ebook img

Recent results on truncated Toeplitz operators PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recent results on truncated Toeplitz operators

RECENT RESULTS ON TRUNCATED TOEPLITZ OPERATORS ISABELLECHALENDAR,EMMANUELFRICAIN,ANDDANTIMOTIN 6 1 0 ABSTRACT. TruncatedToeplitzoperatorsarecompressionsofToeplitzoperators 2 onmodelspaces;theyhavereceivedmuchattentioninthelastyears.Thissurvey n article presents several recent results, which relate boundedness, compactness, a and spectra of these operators to propertiesof theirsymbols. We also connect J thesefactswithpropertiesofthenaturalembeddingmeasuresassociatedtothese 7 operators. ] A F . 1. INTRODUCTION h t a Truncated Toeplitz operators on model spaces have been formally introduced m by Sarason in [34], although some special cases have long ago appearedin liter- [ ature, most notably as model operators for completely nonunitary contractions 1 with defect numbers one and for their commutant. This new area of study has v beenrecentlyveryactiveandmanyopenquestionsposedbySarasonin[34]have 0 nowbeensolved. See[5,8,12,21,9,20,36,19,35,6,13]. Nevertheless,thereare 1 5 stillbasicandinterestingquestionswhichremainmysterious. 1 The truncated Toeplitz operators live on the model spaces KΘ, which are the 0 . closedinvariantsubspacesforthebackwardshiftoperatorS∗ actingontheHardy 1 0 space H2 (see Section 2 for precise definitions). Given a model space KΘ and a 6 function φ ∈ L2 = L2(T), the truncated Toeplitz operator AΘ (or simply A if φ φ 1 thereisnoambiguityregardingthemodelspace)isdefinedonadensesubspace : v of KΘ as the compression to KΘ of multiplication by φ. The function φ is then i X calledasymboloftheoperator. AnalternatewayofdefiningatruncatedToeplitz r operatorisbymeansofameasure;incaseφisbounded,thenapossiblechoiceof a Θ thedefiningmeasurefor A isφdm(withmLebesguemeasure). φ Notethatthesymbolortheassociatedmeasureareneveruniquelydefinedby theoperator. FromthisandotherpointsofviewthetruncatedToeplitzoperators havemuchmoreincommonwithHankelOperatorsthanwithToeplitzoperators. Thispointofviewwillbeoccasionallypursuedthroughoutthepaper. We intend to survey several recent results that are mostly scattered in the lit- erature. They focus on the relation between the operator and the symbol or the measure. Obviously the nonuniqueness is a main issue, and in some situations it may be avoided by considering the so-called standard symbol of the operator. 2010MathematicsSubjectClassification. 30J05,30H10,46E22. Keywordsandphrases. TruncatedToeplitzoperators,modelspaces,compactness. 1 2 CHALENDAR,FRICAIN,ANDTIMOTIN The properties under consideration are boundedness, compactness, and spectra. Mostoftheresultspresentedareknown,andourintentionisonlytoputthemin contextandemphasizetheirconnections, indicatingthe relevantreferences. Part oftheembeddingpropertiesofmeasureshavenotappearedexplicitelyinthelit- erature,sosomeproofsareprovidedonlywherereferencesseemedtobelacking. The structure of the paper is the following. After a preliminary section with generalities about Hardy spaces and model spaces, we discuss in section 3 Car- leson measures, first for the whole H2 and then for model spaces. Truncated Toeplitz operators are introduced in Section 4, where one also discusses some boundednessproperties.Section5isdedicatedtocompactnessoftruncatedToeplitz operators,andSection6toitsrelationtoembeddingmeasures. Thelasttwosec- tionsdiscussSchatten–vonNeumannandspectralproperties,respectively. 2. PRELIMINARIES Forthecontentofthissection,[17]isaclassicalreferenceforgeneralfactsabout Hardyspaces,while[26]canbeusedforToeplitzandHankeloperatorsaswellas formodelspaces. 2.1. Functionspaces. Recallthatthe Hardyspace Hp of theunit diskD = {z ∈ C : |z| <1}isthespaceofanalyticfunctions f onDsatisfyingkfk <+∞,where p 2π dt 1/p kfk = sup |f(reit)|p , (1≤ p< +∞). p 0≤r<1(cid:18)Z0 2π(cid:19) ThealgebraofboundedanalyticfunctionsonDisdenotedbyH∞. Wedenotealso Hp = zHpandHp =zHp. Alternatively,Hpcanbeidentified(viaradiallimits)to 0 − thesubspaceoffunctions f ∈ Lp = Lp(T)forwhich fˆ(n) = 0foralln < 0. Here TdenotestheunitcirclewithnormalizedLebesguemeasurem. Inthecasep=2,H2becomesaHilbertspacewithrespecttothescalarproduct inheritedfromL2 andgivenby hf,gi = f(ζ)g(ζ)dm(ζ), f,g∈ L2. 2 T Z The orthogonal projection from L2 to H2 will be denoted by P+. The space H−2 ispreciselytheorthogonalof H2,andthecorrespondingorthogonalprojectionis P− = I−P+. ThePoissontransformofafunction f ∈ L1 is 1−|z|2 (2.1) fˆ(z)= f(ξ) dξ, z ∈D. T |1−ξz¯|2 Z SupposenowΘisaninnerfunction,thatisafunctioninH∞whoseradiallimits areofmodulusonealmosteverywhereonT. Itsspectrumisdefinedby (2.2) s(Θ):={ζ ∈D : liminf |Θ(λ)| =0}. λ∈D,λ→ζ RECENTRESULTSONTRUNCATEDTOEPLITZOPERATORS 3 Equivalently,ifΘ = BSisthedecompositionofΘintoaBlaschkeproductand asingular innerfunction, thenρ(Θ)istheunionbetweentheclosureofthe limit points of the zerosof B and the support of the singular measureassociated to S. Wewillalsodefine ρ(Θ)=s(Θ)∩T. Wedefinethecorrespondingshift-coinvariantsubspacegeneratedbyΘ(alsocalled modelspace)bytheformulaKp = Hp∩ΘHp,where1 ≤ p < +∞. Wewillbees- Θ 0 pecially interested in the Hilbert case, that is when p = 2. In this case, we also denotebyKΘ =KΘ2 anditiseasytoseethatKΘ isalsogivenbythefollowing KΘ = H2⊖ΘH2 = f ∈ H2 : hf,gi=0,∀g∈ H2 . n o The orthogonal projection of L2 onto KΘ is denoted by PΘ. Itis wellknown (see [26,page34])thatPΘ = P+−ΘP+Θ¯. SinceP+ actsboundedlyonLp,1 < p < ∞, this formula shows that PΘ canalso be regardedasa bounded operator from Lp intoKp,1< p< ∞. Θ ThespacesH2 andKΘ arereproducingkernelspacesovertheunitdiscD. The respectivereproducingkernelsare,forλ ∈D, 1 k (z) = , λ 1−λ¯z 1−Θ(λ)Θ(z) kΘ(z) = . λ 1−λ¯z Evaluationsatcertainpointsζ ∈ Tmayalsobeboundedsometimes;thishap- penspreciselywhenΘhasanangularderivativeinthesenseofCaratheodoryat ζ[1].InthiscasethefunctionkΘζ (z) = 1−Θ1(−ζζ)¯zΘ(z) isinKΘ,anditisthereproducing kernelforthepointζ. Iteasytocheckthat,if f,g ∈ KΘ,then fg ∈ H1∩z¯Θ2H−1 ⊂ KΘ12. Inparticular, if f,garealsobounded,then fg ∈K . So(kΘ)2 ∈K forallλ∈D. Θ2 λ Θ2 ThemapCΘ definedonL2 by (2.3) CΘf =Θz¯f¯; is a conjugation (i.e. CΘ is anti-linear, isometric and involutive), which has the convenientsupplementarypropertyofmappingKΘ preciselyontoKΘ. 2.2. One-componentinnerfunctions. In view of their main role in the study of operatorsonmodelspaces,wedevotethissubsectiontoaparticularclassofinner functions. Fixanumber0<ǫ <1,anddefine (2.4) Ω(Θ,ǫ)={z ∈D : |Θ(z)| <ǫ}. ThefunctionΘiscalledone-componentifthereexistsavalueofǫforwhichΩ(Θ,ǫ) isconnected.(Ifthishappens,thenΩ(Θ,δ)isconnectedforeveryǫ< δ<1.)One- component functionshave beenintroducedbyCohn [15]. Anextensivestudyof thesefunctionsappearsin[4,3];allresultsquotedbelowappearin[3]. 4 CHALENDAR,FRICAIN,ANDTIMOTIN Theabovedefinitionisnotverytransparent. Infact,one-componentfunctions areratherspecial: afirstimmediatereasonisthattheymustsatisfym(ρ(Θ)) = 0. Thiscondition,ofcourse,isnotsufficient,butitsuggestsexaminingsomesimple cases. The setρ(Θ) isemptyforfinite Blaschkeproducts, whichareone-component. The next simplest case is when ρ(Θ) consists of just one point. One can prove z+ζ easily that the elementary singular inner functions Θ(z) = ez−ζ (for ζ ∈ T) are indeedone-component. SupposethenthatΘisaBlaschkeproductwhosezerosa tendnontangentially n toasinglepointζ ∈T. If |ζ−a | (2.5) inf n+1 >0, n≥1 |ζ−an| then Θ is one-component. So, in particular, if 0 < r < 1 and Θ is the Blaschke productwith zeros 1−rn, n ≥ 1, then Θ is one-component. If condition (2.5) is notsatisfied,thenusuallyΘisnotone-component. Adetaileddiscussionofsuch Blaschkeproductsisgivenin[3],includingthedeterminationoftheclassesC (Θ) p (seeSubsection3.2). ∞ One-componentinnerfunctionscanbecharacterizedbyanestimateonthe H norm of the reproducing kernels kΘ. While for a general inner function Θ we λ have kkΘk∞ = O(1−|λ|−1), this estimate can be improved for one-component λ functions: Θ is one-component if and only if there exists a constant C > 0 such thatforeveryλ∈D,wehave 1−|Θ(λ)| kkΘλk∞ ≤ C 1−|λ| . 2.3. Multiplication operators and their cognates. For φ ∈ L∞, we denote by Mφf =φf themultiplicationoperatoronL2;wehavekMφk =kφk∞.TheToeplitz operatorT : H2 −→ H2 andtheHankeloperatorH : H2 −→ H2 = L2⊖H2 are φ φ − givenbytheformulae Tφ = P+Mφ, Hφ = P−Mφ. In the case where φ is analytic, T is just the restriction of M to H2. We have φ φ Tφ∗ = TφandHφ∗ = P+MφP−. Itshouldbenotedthat,whilethesymbolsofM andT areuniquelydefinedby φ φ theoperators,thisisnotthecasewithH . Indeed,itiseasytocheckthatH = H φ φ ψ ifandonlyifφ−ψ ∈ H∞. SostatementsaboutHankeloperatorsoftenimplyonly theexistenceofasymbolwithcorrespondingproperties. TheHankeloperatorshavetherangeanddomainspacesdifferent. Itissome- times preferableto work with an operator acting on a single space. For this, we introduceinL2 theunitarysymmetryJ definedby J(f)(z)= z¯f(z¯). RECENTRESULTSONTRUNCATEDTOEPLITZOPERATORS 5 WehavethenJ(H2) = H2 andJ(H2) = H2. DefineΓ : H2 → H2 by − − φ (2.6) Γ =JH . φ φ ObviouslypropertiesofboundednessorcompactnessarethesameforH andΓ . φ φ Thedefinitionof M , T and H canbeextendedtothecasewhenthesymbol φ φ φ φ is only in L2 instead of L∞, obtaining (possibly unbounded) densily defined operators. Then M and T are bounded if and only if φ ∈ L∞ (and kM k = φ φ φ kTφk =kφk∞). Thesituationismorecomplicatedfor Hφ. Namely,Hφisbounded ifandonlyifthereexistsψ ∈ L∞ withH = H ,and φ ψ kHφk =inf{kψk∞ : Hφ = Hψ} ThisisknownasNehari’sTheorem;see,forinstance,[24,p. 182]. Moreover(but wewillnotpursuethisinthesequel)anequivalentconditionisP−φ ∈ BMO(and kHφkisthenanormequivalenttokP−φkBMO). Relatedresultsareknownforcompactness. TheoperatorsM andT arenever φ φ compact except in the trivial case φ ≡ 0. Hartman’s Theorem states that H is φ compact if and only if there exists ψ ∈ C(T) with H = H ; or, equivalently, φ ψ P−φ ∈ VMO. If we know that φ is bounded, then Hφ is compact if and only if φ ∈C(T)+H∞. 3. CARLESONMEASURES 3.1. EmbeddingofHardyspaces. Letusdiscussfirstsomeobjectsrelatedtothe Hardyspace;wewillafterwardsseewhatanalogousfactsaretrueforthecaseof modelspaces. A positive measure µ on D is called a Carleson measure if H2 ⊂ L2(µ) (such an inclusion is automatically continuous). It is known that this is equivalent to Hp ⊂ Lp(µ)forall1 ≤ p < ∞. Carlesonmeasurescanalsobecharacterizedbya geometricalcondition,asfollows. ForanarcI ⊂Tsuchthat|I| <1wedefine S(I) ={z ∈D :1−|I| <|z| <1andz/|z| ∈ I}. ThenµisaCarlesonmeasureifandonlyif µ(S(I)) (3.1) sup < ∞. |I| I Condition(3.1)iscalledtheCarlesoncondition. Theresultcanactuallybeextended(see[10])tomeasuresdefinedonD. Again the characterizationdoesnot dependon p, and itamounts to the factthat µ|T is absolutelycontinuouswithrespecttoLebesguemeasurewithessentiallybounded density,whileµ|D satisfies(3.1). ThereisalinkbetweenHankeloperatorsandCarlesonmeasuresthathasfirst appearedin[29,39];acomprehensivepresentationcanbefindin[28,1.7].Letµbe 6 CHALENDAR,FRICAIN,ANDTIMOTIN afinitecomplexmeasureonD. DefinetheoperatorΓ[µ]onanalyticpolynomials bytheformula hΓ[µ]f,gi = zf(z)g(z¯)dµ(z). D Z Note thatif µ is supported on T, then the matrix of Γ[µ] in the standardbasisof H2is(µˆ(i+j)) ,whereµˆ(i)aretheFouriercoefficientsofµ. i,j≥0 Then the operator Γ[µ] is bounded whenever µ is a Carleson measure. Con- versely,ifΓ[µ]isbounded,thenthereexistsaCarlesonmeasureνonD suchthat Γ[µ] =Γ[ν]. It iseasy tosee thatif dµ = φdm for some φ ∈ L∞, then Γ[µ] = Γ , where Γ φ φ hasbeendefinedby(2.6)andistheversionofaHankeloperatoractingonasingle space. Analogousresultsmaybeprovedconcerningcompactness. Inthiscasetherel- evantnotionisthatofvanishingCarlesonmeasure,whichisdefinedbytheproperty µ(S(I)) (3.2) lim =0. |I|→0 |I| NotethatvanishingCarlesonmeasurescannothavemassontheunitcircle(inter- vals containing a Lebesgue point of the corresponding density would contradict thevanishingcondition). ThentheembeddingHp ⊂ Lp(µ)iscompactifandonly ifµisavanishingCarlesonmeasure. AsimilarconnectionexiststocompactnessofHankeloperators.Ifµisavanish- ingCarlesonmeasureonD,thenΓ[µ] iscompact. Conversely,ifΓ[µ] iscompact, thenthereexistsavanishingCarlesonmeasureνonDsuchthatΓ[µ] = Γ[ν]. 3.2. Embeddingofmodelspaces. Similarquestionsformodelspaceshavebeen developed starting with the papers[15, 16] and [38]; however, the results in this case are less complete. Let us introduce first some notations. For 1 ≤ p < ∞, define C (Θ) ={µfinitemeasureonT : Kp ֒→ Lp(|µ|)isbounded}, p Θ C+(Θ) ={µpositivemeasureonT : Kp ֒→ Lp(µ)isbounded}, p Θ V (Θ) ={µfinitemeasureonT : Kp ֒→ Lp(|µ|)iscompact}, p Θ V+(Θ) ={µpositivemeasureonT : Kp ֒→ Lp(µ)iscompact}. p Θ ItisclearthatC (Θ)andV (Θ)arecomplexvectorialsubspacesofthecomplex p p measuresontheunitcircle. UsingtherelationsKΘ2 = KΘ⊕ΘKΘ andKΘ·KΘ ⊂ K1 ,itiseasytoseethatC (Θ2) =C (Θ),C (Θ2)⊂ C (Θ),andV (Θ2)⊂ V (Θ). Θ2 2 2 1 2 1 2 Itisnaturaltolookforgeometricconditionstocharacterizetheseclasses.Things are,however,morecomplicated,andtheresultsareonlypartial.Westartbyfixing anumber0< ǫ <1;thenthe(Θ,ǫ)-Carlesonconditionassertsthat µ(S(I)) (3.3) sup < ∞, |I| I RECENTRESULTSONTRUNCATEDTOEPLITZOPERATORS 7 wherethesupremumistakenonlyovertheintervals|I|suchthatS(I)∩Ω(Θ,ǫ)6= ∅. (RememberthatΩ(Θ,ǫ)isgivenby(2.4).) Itisthenprovedin[38]thatifµsatisfiesthe(Θ,ǫ)-Carlesoncondition,thenthe embeddingKp ⊂ Lp(µ)iscontinuous. TheconverseistrueifΘisone-component; Θ inwhichcasethe embeddingcondition doesnotdependon p, while fulfillingof the (Θ,ǫ)-Carleson condition does not depend on 0 < ǫ < 1 (see Theorem 3.1 below). Asconcernsthegeneralcase,itisshownbyAleksandrov[3]thatiftheconverse istrueforsome1 ≤ p < ∞,thenΘisone-component. Also,Θisone-component if and only if the embedding condition does not depend on p. More precisely, thenexttheoremisprovedin[3](notethataversionofthisresultfor p ∈ (1,∞) alreadyappearsin[38]). Theorem3.1. ThefollowingareequivalentforaninnerfunctionΘ: (1) Θisone-component. (2) Forsome0 < p < ∞and0 < ǫ < 1,C (Θ)concideswiththeclassofmeasures p thatsatisfythe(Θ,ǫ)-Carlesoncondition. (3) Forall0 < p < ∞ and 0 < ǫ < 1, C (Θ) concideswiththeclassofmeasures p thatsatisfythe(Θ,ǫ)-Carlesoncondition. (4) TheclassC (Θ)doesnotdependon p∈ (0,∞). p Inparticular,ifΘisonecomponent,thensoisΘ2,whenceC (Θ2) = C (Θ2) = 1 2 C (Θ). 2 NotethatageneralcharacterizationofC (Θ)hasrecentlybeenobtainedin[22]; 2 however,thegeometriccontentofthisresultisnoteasytosee. ThequestionofcompactnessoftheembeddingKp ⊂ Lp(µ)inthiscaseshould Θ berelatedtoavanishingCarlesoncondition. Infact,therearetwovanishingcon- ditions, introducedin[14]. Whatiscalledthereinthesecondvanishingconditionis easiertostate. Wesaythatµsatisfiesthesecond(Θ,ǫ)-vanishingcondition[7,14]if foreachη > 0thereexistsδ > 0suchthatµ(S(I))/|I| < η whenever|I| < δand S(I)∩Ω(Θ,ǫ)6= ∅. Thefollowingresultisthenprovedin[7]. Theorem3.2. Ifthepositivemeasure µ satisfiesthesecond (Θ,ǫ)-vanishingcondition, thentheembeddingKp ⊂ Lp(µ)iscompactfor1< p< ∞. Θ TheconverseistrueincaseΘisone-component. In other words, the theoremthus statesthatpositive measuresthatsatisfythe second vanishingcondition arein V+(Θ) forall1 < p < ∞, and theconverse is p trueforΘone-component. To discuss the case p = 1, we have to introduce what is called in [14] the first vanishingcondition. Letuscallthesupremumin(3.3)the(Θ,ǫ)-Carlesonconstant ofµ. Define (3.4) H ={z ∈D :dist(z,ρ(Θ))<δ}, δ 8 CHALENDAR,FRICAIN,ANDTIMOTIN and µ (A) = µ(A∩ H ). Then µ are also Θ-Carleson measures, with (Θ,ǫ)- δ δ δ Carleson constants decreasing when δ decreases. We say that µ satisfies the first (Θ,ǫ)-vanishingconditioniftheseCarlesonconstantstendto0whenδ→0. Itisshownin[7]thatthefirstvanishingconditionimpliesthesecond,andthat theconverseisnottrue: thereexistmeasureswhichsatisfythesecondvanishing conditionbutnotthefirst. Thenexttheoremisprovedin[14]. Theorem3.3. Ifapositivemeasureµsatisfiesthefirst(Θ,ǫ)-vanishingcondition,then µ∈ V+(Θ)for1≤ p< ∞. p In case µ ∈ C (Θ), we will denote by ι : Kp → Lp(|µ|) the embedding p µ,p Θ (whichisthenknowntobeaboundedoperator). Thenµ ∈ V (Θ)meansthatι p µ,p iscompact. Wewillalsowriteι insteadofι . µ µ,2 4. TRUNCATEDTOEPLITZOPERATORS LetΘbeaninner functionand φ ∈ L2. ThetruncatedToeplitzoperator A = φ Θ A ,introducedbySarasonin[34],willbeadenselydefined,possiblyunbounded φ operatoronKΘ. ItsdomainisKΘ∩H∞,onwhichitactsbytheformula ∞ Aφf = PΘ(φf), f ∈ KΘ∩H . If A thus defined extends to a bounded operator, that operator is called a TTO. φ TheclassofallTTOsonKΘ isdenotedbyT(Θ),andtheclassofallnonnegative TTO’sonKΘ isdenotedbyT(Θ)+. AlthoughtheseoperatorsarecalledtruncatedToeplitz,theyhavemoreincom- mon with Hankel operators H , or rather with their cognates Γ , which act on a φ φ single space. As a first example of this behavior, we note that the symbol of a truncatedToeplitzoperatorsisnotunique. Itisprovedin[34]that (4.1) A = A ⇐⇒φ −φ ∈ ΘH2+ΘH2. φ1 φ2 1 2 LetusdenoteSΘ = L2⊖(ΘH2+ΘH2);itiscalledthespaceofstandardsymbols. It follows from (4.1) that every TTO has a unique standard symbol. One proves in[34,Section3]thatSiscontainedinKΘ+KΘ asasubspaceofcodimensionat mostone;thislastspaceissometimeseasiertoworkwith. ItisoftenthecasethattheassumptionΘ(0)=0simplifiescertaincalculations. For instance, in that case we have precisely S = KΘ+KΘ; we will see another example in Section 7. Fortunately, there is a procedure to pass from a general inner Θtoonethathasthisproperty: itiscalledtheCrofoottransform. For a ∈ D letΘ begivenbytheformula a Θ(z)−a Θ (z) = . a 1−a¯Θ(z) RECENTRESULTSONTRUNCATEDTOEPLITZOPERATORS 9 IfwedefinetheCrofoottransformby 1−|a|2 J(f):= f, 1−a¯Θ p then JisaunitaryoperatorfromKΘ toKΘ ,and a (4.2) JT(Θ)J∗ =T(Θ ). a Inparticular,ifa = Θ(0),thenΘ (0) = 0,and(4.2)allowsthetransferofproper- a tiesfromTTOsonKΘ toTTOsonKΘ. a Especiallynice propertiesareexhibited by TTOswhich have ananalytic sym- bol φ ∈ H2 (of course, this is never a standard symbol). It is a consequence of interpolationtheory[33]that {AΘ ∈T(Θ) : φ ∈ H2}={AΘ}′ φ z Θ (A iscalledacompressedshift,oramodeloperator). z One should also mentioned that other two classes of TTOs have alreadybeen studiedin differentcontexts. First, the classicalfinite Toeplitz matricesareTTOs with Θ(z) = zn writtenin the basisof monomials. Secondly, TTOswith Θ(z) = z+1 ez−1 correspond,aftersomestandardtransformations,toaclassofoperatorsalter- natelycalledToeplitzoperatorsonPaley–Wienerspaces[31],ortruncatedWiener– Hopfoperators[11]. There is an alternate manner to introduce TTOs, related to the Carleson mea- suresintheprevioussection. Foreveryµ∈ C (Θ)thesesquilinearform 2 (f,g)7→ fg¯dµ Z Θ isbounded,andthereforethereexistsaboundedoperator Aµ onKΘ suchthat Θ (4.3) hA f,gi= fg¯dµ. µ Z Θ Itisshownin[34,Theorem9.1]that A thusdefinedisactuallyaTTO.Infact, µ the converse is also true, as stated in Theorem 4.2 below. An interesting open questionisthecharacterizationofthemeasuresµforwhich A =0. µ ThedefinitionofTTOsdoesnotmakeprecisetheclassofsymbols φ ∈ L2 that produceboundedTTOs. Afirstremarkisthatthestandardsymbolofabounded truncatedToeplitzoperatorisnotnecessarilybounded. Togiveanexample,con- sider an inner function Θ with Θ(0) = 0, for which there exists a singular point ζ ∈TwhereΘhasanangularderivativeinthesenseofCaratheodory.Itisshown then in [34, Section 5] that kΘ ⊗kΘ is a bounded rank one TTO with standard ζ ζ symbolkΘ+kΘ−1,andthatthislastfunctionisunbounded. ζ ζ 10 CHALENDAR,FRICAIN,ANDTIMOTIN A natural question is therefore whether every bounded TTO has a bounded symbol(suchasisthecasewithHankeloperators). Inthecaseof T with φana- φ lytic, the answer is readilyseento be positive, being provedagainin [33]; more- over, inf{kψk∞ : ψ ∈ H∞, AΘψ = AΘφ}= kAΘφk. Thefirstnegativeanswerforthegeneralsituationhasbeenprovidedin[6],and the counterexample is again given by the rank one TTO kΘ⊗kΘ. The following ζ ζ resultisprovedin[6]. Theorem4.1. SupposeΘhasanangularderivativeinthesenseofCaratheodoryinζ ∈T (equivalently,kΘ ∈ L2),butkΘ 6∈ Lpforsomep∈ (2,∞).ThenkΘ⊗kΘhasnobounded ζ ζ ζ ζ symbol. Amoregeneralresulthasbeenobtainin[5],whereonealsomakesclearthere- lationbetweenmeasuresandTTO.Inparticular,onecharacterizestheinnerfunc- tions Θ which have the propertythateverybounded TTOon KΘ hasa bounded symbol. Theorem4.2. SupposeΘisaninnerfunction. (1) ForeveryboundedTTO A ≥ 0thereexistsapositivemeasureµ ∈ C+(Θ)such 2 thatA = AΘ. µ (2) Forevery bounded A ∈ T(Θ) thereexistsa complexmeasure µ ∈ C (Θ) such 2 thatA = AΘ. µ (3) AboundedTTO A ∈ T(Θ)admitsaboundedsymbolifandonlyif A = AΘ for µ someµ∈ C (Θ2). 1 (4) Every bounded TTO on KΘ admits a bounded symbol if and only if C1(Θ2) = C (Θ2). 2 Inparticular,asshownbyTheorem3.1,thesecondconditionissatisfiedifΘis one-component(sincethenallclassesC (Θ)coincide). Itisstillanopenquestion p whether Θ one-component is actuallyequivalent to C (Θ2) = C (Θ2). (Asmen- 1 2 tionedpreviously,Θisone-componentifandonlyifΘ2 isone-component.) Such aresultwouldbeasignificantstrengtheningofTheorem3.1. Asageneralobservation,onemaysaythat,ifΘisone-component, thenTTOs on KΘ havemanypropertiesanalogoustothose of Hankeloperators. Thisisthe classofinnerfunctionsforwhichthecurrenttheoryismoredeveloped. 5. COMPACT OPERATORS Surprisingly enough, the first result about compactness of TTOs dates from 1970. In [1, Section 5] one introduces what are, in our terminology, TTOs with continuoussymbol,andoneprovesthefollowingtheorem. Theorem5.1. IfΘisinnerandφiscontinuousonT,then AΘ iscompactifandonlyif φ φ|ρ(Θ)=0.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.