7 1 Recent selected theory developments for NICA 0 2 b DavidBlaschke1,2,3,(cid:63) e F 1JointInstituteforNuclearResearch,Dubna,Russia 1 2UniversityofWroclaw,Wroclaw,Poland 3NationalResearchNuclearUniversity(MEPhI),Moscow,Russia ] h t Abstract.InthiscontributionIpresentafewselectedtopicsofrecenttheoreticaldevel- - l opmentsofrelevancefortheNICAfacilityunderconstruction. Inafirstpart,Idiscuss c u newaspectsoftheQCDphasediagramlikethepossibleexistenceofacriticalendpointof n first-orderphasetransitionsfromtheperspectiveofgeneralizationsofthe3-flavorPNJL [ model including the conjecture of a universal pressure for the onset of deconfinement inheavy-ioncollisionsandastrophysics. Asecondpartisdevotedtofirstresultsofthe 1 newlyconstructedeventsimulator(THESEUS)whichisbasedontheparticlizationofthe v formerthree-fluidhydrodynamicscodebyIvanov,RusskikhandToneevthatallowsalso 9 tostudytheroleofhadronicfinalstateinteractions. Possiblesignalsofthemixedphase 2 1 accessibleatNICAareconsidered. Inparticular,therobustnessofthebaryon-stopping 0 signal of deconfinement and the occurrence of antiflow for protons have b√een investi- 0 gatedforAu+AucollisionsintherangeoftheNICA-MPDenergyscanfor s∼6...8 . GeV.Thissignalisreflectedalsointheflowpatternoflightnuclearclusters,inparticular 2 √ deuterons. ThesharppeakfortheK+/π+ ratioat s ∼ 8GeV(the"horn"effect)isnot 0 7 obtainedinthepresentversionofTHESEUSandcallsforimprovementoftheequation 1 ofstateinput. IreporttherecentprogressindevelopingageneralizedBeth-Uhlenbeck : approachtoaunifieddescriptionofquark-hadronmatterwhichincludesnowstrangeness v andrevealsanewmechanismforexplainingtheK+/π+ ratioduetothepronouncedoc- i X currenceofananomalousmodeintheK+atfinitebaryochemicalpotentials. r a 1 Introduction TheWhitePaperon"ExploringStronglyInteractingMatteratHighDensities"attheNuclotron-based IonColliderfAcility(NICA)hasrecentlyappearedasaTopicalIssueintheEuropeanPhysicalJournal A[1]. Itcomprises56articlesrelatedtothemostprospectivephysicsaspectstobeexploredatthis upcomingfacility. IshallpresentafewselectedtopicsofrecenttheoreticaldevelopmentsforNICA inwhichIhavebeeninvolved. First I consider key aspects of the QCD phase diagram like the possible existence of a critical endpoint(CEP)offirst-orderphasetransitionsthathasbeenelaboratedin[2]fornonlocalPolyakov- loopextendedNambu–Jona-Lasinio(PNJL)modelsconstrainedbylatticeQCDwithspecialempha- sis on the role of a repulsive vector meanfield. The CEP is also discussed from the perspective of generalizations of the color superconducting 3-flavor PNJL model [3] including the conjecture of a (cid:63)e-mail:[email protected] universal pressure for the onset of deconfinement in heavy-ion collisions and astrophysics [4]. In thiscontextIfinditworthwhiletoquoteresultsofRef.[5]whereconsequencesfortheQCDphase diagramhavebeendemonstratedofenforcingacoincidencebetweenchiralsymmetryrestorationand deconfinementwithacorrespondinglyadjustedbagpressureontopofamodelwithdynamicalchiral symmetryrestoration. TheseconsiderationsoftheQCDphasediagramindifferentdynamicalmodels areimportantforthepreparationoftheNICAexperimentsastheycangivetheoreticalestimateson theaccessibilityofcertainQCDphasesandwhateffectsonemayhopetodetectinthegivenenergy range. Sect. 3 is devoted to the new event simulation program THESEUS. Within a collaboration in- volving a team of 9 scientists from Germany, France, Italy, Poland, Russia, Ukraine and the United States we have succeeded to create a startup version for a new Three-fluid Hydrodynamics-based Event Simulator Extended by UrQMD final State interactions (THESEUS) and reported about its performancein[7]. Inparticular,therobustnessofthebaryon-stoppingsignalofdeconfinement[8,9] andtheoccurrenceofantiflowforprotonsforAu+AucollisionsintherangeoftheNICA-MPDen- √ ergy scan for s ∼ 6...8 GeV [7] have been reconsidered in THESEUS. For the first time it was possible to investigate the effect of hadronic rescattering on the results of the three-fluid hydrody- namicssimulations. Tothisendtheultrarelativisticquantummoleculardynamics(UrQMD)program has been implemented. The antiflow signal for a first order phase transition is reflected also in the flowpatternoflightnuclearclusters, inparticularfordeuterons[10]. THESEUSanditsunderlying three-fluid hydrodynamics model shall be developed further, in particular to be able to improve the descriptionofthehadronizationprocessandcapturesubtleeffectslikethe"horn"effectfortheK+/π+ ratio. Amaingoalofongoingstudiesistoimprovetheequationofstate(EoS)input. Inthisrespect recent progress in developing a generalized Beth-Uhlenbeck (GBU) approach [11–13] to a unified descriptionofquark-hadronmatter[14]whichincludesnowstrangeness[15,16](seealso[17])has shownremarkableresults. IthasrevealedanewmechanismforexplainingtheK+/π+ratioduetothe pronounced occurrence of an anomalous mode in the K+ channel at finite baryochemical potentials [16]. The GBU approach on the basis of a PNJL model utilizes a generalization of the Φ− deriv- ableapproachthataccountsforaspectrumofhadronresonancesasboundstatesofquarkswhichget dissolved into the quark-gluon plasma continuum by the Mott effect encoded in medium-dependent hadronic phase shifts. It can describe the lattice QCD thermodynamics results on the temperature axis of the QCD phase diagram [14] and should therefore next be extended to finite baryochemical potentials. 2 The phase diagram as probed at NICA This section selects a few aspects out of the rich thematics of the QCD phase diagram that have recentlybeendiscussedinthecontextoftheupcomingNICAexperiments. Forageneralintroduction totheQCDphasediagramonemayconsultthereviewbyFukushimaandHatsuda[18]andthemore recentonebyFukushimaandSasaki[19]. Interesting aspects that have been spared out here concern inhomogeneous condensates [20] for whichinsteadofaCEPaLifshitzpointoccursinthephasediagram.Anotherpointofinterestincluded intheNICAWhitePaperisthebehaviorofscalarmesonsinthephasediagram[21]. Theirproperties may trace the chiral restoration transition and provide a potentially observable signal in the two- photon channel [22] if the background can be sufficiently suppressed. Promising progress has also been made by the Functional Renormalization Group approach that provides spectral functions for the quark-meson model phase diagram [23]. In near future one can expect interesting predictions alsoforthepartofthephasediagramprobedatNICAprovidingtheapproachcanbegeneralizedto includebaryons. (cid:32) 0.7 (cid:50)(cid:52)(cid:48) [M(p) - m] / [M(0) - m]Z(p)00..055110 0.5 p (G1eV) lnnnLolllacPPP t atNNN il c JJJN eLLL 1J ( L---P . 5SSS a r eee a ttt p ABC p i l l y e t a l((.ab)))2 D4P/T0000000.......0123456 0Sm.e8 =t TCc 1.0 1.2 T/T1c.4 1 A.6 l Llhhhhtaovvvvt====nti 0000ce....et0145 a 51Q l5 .. C8 ( D20, 03)2.0 (cid:101)(cid:86)(cid:93)(cid:84)(cid:91)(cid:77)(cid:49)(cid:49)(cid:49)(cid:49)(cid:49)(cid:50)(cid:50)(cid:50)(cid:52)(cid:54)(cid:56)(cid:48)(cid:50)(cid:52)(cid:54)(cid:56)(cid:48)(cid:50)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48) (cid:83)(cid:53)(cid:101)(cid:48)(cid:116)(cid:32)(cid:61472)(cid:67)(cid:61510)(cid:61510)(cid:61544)(cid:61510)(cid:61510)(cid:61544)(cid:32)(cid:32)(cid:118)(cid:32)(cid:32)(cid:32)(cid:32)(cid:118)(cid:49)(cid:32)(cid:32)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:32)(cid:32)(cid:32)(cid:32)(cid:48)(cid:32)(cid:32)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:48)(cid:46)(cid:46)(cid:46)(cid:46)(cid:46)(cid:46)(cid:52)(cid:54)(cid:52)(cid:54)(cid:48)(cid:53)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:53)(cid:45)(cid:45)(cid:45)(cid:45)(cid:40)(cid:49)(cid:32)(cid:32)(cid:32)(cid:32)(cid:61472)(cid:61544)(cid:61544)(cid:61544)(cid:61544)(cid:53)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:61547)(cid:53)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:118)(cid:118)(cid:118)(cid:118)(cid:40)(cid:61)(cid:32)(cid:32)(cid:32)(cid:32)(cid:61472)(cid:48)(cid:61)(cid:61)(cid:61)(cid:61)(cid:32)(cid:61547)(cid:32)(cid:32)(cid:48)(cid:32)(cid:32)(cid:32)(cid:32)(cid:61)(cid:48)(cid:48)(cid:48)(cid:48)(cid:46)(cid:32)(cid:50)(cid:49)(cid:46)(cid:46)(cid:46)(cid:46)(cid:48)(cid:48)(cid:48)(cid:53)(cid:53)(cid:50)(cid:48)(cid:46)(cid:61549)(cid:53)(cid:53)(cid:32)(cid:32)(cid:32)(cid:48)(cid:55)(cid:48)(cid:53)(cid:53)(cid:32)(cid:32)(cid:53)(cid:32)(cid:41)(cid:91)(cid:57)(cid:77)(cid:41)(cid:50)(cid:101)(cid:53)(cid:86)(cid:48)(cid:93)(cid:32)(cid:32)(cid:51)(cid:32)(cid:48)(cid:48)(cid:51)(cid:53)(cid:48)(cid:52)(cid:48)(cid:48)(cid:52)(cid:53)(cid:48)(cid:53)(cid:48)(cid:48) (cid:32)(cid:32) Figure 1. Left panel: Normalized dynamical masses for the different form factors under study (NJL, Set A (cid:32)(cid:32) - C) and wave function renormalization for Set B and Set C, fitted to lattice QCD data [28]. Middle panel: (cid:32)(cid:32) ComparisonbetweenSetCresultsfordifferentvaluesofthevectorcouplingparameterη andlatticeQCDdata V [32].Rightpanel:Phasediagramswith(pseudo)criticaltemperaturesT (µ)andcriticalpointsfornonlocalrank- c 2PNJLmodel(SetC).Dashed(full)linescorrespondtocrossover(firstorder)transitions. Thecorresponding dash-dottedanddottedlinesrepresentthedeconfinementtransitionrange,i.e.Φ=0.4andΦ=0.6,respectively. ThehighlightedregiondenotestheCEPpositionfavoredbythepresentstudy.ThefiguresarefromRef.[2]. 2.1 CEPinanonlocalPNJLmodelconstrainedbylatticeQCD Dynamical models for quark hadron matter that have the potential to provide more insights to the microphysics of the hadron-to-quark matter phase transition are based on the hierarchy of the QCD DysonSchwingerequationswherehadronsappearasboundstatesofquarksduetotheirinteractions via confining forces mediated by nonperturbative gluon propagators [24–26]. The key quantities of this approach are the dynamical mass function and the wave function renormalization of the quark propagatorthataredescribedinexcellentagreementwithlatticeQCDdata[27,28]. Asimilarqualityofthedescriptionofthequarkpropagatorisachievedwithinthenonlocalchiral quark models that are defined by a covariant form factor which is calibrated with the same lattice QCD data, see the left panel of Fig. 1. For their finite temperature extension, the coupling to the Polyakovloopresultsinpredictionsofthepseudocriticaltemperaturethatareinexcellentagreement withthelatticeQCDdata[29,30]. TheextensionofthesemodelstothewholeT −µplanehasbeen accomplished in Ref. [31] with particular emphasis on the role that interactions in the Dirac vector channel play for the position and the very existence of the CEP. This discussion has been extended in [2] where the possibility of a very small or vanishing vector coupling at low chemical potentials as obtained on the basis of lattice QCD results for the imaginary chemical potential technique has beensuggestedasapossiblesolutionoftheproblemtodescribethelatticedataforthetemperature dependenceofthepressuredifference∆P= P(T,µ)−P(T,0)atfiniteµ=T [32],seethemiddlepanel c ofFig.1. ThefavorablemodelisSetCwhichinthiscasepredictsacriticalendpointatT ∼ 130 √ CEP MeVandµ = 225MeV.Thiscorrespondstochemicalfreeze-outparametersfor s ∼ 6GeV, CEP NN i.e. belowtherangeoftheRHICbeamenergyscanoftheSTARexperiment,butwellinreachforthe plannedNICAenergyscan. 2.2 Universaltransitionpressureina3-flavorcolorsuperconductingPNJLmodel For the first time, the phase diagram of a 3-flavor color superconducting PNJL model has been ob- tained in [3], the results are shown in Fig. 2. The entropy per baryon isolines indicate paths for the dynamicalevolutionofafireballatNICA/FAIRenergieswhereupmostline(s/n = 11)corresponds √ to s ∼ 4.5 GeV (E ∼ 9 A GeV) [33]. The yellow region (n < 0) denotes an instability of NN lab B Figure2.Phasediagramofthe three-flavorcolorsuperconducting PNJLmodelforsymmetricquark matterfrom[3].Fordetailsseetext inSubsect.2.2. thehomogeneousmeanfieldapproximationtoquarkmatterwhichiscuredwhenaphasetransitionto hadronicmatterisinvokedwithauniversaltransitionpressureof80MeV/fm3[34]delimitingthegrey region. Inthe rangeof temperaturesaccessiblein theenergyscan programsof heavy-ioncollisions √ for s = 4−200 GeV this coincides with the phase equilibrium between the PNJL model and NN thehadronresonancegas(solidblueline). Thesolidredlinecorrespondstothecriticaltemperature for2SCsuperconductivityinquarkmatter. Thegreen(blue)linescorrespondtoequallight(strange) quarkmassesreducedrelativetothevacuumvaluebyafactorlabellingtheselines. Alongtheorange linesthetracedPolyakovloophasthevaluethatlabelsthem. 2.3 Enforcingcoincidentchiralanddeconfinementtransitionsinthephasediagram A challenging question is whether chiral restoration and quark deconfinement transitions coincide in the QCD phase diagram or not. In lattice QCD simulations at low chemical potentials the peak positions of chiral and Polyakov-loop susceptibilities are to good accuracy coincident, but this may not be the case for high baryon densities, allowing for three alternatives: a massive quark matter phase[35,36],aquarkyonicphase[37,38]withchiralquarksconfinedinbaryons(andmesons)and thecasethatchiralrestorationanddeconfinementcoincideinthewholephasediagram.Thelattercase isbasedontheQCDDyson-SchwingerequationswheretheKugo-Ojimaconfinementmechanismis realizedbythedynamicalquarkmassfunctionwhichservesforchiralsymmetrybreakingandatthe sametimeconspireswiththewavefunctionrenormalizationsoastoremovethequasiparticlepoleof thequarkpropagator[39,40]. DexheimerandSchramm[41]haveconstructedamodelthatrealizes coincidentchiralanddeconfinementphasetransitionviathecouplingofquarkandhadronmassesto thePolyakovloop. ThepositionofthecriticalendpointandthecriticalchemicalpotentialatT = 0 is fixed by the behavior of the Polyakov-loop potential which they extend by adopting a chemical potentialdependence. IntheircontributiontotheNICAWhitePaper,Fischer,KlähnandHempel[5]realizethecoinci- denceofchiralrestorationanddeconfinementintheQCDphasediagrambyadoptingabagpressure B , see also [6]. The hadronic phase is described by a generalized relativistic density functional dc modelwithlightclusters[42]andforthephasetransitionaMaxwellconstructionisapplied. InFig.3 Figure3. PhasediagramforaselectedchiralbagconstantB1/4 =152.7MeV,comparingthenewapproach[6, χ 43](leftpanels)withthe"standard"NJLone(B =0,rightpanels).Toppanels:Dependenceonbaryochemical dc potential.Bottompanels:Dependenceonthebaryondensity(seetextfordefinitions).Solidgraylinesmarklines ofconstantentropyperbaryoninunitsoftheBoltzmannconstantk .Typicaltrajectoriesofheavy-ioncollisions B intheNICAMPDexperimentwillliebetweenthelineslabelledby"10"and"20";forexplanationsseethetext. FigurefromRef.[5]. thephasediagramforthismodel(leftpanels)iscontrastedtothecasewhere B = 0(rightpanels). dc It is remarkable for the upcoming NICA experiments that the upper limiting density for the mixed √ phase is only about twice the nuclear saturation density for s ∼ 6 GeV where T ∼ 130 MeV NN whenenteringthemixedphaseandaftercompletionofthetransitionthematterisheateduptoabout 150MeV. Foran orientationinthat figure, considerthe rangeofentropy perbaryon s/n = 10−25 √ [33]thatwillbecoveredbytheNICAMPDcolliderexperiment,where s = 4...11GeV[44]. NN ThisEoSfulfilsalsotheconstraintfromrecentprecisemassmeasurementsofpulsarswhichrequire themaximummassofaneutronstarorhybridstarpredictedfortheEoStoreachatleast2M [43]. (cid:12) 2.4 High-masstwinstarssupporttheCEP Startingfromthepossibleexistenceofathirdfamilyofcompacthybridstarsathighmassasindicators ofastrongfirstorderphasetransitionincompactstarinteriors[45](highmasstwinstars[46])from which the existence of a critical point in the QCD phase diagram follows, in the contribution [4] to theNICAWhitePapertherelationbetweenthepressureattheonsetofthedeconfinementtransition forstarswithM ∼2M andtheirradiushasbeenshownforthefirsttime,seeFig.4.Ifthemaximum (cid:12) star radius from observations turns out to be less than 14 km, e.g. in the range 13.6 - 14.0 km this wouldindicatealimitingpressureofthehadronicphaseofmatterof74-90MeV/fm3,inexcellent agreementwiththeanalysisofchemicalfreeze-outinheavy-ioncollisionsbyRafelski&Petran[34] Figure4.Leftpanel:Mass-radiusrelationshipsforthreeexamplesofanewclassofhybridneutronstarequations ofstatewithastrongfirstorderphasetransitionexhibitinganendpointofpurelyhadronicconfigurationsatabout 2 M andastablebranchofcompacthybridstars,disconnectedfromthehadronicones("thirdfamily"). Right (cid:12) panel: The radius R at the endpoint of the hadronic configurations (∼ 2 M ) for different classes of hybrid (cid:12) equationsofstateversusthecorrespondingpressureatthephasetransition p . Alltheseequationsofstate trans allowforathirdfamilyofstarsathighmass("high-masstwin"stars).FiguresfromRef.[4]. whichgave82±8MeV/fm3. Suchauniversalityofthelimitingpressureofthehadronicphaseinthe QCDphasediagram,ifitexists,wouldbeofenormousheuristicvalueforinterdisciplinarystudiesof theQCDphasediagraminheavy-ioncollisionsandinAstrophysics. 3 Three-fluid hydrodynamics based simulations and mixed phase signals 3.1 Baryonstoppingsignal InFig.5weshowtheNICAenergyscanforthecurvatureCyofthenetprotonrapiditydistribution atmidrapidityforcentralAu+Aucollisionswithimpactparameterb=2fm(leftpanels), b=6fm (middlepanels)andb=11fm(rightpanels). Wecomparethe3FHmodelresult(blacksolidlines) with THESEUS (blue short-dashed lines) and THESEUS without UrQMD (red long-dashed lines). Theresultsforthetwo-phaseEoS(upperrowofpanels)arecomparedtothoseforthecrossoverEoS (lowerrowofpanels).Fornoncentralcollisionsthecurvaturepatternisshiftedtowardspositivevalues whilethe "wiggle"asa characteristicfeaturefor theEoS withafirst orderphasetransition [47,48] remainsratherrobust[8,9]. Fordetails,see[7]. 3.2 Antiflowoflightclusters Among the suggested signatures of a first order phase transition in heavy-ion collision experiments is the antiflow of nucleons, i.e., a negative slope for the rapidity dependence of the directed flow v 1 atmidrapidity[49]. Ithasbeenshowninhydrodynamiccalculationsalreadyin[50]thatthisfeature is relatedto the softestpoint of theequation of state. Naturally, this sensitivityto the EoScould be nicely demonstrated within the three-fluid hydrodynamics approach [51, 52]. The proton antiflow feature has been obtained also in different transport theory based simulations that implement a first orderphasetransition,forinstancethehybridapproach[53]whichusesahydrodynamicdescription 22--pphhaassee EEooSS,, bb == 22 ffmm 22--pphhaassee EEooSS,, bb == 66 ffmm 22--pphhaassee EEooSS,, bb == 1111 ffmm 15 15 15 10 10 10 5 5 5 Cy 0 Cy 0 Cy 0 - 5 - 5 - 5 - 10 - 10 - 10 (a) (b) (c) - 15 - 15 - 15 2 3 4 5 6 7 8 9 101112 2 3 4 5 6 7 8 9 101112 2 3 4 5 6 7 8 9 101112 s [GeV] s [GeV] s [GeV] NN NN NN ccrroossssoovveerr EEooSS,, bb == 22 ffmm ccrroossssoovveerr EEooSS,, bb == 66 ffmm ccrroossssoovveerr EEooSS,, bb == 1111 ffmm 15 THESEUS 15 15 THESEUS w/o UrQMD 10 3FH 10 10 E866, E895, E917 5 NA49, Pb+Pb 5 5 Cy 0 Cy 0 Cy 0 - 5 - 5 - 5 - 10 - 10 - 10 (d) (e) (f) - 15 - 15 - 15 2 3 4 5 6 7 8 9 101112 2 3 4 5 6 7 8 9 101112 2 3 4 5 6 7 8 9 101112 s [GeV] s [GeV] s [GeV] NN NN NN Figure 5. Energy scan for the curvature Cy of the net proton rapidity distribution at midrapidity for central Au+Aucollisionswithimpactparameterb=2fm(panels(a)and(d)),b=6fm(panels(b)and(e))andb=11 fm(panels(c)and(f)).Wecomparethe3FHmodelresult(blacksolidlines)withTHESEUS(blueshort-dashed lines)andTHESEUSwithoutUrQMD(redlong-dashedlines).Theresultsforthetwo-phaseEoS(panels(a)-(c)) arecomparedtothoseforthecrossoverEoS(panels(d)-(f)). Fornoncentralcollisionsthecurvaturepatternis shiftedtowardspositivevalueswhilethe"wiggle"asacharacteristicfeaturefortheEoSwithafirstorderphase transitionremainsratherrobust.FigurefromRef.[7]. ofthephasetransitionsandwichedbyUrQMDmodelingofinitialandfinalstages,andthetransport theoreticalmodelJAM[54,55]. InRef.[10]ithasbeenconjecturedthattheflowoflightclusterssuchasdeuteronsmaytracethe early flow at the hadronisation transition since by their inertia the heavier particles are less affected by hadronic rescattering effects. This has been checked with the THESEUS code and indeed, the antiflowofprotonsobtainedinthisprogramforthe2-phaseEoSasasignatureofthefirstorderphase √ transition in this EoS in the energy range s ∼ 6−7 GeV is reflected also in the deuteron flow NN forthesameEoSwhilethecrossoverandpurehadronicEoSdonotshowtheantiflowsignature,see Fig.6. As for the proton antiflow, it would be premature to predict quantitatively the deuteron antiflow duetopresentambiguitiesinthedeuteronformationmechanismbycoalescenceandintheusedEoS. Inparticular,the2-phaseEoSistoosoftathighdensitiesandhasanunrealisticallyhighonsetdensity of the phase transition. With an improved EoS, the antiflow signature of the phase transition could √ occurinthebeamenergyrange4.7GeV < s < 7.7GeV,wherenoexperimentaldataexistyet NN butwheretheNICAMPDexperimentwillbeoperating[44]. Figure6.Energyscanoftheslope ofthedirectedflowforprotons(left panel)andfordeuterons(right panel).Acomparisonofresults fromTHESEUSsimulationswitha 2-phaseEoSthatpossessesastrong first-orderphasetransitiontoresults foracrossover(orpurelyhadronic) EoSdemonstratesthatadipat √ energiesof s =6−8GeV NN couldberegardedasaphase transitionsignal.Such"antiflow" signalisexpectedforprotonsas wellaslightclusters.Forfurther details,seeRef.[10];thefiguresare takenfromthatpaper. 3.3 Marek’shorn In previous chapters we have praised the advantages of the new THESEUS simulation program for heavy-ioncollisionsintheNICA/FAIRenergyrange,wherethetransitionfromthebaryonstopping to the transparency regime is expected. Promising signatures of a first order phase transition have beendiscussed. However,the"horn"effectwhichisobservedintheenergyscanofthe K+/π+ ratio (for the data see, e.g., Fig. 11 of Ref. [56], partly displayed here in the left and middle panels of Fig. 7) is not reproduced in the present version of THESEUS and with the present EoS. This effect has been suggested by Marek Gazdzicki and Mark Gorenstein as a signature of the mixed phase in hadron-to-quarkmatterphasetransition[57]. Itsquantitativedescriptioninsimulationsofheavy-ion collisionsisanotoriouslydifficultproblem. Recently,inanupgradeofthePHSDprogramwithchiral symmetryrestorationeffects, asatisfactorydescriptionofthe"horn"effectcouldbegiven[58]. We advocate another possibility to solve the "horn" puzzle. In a recent work on the Mott dissociation ofpionsandkaonsinhot,densequarkmatter[16]whichextendstheGBUapproach[11–13]tothe strangenesssector,wehavefoundthatastablemodeoftheK+ mesonoccursinthephasediagramat finiteT andµduetothecompositenessandunequalmassesofthequarkconstituents.Thisin-medium boundstateisagoodcandidateforcausingtheenhancementofthe K+/π+ ratioinacertaindomain oftheenergyscanwhiletheK−/π−ratioremainsunaffected,seetherightpanelofFig.7. Weplanto implementthecorrespondingEoSintoanupgradeoftheTHESEUSprogram. 4 Conclusions In this contribution I have discussed a few selected theoretical developments of relevance for the NICA facility under construction. First, I have picked new aspects of the QCD phase diagram like 0,4 0,3 ratio0,2 K+/+ - with anomalous 0,1 K-/- - with anomalous K+/+ K-/- 0,0 1 10 100 1000 s1N/N2, [GeV] Figure 7. Energy scan for the particle ratio K+/π+ in the NICA energy range for central Au+Au collisions (impactparameterb=2fm)with(bluedottedlines)andwithout(reddashedlines)theUrQMDhadronicrescat- tering. The calculation with a first order phase transition in the EoS (left panel) is compared to that with the crossoverEoS(middlepanel). Forcomparisonweshowinboththesepanelstheresultswithoutparticlization andUrQMDrescattering(blacksolidlines)andexperimentaldata,takenfromFig. 11ofRef.[56]. Datafrom AGSexperiments(E802,E866,E895)areshownbyfilledcircles,datafromNA49byfilledsquares.Intheright panelwedemonstratetheeffectoftheanomalousmodesontheK+/π+andK−/π−ratios(thicklines),compared tothe"normal"casewithoutthesemodes(thinlines),from[16].UponimplementationofthiseffectintotheEoS usedintheTHESEUSsimulationadecentimprovementofthedescriptionofthe"horn"effectwillbeachieved. the possible existence of a critical endpoint of first-order phase transitions from the perspective of a nonlocal chiral quark model calibrated with lattice QCD simulations that strongly suggests a low orvanishingvectorcouplingatlowchemicalpotentials; generalizationsofthe3-flavorPNJLmodel includingtheconjectureofauniversalpressurefortheonsetofdeconfinementinheavy-ioncollisions and astrophysics; and a new model that enforces the coincidence of chiral and deconfinement tran- sitions predicting a low critical density, accessible already at NICA fixed target experiments. Next, IhavediscussedfirstresultsofthenewlyconstructedeventsimulatorTHESEUSwhichisbasedon the particlization of the three-fluid hydrodynamics model by Ivanov, Russkikh and Toneev that al- lows also to study the role of hadronic final state interactions. Possible signals of the mixed phase accessible at NICA are considered. In particular, the robustness of the baryon-stopping signal of deconfinement and the occurrence of antiflow for protons and deuterons have been investigated for Au+Au collisions in the range of the NICA-MPD energy scan. The sharp peak for the K+/π+ ratio √ at s ∼ 8GeV(the"horn"effect)isnotobtainedinthepresentversionofTHESEUSandcallsfor improvementoftheequationofstateinput. Inthiscontext,Ihavepointedoutrecentprogressinde- velopingageneralizedBeth-Uhlenbeckapproachtoaunifieddescriptionofquark-hadronmatterthat revealsanewmechanismforexplainingtheK+/π+ratio. Onemaylookforwardtofurtherinteresting developments of theory and simulations of heavy-ion collisions in the NICA energy range directed towardsthediscoveryofamixedphaseintheQCDphasediagram. Acknowledgements I would like to thank the members of the board of guest editors for the EPJA Topical Issue on the "NICA White Paper", Jörg Aichelin, Elena Bratkovskaya, Volker Friese, Marek Gazdzicki, Jørgen Randrup, Oleg Rogachevsky, Oleg Teryaev and Vyacheslav Toneev, for their excellent work and indispensablehelpinmakingthisvolumeappear. Iamgratefultoallmycollaboratorsintheresearch reported here, in particular, David Alvarez-Castillo, Alexander Ayriyan, Niels-Uwe Bastian, Pavel Batyuk, Sanjin Benic, Jens Berdermann, Marcus Bleicher, Gustavo Contrera, Pedro Costa, Pawel Danielewicz, Aleksandr Dubinin, Tobias Fischer, Hovik Grigorian, Gabriela Grunfeld, Sophia Han, Yuri Ivanov, Iuriy Karpenko,Thomas Klähn, Sergey Merts, Marlene Nahrgang, Hannah Petersen, AndreyRadzhabov,GerdRöpke,OlegRogachevsky,LudwikTurko,DmitriVoskresensky,Agnieszka WergielukandHermannWolter. Finally,Iwouldliketoacknowledgenumerousfruitfuldiscussions with my colleagues at JINR Dubna, especially: Valery Burov, Alexandra Friesen, Yuri Kalinovsky, SergeyNedelko,AlexanderSorin,OlegTeryaev,SlavaToneevandattheUniversityofWroclaw:Pasi Huovinen,JakubJankowski,AlaksiejKachanovich,PokManLo,KrzysztofRedlich,ChihiroSasaki andJanSobczyk. ThisworkhasbeensupportedbytheMEPhIAcademicExcellenceProjectunder contractNo. 02.a03.21.0005andbythePolishNCNundergrantNo. UMO-2011/02/A/ST2/00306. References [1] D.Blaschke,J.Aichelin,E.Bratkovskaya,V.Friese,M.Gazdzicki,J.Randrup,O.Rogachevsky, O.TeryaevandV.Toneev,"TopicalIssueonExploringStronglyInteractingMatteratHighDensi- ties-NICAWhitePaper",Eur.Phys.J.A52(8),267(2016). [2] G. A. Contrera, A. G. Grunfeld and D. Blaschke, “Supporting the search for the CEP location withnonlocalPNJLmodelsconstrainedbyLatticeQCD,”Eur.Phys.J.A52,no.8,231(2016). [3] A. Ayriyan, J. Berdermann, D. Blaschke and R. Lastowiecki, “Universal limiting pressure for a three-flavorcolorsuperconductingPNJLmodelphasediagram,”arXiv:1608.07875[hep-ph]. [4] D.Alvarez-Castillo,S.Benic,D.Blaschke,S.HanandS.Typel,“Neutronstarmasslimitat2M (cid:12) supportstheexistenceofaCEP,”Eur.Phys.J.A52,no.8,232(2016). [5] T.Fischer, T.KlähnandM.Hempel,“Consequencesofsimultaneouschiralsymmetrybreaking anddeconfinementfortheisospinsymmetricphasediagram,”Eur.Phys.J.A52,no.8,225(2016). [6] T.Klähn,T.FischerandM.Hempel,“Simultaneouschiralsymmetryrestorationanddeconfine- ment-ConsequencesfortheQCDphasediagram,”arXiv:1603.03679[nucl-th]. [7] P.Batyuketal.,“Eventsimulationbasedonthree-fluidhydrodynamicsforcollisionsatenergies availableattheDubnaNuclotron-basedIonColliderFacilityandattheFacilityforAntiprotonand IonResearchinDarmstadt,”Phys.Rev.C94,044917(2016). [8] Y.B.IvanovandD.Blaschke, “RobustnessoftheBaryon-StoppingSignalfortheOnsetofDe- confinementinRelativisticHeavy-IonCollisions,”Phys.Rev.C92,no.2,024916(2015). [9] Y.B.IvanovandD.Blaschke,“Baryonstoppinginheavy-ioncollisionsatE =2A-200AGeV,” lab Eur.Phys.J.A52,no.8,237(2016). [10] N.-U.Bastianetal.,“LightclusterproductionatNICA,”Eur.Phys.J.A52,no.8,244(2016). [11] M. Schmidt, G. Röpke and H. Schulz, “Generalized Beth-Uhlenbeck approach for hot nuclear matter,"AnnalsPhys.202,57(1994). [12] J.Hüfner,S.P.Klevansky,P.ZhuangandH.Voss,“Thermodynamicsofaquarkplasmabeyond themeanfield: AgeneralizedBeth-Uhlenbeckapproach,”AnnalsPhys.234,225(1994). [13] D.Blaschke,M.Buballa,A.Dubinin,G.RöpkeandD.Zablocki,“GeneralizedBeth–Uhlenbeck approachtomesonsanddiquarksinhot,densequarkmatter,”AnnalsPhys.348,228(2014). [14] D.Blaschke,A.DubininandL.Turko,“Mott-hadronresonancegasandlatticeQCDthermody- namics,”arXiv:1611.09845[hep-ph]. [15] K. Yamazaki and T. Matsui, “Quark-hadron phase transition in a three flavor PNJL model for interactingquarks,”Nucl.Phys.A922,237(2014). [16] A. Dubinin, A. Radzhabov, D. Blaschke and A. Wergieluk, “Mott dissociation of pions and kaonsinhot,densequarkmatter,”arXiv:1608.05383[hep-ph].