RECENT RESULTS ON TRUNCATED TOEPLITZ OPERATORS ISABELLECHALENDAR,EMMANUELFRICAIN,ANDDANTIMOTIN 6 1 0 ABSTRACT. TruncatedToeplitzoperatorsarecompressionsofToeplitzoperators 2 onmodelspaces;theyhavereceivedmuchattentioninthelastyears.Thissurvey n article presents several recent results, which relate boundedness, compactness, a and spectra of these operators to propertiesof theirsymbols. We also connect J thesefactswithpropertiesofthenaturalembeddingmeasuresassociatedtothese 7 operators. ] A F . 1. INTRODUCTION h t a Truncated Toeplitz operators on model spaces have been formally introduced m by Sarason in [34], although some special cases have long ago appearedin liter- [ ature, most notably as model operators for completely nonunitary contractions 1 with defect numbers one and for their commutant. This new area of study has v beenrecentlyveryactiveandmanyopenquestionsposedbySarasonin[34]have 0 nowbeensolved. See[5,8,12,21,9,20,36,19,35,6,13]. Nevertheless,thereare 1 5 stillbasicandinterestingquestionswhichremainmysterious. 1 The truncated Toeplitz operators live on the model spaces KΘ, which are the 0 . closedinvariantsubspacesforthebackwardshiftoperatorS∗ actingontheHardy 1 0 space H2 (see Section 2 for precise definitions). Given a model space KΘ and a 6 function φ ∈ L2 = L2(T), the truncated Toeplitz operator AΘ (or simply A if φ φ 1 thereisnoambiguityregardingthemodelspace)isdefinedonadensesubspace : v of KΘ as the compression to KΘ of multiplication by φ. The function φ is then i X calledasymboloftheoperator. AnalternatewayofdefiningatruncatedToeplitz r operatorisbymeansofameasure;incaseφisbounded,thenapossiblechoiceof a Θ thedefiningmeasurefor A isφdm(withmLebesguemeasure). φ Notethatthesymbolortheassociatedmeasureareneveruniquelydefinedby theoperator. FromthisandotherpointsofviewthetruncatedToeplitzoperators havemuchmoreincommonwithHankelOperatorsthanwithToeplitzoperators. Thispointofviewwillbeoccasionallypursuedthroughoutthepaper. We intend to survey several recent results that are mostly scattered in the lit- erature. They focus on the relation between the operator and the symbol or the measure. Obviously the nonuniqueness is a main issue, and in some situations it may be avoided by considering the so-called standard symbol of the operator. 2010MathematicsSubjectClassification. 30J05,30H10,46E22. Keywordsandphrases. TruncatedToeplitzoperators,modelspaces,compactness. 1 2 CHALENDAR,FRICAIN,ANDTIMOTIN The properties under consideration are boundedness, compactness, and spectra. Mostoftheresultspresentedareknown,andourintentionisonlytoputthemin contextandemphasizetheirconnections, indicatingthe relevantreferences. Part oftheembeddingpropertiesofmeasureshavenotappearedexplicitelyinthelit- erature,sosomeproofsareprovidedonlywherereferencesseemedtobelacking. The structure of the paper is the following. After a preliminary section with generalities about Hardy spaces and model spaces, we discuss in section 3 Car- leson measures, first for the whole H2 and then for model spaces. Truncated Toeplitz operators are introduced in Section 4, where one also discusses some boundednessproperties.Section5isdedicatedtocompactnessoftruncatedToeplitz operators,andSection6toitsrelationtoembeddingmeasures. Thelasttwosec- tionsdiscussSchatten–vonNeumannandspectralproperties,respectively. 2. PRELIMINARIES Forthecontentofthissection,[17]isaclassicalreferenceforgeneralfactsabout Hardyspaces,while[26]canbeusedforToeplitzandHankeloperatorsaswellas formodelspaces. 2.1. Functionspaces. Recallthatthe Hardyspace Hp of theunit diskD = {z ∈ C : |z| <1}isthespaceofanalyticfunctions f onDsatisfyingkfk <+∞,where p 2π dt 1/p kfk = sup |f(reit)|p , (1≤ p< +∞). p 0≤r<1(cid:18)Z0 2π(cid:19) ThealgebraofboundedanalyticfunctionsonDisdenotedbyH∞. Wedenotealso Hp = zHpandHp =zHp. Alternatively,Hpcanbeidentified(viaradiallimits)to 0 − thesubspaceoffunctions f ∈ Lp = Lp(T)forwhich fˆ(n) = 0foralln < 0. Here TdenotestheunitcirclewithnormalizedLebesguemeasurem. Inthecasep=2,H2becomesaHilbertspacewithrespecttothescalarproduct inheritedfromL2 andgivenby hf,gi = f(ζ)g(ζ)dm(ζ), f,g∈ L2. 2 T Z The orthogonal projection from L2 to H2 will be denoted by P+. The space H−2 ispreciselytheorthogonalof H2,andthecorrespondingorthogonalprojectionis P− = I−P+. ThePoissontransformofafunction f ∈ L1 is 1−|z|2 (2.1) fˆ(z)= f(ξ) dξ, z ∈D. T |1−ξz¯|2 Z SupposenowΘisaninnerfunction,thatisafunctioninH∞whoseradiallimits areofmodulusonealmosteverywhereonT. Itsspectrumisdefinedby (2.2) s(Θ):={ζ ∈D : liminf |Θ(λ)| =0}. λ∈D,λ→ζ RECENTRESULTSONTRUNCATEDTOEPLITZOPERATORS 3 Equivalently,ifΘ = BSisthedecompositionofΘintoaBlaschkeproductand asingular innerfunction, thenρ(Θ)istheunionbetweentheclosureofthe limit points of the zerosof B and the support of the singular measureassociated to S. Wewillalsodefine ρ(Θ)=s(Θ)∩T. Wedefinethecorrespondingshift-coinvariantsubspacegeneratedbyΘ(alsocalled modelspace)bytheformulaKp = Hp∩ΘHp,where1 ≤ p < +∞. Wewillbees- Θ 0 pecially interested in the Hilbert case, that is when p = 2. In this case, we also denotebyKΘ =KΘ2 anditiseasytoseethatKΘ isalsogivenbythefollowing KΘ = H2⊖ΘH2 = f ∈ H2 : hf,gi=0,∀g∈ H2 . n o The orthogonal projection of L2 onto KΘ is denoted by PΘ. Itis wellknown (see [26,page34])thatPΘ = P+−ΘP+Θ¯. SinceP+ actsboundedlyonLp,1 < p < ∞, this formula shows that PΘ canalso be regardedasa bounded operator from Lp intoKp,1< p< ∞. Θ ThespacesH2 andKΘ arereproducingkernelspacesovertheunitdiscD. The respectivereproducingkernelsare,forλ ∈D, 1 k (z) = , λ 1−λ¯z 1−Θ(λ)Θ(z) kΘ(z) = . λ 1−λ¯z Evaluationsatcertainpointsζ ∈ Tmayalsobeboundedsometimes;thishap- penspreciselywhenΘhasanangularderivativeinthesenseofCaratheodoryat ζ[1].InthiscasethefunctionkΘζ (z) = 1−Θ1(−ζζ)¯zΘ(z) isinKΘ,anditisthereproducing kernelforthepointζ. Iteasytocheckthat,if f,g ∈ KΘ,then fg ∈ H1∩z¯Θ2H−1 ⊂ KΘ12. Inparticular, if f,garealsobounded,then fg ∈K . So(kΘ)2 ∈K forallλ∈D. Θ2 λ Θ2 ThemapCΘ definedonL2 by (2.3) CΘf =Θz¯f¯; is a conjugation (i.e. CΘ is anti-linear, isometric and involutive), which has the convenientsupplementarypropertyofmappingKΘ preciselyontoKΘ. 2.2. One-componentinnerfunctions. In view of their main role in the study of operatorsonmodelspaces,wedevotethissubsectiontoaparticularclassofinner functions. Fixanumber0<ǫ <1,anddefine (2.4) Ω(Θ,ǫ)={z ∈D : |Θ(z)| <ǫ}. ThefunctionΘiscalledone-componentifthereexistsavalueofǫforwhichΩ(Θ,ǫ) isconnected.(Ifthishappens,thenΩ(Θ,δ)isconnectedforeveryǫ< δ<1.)One- component functionshave beenintroducedbyCohn [15]. Anextensivestudyof thesefunctionsappearsin[4,3];allresultsquotedbelowappearin[3]. 4 CHALENDAR,FRICAIN,ANDTIMOTIN Theabovedefinitionisnotverytransparent. Infact,one-componentfunctions areratherspecial: afirstimmediatereasonisthattheymustsatisfym(ρ(Θ)) = 0. Thiscondition,ofcourse,isnotsufficient,butitsuggestsexaminingsomesimple cases. The setρ(Θ) isemptyforfinite Blaschkeproducts, whichareone-component. The next simplest case is when ρ(Θ) consists of just one point. One can prove z+ζ easily that the elementary singular inner functions Θ(z) = ez−ζ (for ζ ∈ T) are indeedone-component. SupposethenthatΘisaBlaschkeproductwhosezerosa tendnontangentially n toasinglepointζ ∈T. If |ζ−a | (2.5) inf n+1 >0, n≥1 |ζ−an| then Θ is one-component. So, in particular, if 0 < r < 1 and Θ is the Blaschke productwith zeros 1−rn, n ≥ 1, then Θ is one-component. If condition (2.5) is notsatisfied,thenusuallyΘisnotone-component. Adetaileddiscussionofsuch Blaschkeproductsisgivenin[3],includingthedeterminationoftheclassesC (Θ) p (seeSubsection3.2). ∞ One-componentinnerfunctionscanbecharacterizedbyanestimateonthe H norm of the reproducing kernels kΘ. While for a general inner function Θ we λ have kkΘk∞ = O(1−|λ|−1), this estimate can be improved for one-component λ functions: Θ is one-component if and only if there exists a constant C > 0 such thatforeveryλ∈D,wehave 1−|Θ(λ)| kkΘλk∞ ≤ C 1−|λ| . 2.3. Multiplication operators and their cognates. For φ ∈ L∞, we denote by Mφf =φf themultiplicationoperatoronL2;wehavekMφk =kφk∞.TheToeplitz operatorT : H2 −→ H2 andtheHankeloperatorH : H2 −→ H2 = L2⊖H2 are φ φ − givenbytheformulae Tφ = P+Mφ, Hφ = P−Mφ. In the case where φ is analytic, T is just the restriction of M to H2. We have φ φ Tφ∗ = TφandHφ∗ = P+MφP−. Itshouldbenotedthat,whilethesymbolsofM andT areuniquelydefinedby φ φ theoperators,thisisnotthecasewithH . Indeed,itiseasytocheckthatH = H φ φ ψ ifandonlyifφ−ψ ∈ H∞. SostatementsaboutHankeloperatorsoftenimplyonly theexistenceofasymbolwithcorrespondingproperties. TheHankeloperatorshavetherangeanddomainspacesdifferent. Itissome- times preferableto work with an operator acting on a single space. For this, we introduceinL2 theunitarysymmetryJ definedby J(f)(z)= z¯f(z¯). RECENTRESULTSONTRUNCATEDTOEPLITZOPERATORS 5 WehavethenJ(H2) = H2 andJ(H2) = H2. DefineΓ : H2 → H2 by − − φ (2.6) Γ =JH . φ φ ObviouslypropertiesofboundednessorcompactnessarethesameforH andΓ . φ φ Thedefinitionof M , T and H canbeextendedtothecasewhenthesymbol φ φ φ φ is only in L2 instead of L∞, obtaining (possibly unbounded) densily defined operators. Then M and T are bounded if and only if φ ∈ L∞ (and kM k = φ φ φ kTφk =kφk∞). Thesituationismorecomplicatedfor Hφ. Namely,Hφisbounded ifandonlyifthereexistsψ ∈ L∞ withH = H ,and φ ψ kHφk =inf{kψk∞ : Hφ = Hψ} ThisisknownasNehari’sTheorem;see,forinstance,[24,p. 182]. Moreover(but wewillnotpursuethisinthesequel)anequivalentconditionisP−φ ∈ BMO(and kHφkisthenanormequivalenttokP−φkBMO). Relatedresultsareknownforcompactness. TheoperatorsM andT arenever φ φ compact except in the trivial case φ ≡ 0. Hartman’s Theorem states that H is φ compact if and only if there exists ψ ∈ C(T) with H = H ; or, equivalently, φ ψ P−φ ∈ VMO. If we know that φ is bounded, then Hφ is compact if and only if φ ∈C(T)+H∞. 3. CARLESONMEASURES 3.1. EmbeddingofHardyspaces. Letusdiscussfirstsomeobjectsrelatedtothe Hardyspace;wewillafterwardsseewhatanalogousfactsaretrueforthecaseof modelspaces. A positive measure µ on D is called a Carleson measure if H2 ⊂ L2(µ) (such an inclusion is automatically continuous). It is known that this is equivalent to Hp ⊂ Lp(µ)forall1 ≤ p < ∞. Carlesonmeasurescanalsobecharacterizedbya geometricalcondition,asfollows. ForanarcI ⊂Tsuchthat|I| <1wedefine S(I) ={z ∈D :1−|I| <|z| <1andz/|z| ∈ I}. ThenµisaCarlesonmeasureifandonlyif µ(S(I)) (3.1) sup < ∞. |I| I Condition(3.1)iscalledtheCarlesoncondition. Theresultcanactuallybeextended(see[10])tomeasuresdefinedonD. Again the characterizationdoesnot dependon p, and itamounts to the factthat µ|T is absolutelycontinuouswithrespecttoLebesguemeasurewithessentiallybounded density,whileµ|D satisfies(3.1). ThereisalinkbetweenHankeloperatorsandCarlesonmeasuresthathasfirst appearedin[29,39];acomprehensivepresentationcanbefindin[28,1.7].Letµbe 6 CHALENDAR,FRICAIN,ANDTIMOTIN afinitecomplexmeasureonD. DefinetheoperatorΓ[µ]onanalyticpolynomials bytheformula hΓ[µ]f,gi = zf(z)g(z¯)dµ(z). D Z Note thatif µ is supported on T, then the matrix of Γ[µ] in the standardbasisof H2is(µˆ(i+j)) ,whereµˆ(i)aretheFouriercoefficientsofµ. i,j≥0 Then the operator Γ[µ] is bounded whenever µ is a Carleson measure. Con- versely,ifΓ[µ]isbounded,thenthereexistsaCarlesonmeasureνonD suchthat Γ[µ] =Γ[ν]. It iseasy tosee thatif dµ = φdm for some φ ∈ L∞, then Γ[µ] = Γ , where Γ φ φ hasbeendefinedby(2.6)andistheversionofaHankeloperatoractingonasingle space. Analogousresultsmaybeprovedconcerningcompactness. Inthiscasetherel- evantnotionisthatofvanishingCarlesonmeasure,whichisdefinedbytheproperty µ(S(I)) (3.2) lim =0. |I|→0 |I| NotethatvanishingCarlesonmeasurescannothavemassontheunitcircle(inter- vals containing a Lebesgue point of the corresponding density would contradict thevanishingcondition). ThentheembeddingHp ⊂ Lp(µ)iscompactifandonly ifµisavanishingCarlesonmeasure. AsimilarconnectionexiststocompactnessofHankeloperators.Ifµisavanish- ingCarlesonmeasureonD,thenΓ[µ] iscompact. Conversely,ifΓ[µ] iscompact, thenthereexistsavanishingCarlesonmeasureνonDsuchthatΓ[µ] = Γ[ν]. 3.2. Embeddingofmodelspaces. Similarquestionsformodelspaceshavebeen developed starting with the papers[15, 16] and [38]; however, the results in this case are less complete. Let us introduce first some notations. For 1 ≤ p < ∞, define C (Θ) ={µfinitemeasureonT : Kp ֒→ Lp(|µ|)isbounded}, p Θ C+(Θ) ={µpositivemeasureonT : Kp ֒→ Lp(µ)isbounded}, p Θ V (Θ) ={µfinitemeasureonT : Kp ֒→ Lp(|µ|)iscompact}, p Θ V+(Θ) ={µpositivemeasureonT : Kp ֒→ Lp(µ)iscompact}. p Θ ItisclearthatC (Θ)andV (Θ)arecomplexvectorialsubspacesofthecomplex p p measuresontheunitcircle. UsingtherelationsKΘ2 = KΘ⊕ΘKΘ andKΘ·KΘ ⊂ K1 ,itiseasytoseethatC (Θ2) =C (Θ),C (Θ2)⊂ C (Θ),andV (Θ2)⊂ V (Θ). Θ2 2 2 1 2 1 2 Itisnaturaltolookforgeometricconditionstocharacterizetheseclasses.Things are,however,morecomplicated,andtheresultsareonlypartial.Westartbyfixing anumber0< ǫ <1;thenthe(Θ,ǫ)-Carlesonconditionassertsthat µ(S(I)) (3.3) sup < ∞, |I| I RECENTRESULTSONTRUNCATEDTOEPLITZOPERATORS 7 wherethesupremumistakenonlyovertheintervals|I|suchthatS(I)∩Ω(Θ,ǫ)6= ∅. (RememberthatΩ(Θ,ǫ)isgivenby(2.4).) Itisthenprovedin[38]thatifµsatisfiesthe(Θ,ǫ)-Carlesoncondition,thenthe embeddingKp ⊂ Lp(µ)iscontinuous. TheconverseistrueifΘisone-component; Θ inwhichcasethe embeddingcondition doesnotdependon p, while fulfillingof the (Θ,ǫ)-Carleson condition does not depend on 0 < ǫ < 1 (see Theorem 3.1 below). Asconcernsthegeneralcase,itisshownbyAleksandrov[3]thatiftheconverse istrueforsome1 ≤ p < ∞,thenΘisone-component. Also,Θisone-component if and only if the embedding condition does not depend on p. More precisely, thenexttheoremisprovedin[3](notethataversionofthisresultfor p ∈ (1,∞) alreadyappearsin[38]). Theorem3.1. ThefollowingareequivalentforaninnerfunctionΘ: (1) Θisone-component. (2) Forsome0 < p < ∞and0 < ǫ < 1,C (Θ)concideswiththeclassofmeasures p thatsatisfythe(Θ,ǫ)-Carlesoncondition. (3) Forall0 < p < ∞ and 0 < ǫ < 1, C (Θ) concideswiththeclassofmeasures p thatsatisfythe(Θ,ǫ)-Carlesoncondition. (4) TheclassC (Θ)doesnotdependon p∈ (0,∞). p Inparticular,ifΘisonecomponent,thensoisΘ2,whenceC (Θ2) = C (Θ2) = 1 2 C (Θ). 2 NotethatageneralcharacterizationofC (Θ)hasrecentlybeenobtainedin[22]; 2 however,thegeometriccontentofthisresultisnoteasytosee. ThequestionofcompactnessoftheembeddingKp ⊂ Lp(µ)inthiscaseshould Θ berelatedtoavanishingCarlesoncondition. Infact,therearetwovanishingcon- ditions, introducedin[14]. Whatiscalledthereinthesecondvanishingconditionis easiertostate. Wesaythatµsatisfiesthesecond(Θ,ǫ)-vanishingcondition[7,14]if foreachη > 0thereexistsδ > 0suchthatµ(S(I))/|I| < η whenever|I| < δand S(I)∩Ω(Θ,ǫ)6= ∅. Thefollowingresultisthenprovedin[7]. Theorem3.2. Ifthepositivemeasure µ satisfiesthesecond (Θ,ǫ)-vanishingcondition, thentheembeddingKp ⊂ Lp(µ)iscompactfor1< p< ∞. Θ TheconverseistrueincaseΘisone-component. In other words, the theoremthus statesthatpositive measuresthatsatisfythe second vanishingcondition arein V+(Θ) forall1 < p < ∞, and theconverse is p trueforΘone-component. To discuss the case p = 1, we have to introduce what is called in [14] the first vanishingcondition. Letuscallthesupremumin(3.3)the(Θ,ǫ)-Carlesonconstant ofµ. Define (3.4) H ={z ∈D :dist(z,ρ(Θ))<δ}, δ 8 CHALENDAR,FRICAIN,ANDTIMOTIN and µ (A) = µ(A∩ H ). Then µ are also Θ-Carleson measures, with (Θ,ǫ)- δ δ δ Carleson constants decreasing when δ decreases. We say that µ satisfies the first (Θ,ǫ)-vanishingconditioniftheseCarlesonconstantstendto0whenδ→0. Itisshownin[7]thatthefirstvanishingconditionimpliesthesecond,andthat theconverseisnottrue: thereexistmeasureswhichsatisfythesecondvanishing conditionbutnotthefirst. Thenexttheoremisprovedin[14]. Theorem3.3. Ifapositivemeasureµsatisfiesthefirst(Θ,ǫ)-vanishingcondition,then µ∈ V+(Θ)for1≤ p< ∞. p In case µ ∈ C (Θ), we will denote by ι : Kp → Lp(|µ|) the embedding p µ,p Θ (whichisthenknowntobeaboundedoperator). Thenµ ∈ V (Θ)meansthatι p µ,p iscompact. Wewillalsowriteι insteadofι . µ µ,2 4. TRUNCATEDTOEPLITZOPERATORS LetΘbeaninner functionand φ ∈ L2. ThetruncatedToeplitzoperator A = φ Θ A ,introducedbySarasonin[34],willbeadenselydefined,possiblyunbounded φ operatoronKΘ. ItsdomainisKΘ∩H∞,onwhichitactsbytheformula ∞ Aφf = PΘ(φf), f ∈ KΘ∩H . If A thus defined extends to a bounded operator, that operator is called a TTO. φ TheclassofallTTOsonKΘ isdenotedbyT(Θ),andtheclassofallnonnegative TTO’sonKΘ isdenotedbyT(Θ)+. AlthoughtheseoperatorsarecalledtruncatedToeplitz,theyhavemoreincom- mon with Hankel operators H , or rather with their cognates Γ , which act on a φ φ single space. As a first example of this behavior, we note that the symbol of a truncatedToeplitzoperatorsisnotunique. Itisprovedin[34]that (4.1) A = A ⇐⇒φ −φ ∈ ΘH2+ΘH2. φ1 φ2 1 2 LetusdenoteSΘ = L2⊖(ΘH2+ΘH2);itiscalledthespaceofstandardsymbols. It follows from (4.1) that every TTO has a unique standard symbol. One proves in[34,Section3]thatSiscontainedinKΘ+KΘ asasubspaceofcodimensionat mostone;thislastspaceissometimeseasiertoworkwith. ItisoftenthecasethattheassumptionΘ(0)=0simplifiescertaincalculations. For instance, in that case we have precisely S = KΘ+KΘ; we will see another example in Section 7. Fortunately, there is a procedure to pass from a general inner Θtoonethathasthisproperty: itiscalledtheCrofoottransform. For a ∈ D letΘ begivenbytheformula a Θ(z)−a Θ (z) = . a 1−a¯Θ(z) RECENTRESULTSONTRUNCATEDTOEPLITZOPERATORS 9 IfwedefinetheCrofoottransformby 1−|a|2 J(f):= f, 1−a¯Θ p then JisaunitaryoperatorfromKΘ toKΘ ,and a (4.2) JT(Θ)J∗ =T(Θ ). a Inparticular,ifa = Θ(0),thenΘ (0) = 0,and(4.2)allowsthetransferofproper- a tiesfromTTOsonKΘ toTTOsonKΘ. a Especiallynice propertiesareexhibited by TTOswhich have ananalytic sym- bol φ ∈ H2 (of course, this is never a standard symbol). It is a consequence of interpolationtheory[33]that {AΘ ∈T(Θ) : φ ∈ H2}={AΘ}′ φ z Θ (A iscalledacompressedshift,oramodeloperator). z One should also mentioned that other two classes of TTOs have alreadybeen studiedin differentcontexts. First, the classicalfinite Toeplitz matricesareTTOs with Θ(z) = zn writtenin the basisof monomials. Secondly, TTOswith Θ(z) = z+1 ez−1 correspond,aftersomestandardtransformations,toaclassofoperatorsalter- natelycalledToeplitzoperatorsonPaley–Wienerspaces[31],ortruncatedWiener– Hopfoperators[11]. There is an alternate manner to introduce TTOs, related to the Carleson mea- suresintheprevioussection. Foreveryµ∈ C (Θ)thesesquilinearform 2 (f,g)7→ fg¯dµ Z Θ isbounded,andthereforethereexistsaboundedoperator Aµ onKΘ suchthat Θ (4.3) hA f,gi= fg¯dµ. µ Z Θ Itisshownin[34,Theorem9.1]that A thusdefinedisactuallyaTTO.Infact, µ the converse is also true, as stated in Theorem 4.2 below. An interesting open questionisthecharacterizationofthemeasuresµforwhich A =0. µ ThedefinitionofTTOsdoesnotmakeprecisetheclassofsymbols φ ∈ L2 that produceboundedTTOs. Afirstremarkisthatthestandardsymbolofabounded truncatedToeplitzoperatorisnotnecessarilybounded. Togiveanexample,con- sider an inner function Θ with Θ(0) = 0, for which there exists a singular point ζ ∈TwhereΘhasanangularderivativeinthesenseofCaratheodory.Itisshown then in [34, Section 5] that kΘ ⊗kΘ is a bounded rank one TTO with standard ζ ζ symbolkΘ+kΘ−1,andthatthislastfunctionisunbounded. ζ ζ 10 CHALENDAR,FRICAIN,ANDTIMOTIN A natural question is therefore whether every bounded TTO has a bounded symbol(suchasisthecasewithHankeloperators). Inthecaseof T with φana- φ lytic, the answer is readilyseento be positive, being provedagainin [33]; more- over, inf{kψk∞ : ψ ∈ H∞, AΘψ = AΘφ}= kAΘφk. Thefirstnegativeanswerforthegeneralsituationhasbeenprovidedin[6],and the counterexample is again given by the rank one TTO kΘ⊗kΘ. The following ζ ζ resultisprovedin[6]. Theorem4.1. SupposeΘhasanangularderivativeinthesenseofCaratheodoryinζ ∈T (equivalently,kΘ ∈ L2),butkΘ 6∈ Lpforsomep∈ (2,∞).ThenkΘ⊗kΘhasnobounded ζ ζ ζ ζ symbol. Amoregeneralresulthasbeenobtainin[5],whereonealsomakesclearthere- lationbetweenmeasuresandTTO.Inparticular,onecharacterizestheinnerfunc- tions Θ which have the propertythateverybounded TTOon KΘ hasa bounded symbol. Theorem4.2. SupposeΘisaninnerfunction. (1) ForeveryboundedTTO A ≥ 0thereexistsapositivemeasureµ ∈ C+(Θ)such 2 thatA = AΘ. µ (2) Forevery bounded A ∈ T(Θ) thereexistsa complexmeasure µ ∈ C (Θ) such 2 thatA = AΘ. µ (3) AboundedTTO A ∈ T(Θ)admitsaboundedsymbolifandonlyif A = AΘ for µ someµ∈ C (Θ2). 1 (4) Every bounded TTO on KΘ admits a bounded symbol if and only if C1(Θ2) = C (Θ2). 2 Inparticular,asshownbyTheorem3.1,thesecondconditionissatisfiedifΘis one-component(sincethenallclassesC (Θ)coincide). Itisstillanopenquestion p whether Θ one-component is actuallyequivalent to C (Θ2) = C (Θ2). (Asmen- 1 2 tionedpreviously,Θisone-componentifandonlyifΘ2 isone-component.) Such aresultwouldbeasignificantstrengtheningofTheorem3.1. Asageneralobservation,onemaysaythat,ifΘisone-component, thenTTOs on KΘ havemanypropertiesanalogoustothose of Hankeloperators. Thisisthe classofinnerfunctionsforwhichthecurrenttheoryismoredeveloped. 5. COMPACT OPERATORS Surprisingly enough, the first result about compactness of TTOs dates from 1970. In [1, Section 5] one introduces what are, in our terminology, TTOs with continuoussymbol,andoneprovesthefollowingtheorem. Theorem5.1. IfΘisinnerandφiscontinuousonT,then AΘ iscompactifandonlyif φ φ|ρ(Θ)=0.