheircomplex.Becauseboth Thetitrationofthe‘‘control’’(notmazEFrelated)DNAbyM binding sites on MazE dimer are structurally identical, the 2 resulted in the induced FL intensities that are negligible in calculatedparametersarethesameforbindingofthefirstand comparison to those resulted from the binding of M to the the second cAbMaz1 molecule. Fig. 5c shows that the MazE promoterDNA(Fig.8). 2 dimer (cid:3) cAbMaz1 rigid body association is an entropy-driven Isothermal Titration Calorimetry—Calorimetric titration processcharacterizedbyasmallnegative(cid:6)Hrb°andanegative curvesdescribingthebindingofM2andthecomplexM(cid:7)2A(cid:7)2to (cid:6)CP,rb°.Suchenergeticsmaybeconsideredashydrophobicin DNAarepresentedinFig.8.ForthesamereasonasFLdata, nature.However,interpretationofrigidbodyassociationsolely ITCmeasurementswereanalyzedonlyintermsofM (M(cid:7) A(cid:7) ) in terms of hydrophobic effect may be misleading, because binding to the independent sites on DNA (Equatio2n 6).2Th2e (cid:6)Hrb°,(cid:6)Srb°,and(cid:6)CP,rb°areproducedfromlargecompensat- modelanalysisdescribesM bindingashighlyexothermicwith ingeffects(Equations11–13).InMazE,thehydrophobiccoreis 2 the enthalpy of binding (cid:6)H° (cid:4) (cid:8)71 (cid:16) 4 kcal/mol, apparent smallbutextendstothesurfaceontwosidesofthedimer(Fig. bindingconstantK(cid:4)(2.5(cid:16)0.6)(cid:1)106M(cid:8)1,andthenumberof 2b). It is exactly this hydrophobic patch that is recognized by binding sites for an oligomer, n (cid:4) 3.0 (cid:16) 0.1. Binding of the two cAbMaz1 molecules. In addition, we have also found sev- M(cid:7) A(cid:7) complex (Fig. 8) is characterized by (cid:6)H° (cid:4) (cid:8)80 (cid:16) 9 eral hydrogen-bonding contacts between MazE and cAbMaz1. kca2l/m2ol, K (cid:4) (1.9 (cid:16) 0.6)(cid:1)106 M(cid:8)1 and n (cid:4) 3.2 (cid:16) 0.3, values Thesmallexothermic(cid:6)Hrb°(Equation12)valueshowsthatits which are very similar to those obtained in the case of free partthatisassociatedwiththehydrogen-bondingpolargroups M . The heat effects accompanying the M (cid:3) ‘‘control DNA’’ is only slightly dominant over the unfavorable (endothermic) 2 2 titrationarenegligibleincomparisontotheeffectsthatcor- non-polar contribution. The largest contribution that makes respond to the M2 (cid:3) promoter DNA titration (Fig. 8). rTi(cid:6)giSdrbb°o(dEyqcuoamtipolnex13c)omtheesmfraojmorhdyrdivrionpghfoobricceeifnfesctta(b(cid:6)iSlizin°g).tOhne sol DISCUSSION the other hand, the ‘‘freezing’’ of side chains ((cid:6)S °) and the sc MazE-cAbMaz1 Interactions—The observed changes in FL loweringoftranslational/rotationaldegreesoffreedom((cid:6)S °) mix and CD spectra upon MazE (cid:3) cAbMaz1 titrations strongly uponbindingcausetheentropiclossthatreducesthe(cid:6)S °to rb suggest that their association is accompanied also by confor- nearly half of the (cid:6)S ° value. In some studies, much higher sol MazE-Dromedary Antibody and MazE-DNA Interactions 14109 FIG.8.FL(E)andcalorimetric((cid:2))titrationcurvesaccompa- nyingDNA(cid:1)MazE(M )associationat25°Cincomparisonwith correspondingcontrol2(unrelated)DNA(cid:1)M FL(‚)andITC(Œ) curves.ITCcurveforDNA(cid:3)MazE-cAbMaz1(M2(cid:7) A(cid:7) )bindingatthe sametemperatureispresentedbyblacksquares(f2).2Dottedlinesare graphsofthebestfittedmodelfunction(Equation6).ThedifferenceFL at360nm((cid:6)F )asafunctionofM /DNAmolarratio,r,wasobtained 360 2 fromthecorrespondingemissionspectra.Qisacumulativeheateffect ateachtitrationpointexpressedinkcal/molofaddedM (M(cid:7) A(cid:7) )per 2 2 2 injection. values for the loss of translational/rotational entropy were takenintoaccount(63,50);however,ithasbeensuggestedthat they are overestimates (54, 64, 65). It was shown that when (cid:6)S ° and (cid:6)S ° are taken into account the cratic correction sol sc ((cid:6)S °) accounts well for the loss of translational/rotational mix entropyuponrigidbodyassociation(54,55). By contrast, the overall thermodynamic profiles obtained frommodelanalysisofFL,CD,andITCdata(Fig.5c)indicate thatthebindingofbothcAbMaz1moleculestoMazEdimeris an enthalpy-driven process accompanied by unfavorable en- tropiccontributions.Fig.5showsthattheoverall(cid:6)G°isinthe FIG.9.Panela,45bpofidealB-DNAshowingthealternatingpalin- samerangewith(cid:6)G °.However,(cid:6)H°ismuchmorei exother- drome structure (9) found in the MazE promoter. Panel b, model for rb i MazEbindingtoitspromoterDNA.BecauseofthelengthoftheDNA, micthan(cid:6)Hrb°,indicatingthatadditionalenergeticallyfavor- largespacesremainbetweentheindividuallyboundMazEdimers,in ablecontacts(duetostructuralalternations)areformedupon agreementwithindependentbinding.Sufficientroomisavailablefor cAbMaz1bindingtoMazE.Thefavorableenthalpydifferenceis positioningMazFand/orthedisorderedpartofMazE.Panelc,equiva- compensated by a large conformational entropy loss (T(cid:6)S° (cid:15) lentmodelofthebindingoftheMazE-cAbMaz1complextothemazEF i promoter DNA. In this model, the antibody fragments touch neither T(cid:6)S °). Thermodynamic studies of biomolecular associations rb eachotherortheDNA. and protein unfolding have demonstrated that (cid:6)C ° may be P,i considered as the most reliable distinctive feature of site-spe- cific binding (49–52, 66–68). For cAbMaz1 binding to MazE MazEpromotercomplexes)mayberatherlow.Asloweringthe (cid:6)C °(cid:3)(cid:6)C °,thevalueof(cid:8)0.43kcal/molKobtainedbyITC concentrationshiftstheT (Fig.6c)tolowervalues,itfollows P,1 P,2 1⁄2 issignificantlylowerthanthecorresponding2(cid:6)C °valueof that, under physiological temperatures, the free MazE might P,rb (cid:8)0.28kcal/molK,whichisinaccordancewiththeremovalof bepartiallydissociatedandunfolded.Thenativedimer-dena- large amounts of nonpolar surface from water and with the tured monomer equilibrium may therefore play an important structural alternations MazE or/and cAbMaz1. The observed roleinregulationofthemazEFsystemasawhole,becauseitis bindinganti-cooperativity,duetothestructuralalterationsof known that fluctuations in the concentrations of the system the involved proteins, is also visible from the thermodynamic products may result in cell death (28). The thermodynamic parameters. ITC results show that (cid:6)H ° (cid:14) (cid:6)H ° (more ener- stability of the cAbMaz1 was also compared with the corre- 2 1 getically favorable contacts or/and less unfavorable contacts sponding (cid:6)G° values of some other members of the camelid are formed upon binding of the first cAbMaz1 molecule) and V Hantibodyfamilydeterminedat25°C.The(cid:6)G°valueofour H (cid:6)C ° (cid:14) (cid:6)C ° (larger part of a non-polar surface is buried cAbMaz1at25°Cis8.7kcal/mol,whichplacesitsomewherein P,2 P,1 or/andmorepolarsurfaceisexposeduponbindingofthefirst the middle of the list of V H stabilities (38, 39). However, its H cAbMaz1molecule). transition temperature T (Table II) is among the highest 1⁄2 Thermodynamic Stability of MazE, cAbMaz1, and Their observedforanyV H(38,39).ThehighT andhighdegreeof H 1⁄2 Complexes—The stability curves ((cid:6)G° versus T) of MazE, reversibility (0.85) are the properties of V H that may be H cAbMaz1, and their tetrameric complex are presented in Fig. highly appreciated in processes where transient heating may 6b. The comparison of the stability curve of MazE to that of takeplace.Fig.6bdisplaystheextenttowhichMazEdimeris anotheraddictionantidote,CcdA(32),showsthatbothproteins stabilized by the binding of two cAbMaz1 molecules. The dif- haveverysimilarthermodynamicstability.BecauseMazEand ference between the curve obtained as a sum of (cid:6)G° versus T thetoxinMazFareco-expressed,andtheirexpressionisauto- curves for MazE and cAbMaz1, and the curve of their tet- regulatedontheleveloftranscription(6,9),thetotalconcen- rameric complex is a measure of apparent binding affinity of trationofMazEinthecellwillneverbehigherthanacertain thetwocAbMaz1molecules((cid:6)G °(cid:3)(cid:6)G °).(cid:6)G °(cid:3)(cid:6)G °values 1 2 1 2 levelsetbyequilibriumconstantsofMazE-MazFpromoterand obtainedfromDSCareingoodagreementwiththoseobtained MazE promoter complex formation and the concentration of by model analysis of the ITC, FL, and CD titration curves promoterDNA.Consequently,theconcentrationoffreeMazE (TableI,andFig.5c).AscAbMaz1isalsorelativelysmalland (not bound in the MazE-MazF, MazE-MazF promoter, and wellsoluble,itprovedtobeanidealcrystallizationandphasing 14110 MazE-Dromedary Antibody and MazE-DNA Interactions aidforMazE.1ItfollowsthatV Hsmaybeapplicablealsofor unit, we see that all MazE molecules are too far apart from H stabilization of other proteins with short shelf life and rela- each other to directly interact. This is in full agreement with tivelylowthermodynamicstability. our model of three non-interacting, quasi-equivalent binding Thegeneralarchitectureofglobularproteinsissuchthata sites(Fig.9b).Sufficientspaceisavailablebetweenthebound hydrophobiccoreissurroundedbyhydrophilicshell.Thiscom- MazE dimers to position the otherwise unstructured MazE partmentalizationisthemaindrivingforceoftheproteinfold- domain (which we assume to become more structured upon ing.Toqualitativelydescribetowhatextentburiedhydrophilic DNAbinding).ThespacingbetweentheboundMazEdimersis groups as well as exposed hydrophobics destabilize the folded also of the right magnitude to allow them to be bridged by conformationofthestudiedproteins,wecomparedtheexperi- MazFdimers.InthepresenceofboundcAbMaz1,noadditional mental(cid:6)C °valueswiththosecalculatedfromthechangesin protein-DNA contacts or steric hindrance of any sort is ob- P the non-polar and polar solvent accessible surface areas upon servedinourstructuralmodel(Fig.9c),whichisalsoinagree- denaturation(Equation11).Thecalculated(cid:6)C °valuesforthe mentwiththeexperimentalresults. P denaturation of the tetrameric MazE-cAbMaz1 complex and Thegeneralpropertyofautoregulationoftranscriptioninall cAbMaz1 agree well with the experimental ones, whereas in described addiction systems is that the antidote is the main the case of MazE, the calculated (cid:6)C ° is significantly higher DNA-binding protein of which affinity to promoter DNA is P (Table II). As the opposite effect was observed upon MazE- significantly enhanced in the presence of the toxin. On the cAbMaz1binding,thisdiscrepancymaybeascribedtothemore otherhand,thedetailssuchasthenumberofpalindromeDNA non-polar(or/andlesspolar)residuesexposedtosolventinthe sequences involved in binding, the protection of DNA against MazEnativestateinthesolutionthanispredictedbyMazE- DNaseIbythecomplexandalsobytheantidotealone,andthe cAbMaz1crystalstructure. lengthoftheprotectedregiondifferfromsystemtosystem.In Binding of MazE to the Promoter DNA—It was reported the case of phd-doc, under physiological conditions unfolded recently, that two alternating palindrome sequences in the Phd monomers are stabilized by binding to promoter DNA, a promoter (Fig. 9) are crucial for DNA binding of the MazE- process that is accompanied by dimer formation (10–11). The additional stabilization of Phd by dimer formation is most MazFcomplexandthusfortheregulationofMazEandMazF probablythereasonwhyPhdbindingtoeachofthetwodistinct expression (9). Footprint analysis of the promoter revealed palindromesismoreenergeticallyfavorablethanthedescribed protection of DNA against DNase I by the MazE-MazF com- binding of MazE, where the dimers already exist in solution. plex. On the other hand, it was suggested that the binding of CcdA and ParD (the antidote from parDE system) are, like MazE to DNA is weaker than the binding of the MazE-MazF MazE,dimericproteinsinthemicromolarconcentrationrange complex (9). In the present work, we were able to estimate at physiological temperatures. Under these conditions they thermodynamicparametersofMazEassociationonthebasisof bind to DNA as dimers. However, the binding affinities and a simple model (Reaction 1 and Equations 1 and 6), which other thermodynamic parameters have not been reported showsthatuptothreeMazEdimersareboundatthepromoter sequenceandthatthebindingishighlyexothermic((cid:6)H°(cid:4)(cid:8)71 (32–34). kcal/mol) with the apparent binding constant in the micro- Acknowledgments—We acknowledge the use of synchrotron beam molarrange((cid:6)G°(cid:4)(cid:8)RTlnK(cid:4)(cid:8)8.7kcal/mol).MazE-promoter timeattheEuropeanMolecularBiologicalLaboratory(EMBL)beam- DNAinteractionsmaybecharacterizedasspecific,becausethe lines at the DORIS storage ring (Hamburg, Germany) and the Euro- inducedITCandFLsignalsuponMazE(cid:3)controlDNAtitra- pean Synchrotron Radiation Facility (ESRF; Grenoble, France). We thankJorisMessensandKarolienVanBelleforpurifyingtheMazE- tion were negligible in comparison to those resulted from the cAbMaz1 complex and performing quantitative gel filtration experi- MazE binding to the promoter DNA. Rather low K can be ments with MazE. Professor Gorazd Vesnaver from University of ascribed to the highly unfavorable entropic contribution Ljubljana(wheretheDSCmeasurementswereperformed)andPatrick (T(cid:6)S°(cid:4)(cid:6)H°(cid:8)(cid:6)G°(cid:4)(cid:8)62kcal/mol).AsDNAisrelativelyrigid Van Gelder are gratefully acknowledged for critical reading of the manuscriptandusefulsuggestions. and the displacement of water from interacting surfaces is entropically favorable, this highly negative value most proba- REFERENCES blyresultsnotjustfromloweringofdegreesoffreedomdueto 1. Raff,M.(1998)Nature396,119–122 association reaction (MazE (cid:3) DNA (cid:4) MazE-DNA) but also 2. Hengartner,M.O.(2000)Nature407,770–776 3. Yarmolinsky,M.B.(1995)Science267,836–837 from folding of an otherwise unstructured part of the MazE 4. Jensen,R.B.,andGerdes,K.(1995)Mol.Microbiol.17,205–210 dimer.1ThismakesMazEoneofmanyrecentlyidentifiedpro- 5. Couturier,M.,Bahassi,E.M.,andVanMelderen,L.(1998)TrendsMicrobiol. teins that are intrinsically flexible but become more ordered 6,269–275 6. Engelberg-Kulka,H.,andGlaser,G.(1999)Annu.Rev.Microbiol.53,43–70 uponbindingaspecificpartner(40).Wehaveobservedthatthe 7. Rawlings,D.E.(199)FEMSMicrobiol.Lett.176,269–277 bindingoftheMazE-cAbMaz1complextoDNA,justlikeinthe 8. Gerdes,K.(2000)J.Bacteriol.182,561–572 caseofMazE,isahighlyenthalpy-driven((cid:6)H°(cid:4)(cid:8)80kcal/mol) 9. Marianovsky, I., Aizeman, E., Egelberg-Kulka, H., and Glaser, G. (2001) J.Biol.Chem.276,5975–5984 process accompanied by negative entropy contributions 10. Gazid,E.,andSauer,R.T.(1999)J.Biol.Chem.274,2652–2657 (T(cid:6)S°(cid:4)(cid:8)69kcal/mol).TheapparentaffinityofMazE-cAbMaz1 11. Magnuson, R., Lehnherr, H., Mukhopadhyay, G., and Yarmolinsky, M. B., (1996)J.Biol.Chem.271,18705–18710 ((cid:6)G° (cid:4) (cid:8)8.6 kcal/mol) is practically the same as that of MazE 12. Davis, T. L., Helinski, D. R., and Roberts, R. C. (1992) Mol. Microbiol. 6, alone.ThisindicatesthatthebindingoftwocAbMaz1molecules 1981–1994 13. Eberl,L.,Givskov,M.,andSchwab,H.(1992)Mol.Microbiol.6,1969–1979 to the MazE dimer does not significantly influence its interac- 14. Ruiz-Echevarria,M.J.,deTorrontegui,G.,Gimenez-Gallego,G.,andDiaz- tions with the promoter DNA. Because the residues of MazE Orejas,R.(1991)Mol.Gen.Genet.225,335–362 15. Tsuchimoto,S.,Ohtsubo,H.,andOhtsubo,E.(1993)Mol.Gen.Genet.237, dimer to which the two cAbMaz1 molecules are bound cannot 81–88 interactwithDNA,onlyalimitednumberoforientationsofthe 16. deFeyter,R.,Wallace,C.,andLane,D.(1989)Mol.Gen.Genet.218,481–486 MazEdimerinthecomplexwithDNAarepossible. 17. Tam,J.E.,andKline,B.C.,(1989)J.Bacteriol.171,2353–2360 18. Tam,J.E.,andKline,B.C.,(1989)Mol.Gen.Genet.219,26–32 Based on this observation as well as on results from site- 19. Bernard,P.,andCoutrier,M.(1992)J.Mol.Biol.226,735–745 directedmutagenesisandtheobservationofresidueconserva- 20. Miki,T.,Park,J.A.,Nagao,K.,Murayama,N.,andHoriuchi,T.(1992)J.Mol. Biol.225,39–52 tion within the MazE family of antidotes, we have recently 21. Ruiz-Echevarria,M.J.,Gimenez-Galleo,G.,Sabariegos-Jaren˜o,R.,andDiaz- suggested a structural model for MazE-DNA binding.1 When Orejas,R.(1995)J.Mol.Biol.247,568–577 we consider the 3-fold repeat in the promoter DNA sequence 22. Masuda,J.,Miyakawa,K.,Nishimura,Y.,andOhtsubo,E.(1993)J.Bacteriol. 175,6850–6856 and dock the MazE dimer into the center of each repeating 23. Masuda,J.,andOhtsubo,E.(1994)J.Bacteriol.176,5861–5863

Description:
The transition enthalpies Hcal were obtained by integration of CP versus T curves changes in non-polar and polar accessible areas from the equation introduced .. another addiction antidote, CcdA (32), shows that both proteins.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.