Recent results on beyond the standard model Higgs boson searches from CMS AlexanderA.Savin,a onbehalfoftheCMSCollaboration UniversityofWisconsin-Madison,1150UniversityAve.,MadisonWI53706-1390 2 Abstract. Twoextensionsofthestandardmodel,onethatincludestheseesawmechanismoftypeII,andthe 1 minimalsupersymmetric extentiontothestandardmodel,arestudiedusingupto1.6fb 1 ofdatacollectedin − 0 proton-protoncollisionsat √s=7TeVwiththeCMSdetectorattheLHC. 2 n a 1 Introduction Excluded by Tevatron or LEP J CMS Preliminary CMS s=7 TeV (cid:242) L=0.98 fb-1 4 AnobservationofthedoublychargedcomponentΦ++(here 2 BR(F ++fi e+e+)=100% andbelowchargeconjugatemodesareimplicitlyincluded) BR(F ++fi e+m +)=100% ofthetripletscalarfieldpredictedinthetheminimalsee- ] x sawmodeloftypeII,wouldestablishsuchmechanismin BR(F ++fi m +m +)=100% e the most promising framework giving mass to neutrinos. BR(F ++fi e+t+)=100% p- This particle carries double electric charge and decays to BR(F ++fi m +t+)=100% e the same charged lepton pairs ℓi+ℓ+j allowing also lepton BR(F ++fi t+t+)=100% h flavorviolatingdecays.TheΦ++ Yukawacouplingmatrix [ is proportional to the light neutrino mass matrix and al- BP1: normal hierarchy 1 lows to test the neutrino mass mechanism by measuring BP2: inverse hierachy v thebranchingfractionsΦ++ ℓiℓj[1]. BP3: degenerate masses → 3 Theminimalsupersymmetricextensiontothestandard BP4: equal branchings 8 model (MSSM) requires the presence of two Higgs dou- 100 150 200 250 300 350 9 blets.Thisleadstoamorecomplicatedscalarsector,with Lower limit on mass of F ++ [GeV] 4 Fig.1.ObservedΦ++ masslimitsat95%CLindifferentlepton five massive Higgs bosons: a light neutral CP-even state . finalstates.Thebranchingfractionsthatareassumedinthelimit 1 (h),twochargedstates(H ),aheavyneutralCP-evenstate ± calculationareindicated. 0 (H)andaneutralCP-oddstate(A). 2 IfthechargedHiggsbosonmass,m ,issmallerthan H+ 1 thetopquarkmass,thetopquarkcandecayviat H+b : → nearly degenerate, while that of the h remains near 130 v (anditschargeconjugate).Thelowerlimitonthecharged GeV/c2.Theprecisevalueofthecrossoverpointdepends i Higgs boson mass is set to about 80 GeV/c2 by LEP ex- X predominantlyonthenatureofthemassmixinginthetop- periments.Forvaluesoftanβ,theratioofthevacuumex- squarkstates.TheneutralMSSMHiggsbosonproduction r pectation values of the two Higgs boson doublets, larger a isstudiedinitsdecayintopairoftauleptons,H ττ,in than20,thechargedHiggsbosonpreferentiallydecaysto → threefinalstates, whenτdecayleptonically,oneto µand τ lepton and neutrino, H+ τ+ν . The presence of the τ othertoe,eµ,andwhenoneoftheτdecayshadronically, t H+b, H+ τ+ν dec→ay modes alters the standard τ µτ andeτ [3]. → → h h model (SM) prediction of the τ lepton yield in the decay products of the tt¯ pairs. The current upper limit on the branchingfraction BR(t H+b) 0.2issetbytheCDF and D0 experiments at t→he Tevatr≃on for m between 80 2 Doubly charge Higgs boson production H+ and155GeV/c2,assuming BR(H+ τ+ν)=1.Thedomi- fnoarnettshoeurccheaorgfetdopHqiugagrskbsoastoLnHiCssiesapr→cph→edtft¯oprrionctehses,stuhbesree-- Both,thepairproductionprocesspp→Φ++Φ−− →ℓi+ℓ+jℓk−ℓl−, aswellastheassociatedproductionprocesspp Φ++Φ qanudenttt¯decaHypHrodbub¯cwtshoefnthHetodpecqauyasrkinptaoirτs:lettp¯t→onHan±dWn∓ebub¯- ℓi+ℓ+jℓk−νl are studied, assuming that the Φ++ a→nd Φ+ a−re→ ± ∓ ± → degenerate in mass. A search is performed for an excess trino[2]. ofeventsinallpossibleflavourcombinationsofthesame The mass relations among the neutral MSSM Higgs chargeleptonpairscomingfromthedecaysΦ++ ℓ+ℓ+ tbhoesopnarsaamreetseurcthanthβatthifemmAas.se1s3o0fGtheeVh/ca2n,datAlaarrgeenveaalrulyesdoef- without making assumptions on the Φ++ branchin→g friacj- generate,whilethatoftheHisapproximately130GeV/c2. tions. Both the three and four charged lepton final states If m & 130GeV/c2, thenthe massesof the A and H are areconsideredincludingatmostoneandtwoτleptons,re- A spectively.The Φ++ W+W+ decaysare assumed to be a e-mail:[email protected] suppressed. → EPJWebofConferences In addition to the model independentsearch, the type II seesaw model is tested in four benchmark points (BP) thatcharacterizedifferentcharacteristicneutrinomassma- trixstructures.BP1describestheneutrinosectorwithnor- malmasshierarchyanda massless lightestneutrino.BP2 describes the same, but with the inverse mass hierarchy. BP3representsadegenerateneutrinomassspectrumwith m = 0.2 eV. Those three benchmark points are the ex- 1 tremesallowedbyvaryingtheneutrinomassandhierarchy in theallowedrangeswithoutconsiderationforθ orCP 13 phasesandcoveralargeregionoftheparameterspace.The fourthbenchmarkpointBP4 representsthe case inwhich allΦ++ branchingfractionsareequal. Thepresentedresultsarebasedondatacorresponding to an integrated luminosity of 0.98 fb 1. The final states − are required to have four or three leptonswith transverse momenta, p , above 5 GeV/c for muons and above 15 T GeV/c for electrons and τ . There should be at least two h leptons with p > 35 and 10 GeV/c in the event. The T τh arereconstructedusing“hadronplusstrip”(HPS)algo- Fig.2.UpperlimitonBR(t H+b)assumingBR(H+ τν)=1 rithm [4] that is designedto optimize the performanceof as afunction of mH+for the→combination of all final st→ates. The τhidentificationandreconstructionbyconsideringspecific yellow bands show the one- and two-standard-deviation ranges τhdecaymodes.Thealgorithmprovideshighτhidentifica- aroundtheexpectedlimit. tionefficiency,approximately50%fortherangeofτ en- h ergiesrelevantforthisanalysis,whilekeepingthemisiden- tificationrateforjetsatthelevelof 1%thatisfactorof ≈ threetofourtimeslowerthanforthealgorithmsusedinthe CMSphysicstechnicaldesignreport.Detaileddescription ofthealgorithmanditsperformancecanbefoundin[4]. ACLsmethodisusedfortheupperlimitcalculations. Theresultsoftheexclusionlimitcalculationsarereported in Fig. 1. As can be seen, new significantly higher limits are set in comparison to the previous LEP and Tevatron bounds.Thefirstlimitsonfourbenchmarkpointsprobea largeregionoftheparameterspaceoftypeIIseesawmod- els. 3 Study of minimal supersymmetric extensionto the standardmodel 3.1 ChargedHiggsboson Theanalysisisperformedinthreefinalstates,eµ,µτ and τ τ , in presence of large missing transverse energyh and Fig.3.TheexclusionregionintheMSSM MH+-tanβparameter h h spaceobtainedfromthecombinedanalysisfortheMSSMmmax one b-tagged jet. Transverse momenta of all leptons are h scenario. requiredtoexceed20GeV/c,40GeV/cintheτ τ case. h h ACLsmethodisusedinordertoobtaintheupperlimit at95%CL onthe excess(lack)ofthe eventsin compari- son with the expected contributionsfrom SM. The back- µ = 200 GeV/c2, M2 = 200 GeV/c2, mg˜ = 0.8 MSUSY, · ground and signal uncertainties are modeled with a log- X = 2 M (FD calculation), XM¯S = √6 M t · SUSY t · SUSY normal probability distribution function and their corre- (RG calculation), A = A. M denotes the common b t SUSY lations are taken into account. Assuming that the excess soft-SUSY-breaking squark mass of the third generation; (lack) of events is due to the t bH+, H+ τ+ν de- X = A µ/tanβ the stop mixing parameter; A and A t t t b → → − cays,thelimitisobtainedforeachindividualanalysis,and thestopandsbottomtrilinearcouplings,respectively;µthe also combinedfor all final states. Figure 2 shows the up- Higgsinomassparameter;m thegluinomass;andM the g˜ 2 perlimitonBR(t H+b)assumingBR(H+ τν)=1asa SU(2)-gauginomass parameter. The value of M is fixed 1 → → functionofthehiggsmassforthecombinationofallfinal viatheGUTrelation M = (5/3)M sinθ /cosθ .Inde- 1 2 W W states.Theupperlimitissetto4-5%fortheHiggsboson termining these bounds on tanβ, we have used the cen- massinterval80<mH+ <160GeV/c2. tralvaluesoftheHiggsbosoncrosssectionsasafunction Figure3showstheexclusionregionintheMSSMM - of tanβ reportedby the LHC HiggsCross Section Work- H+ tanβ parameter space obtained from the combined anal- ing Group. The cross sections have been obtained from ysis for the MSSM mmax scenario: M = 1 TeV/c2, the GGH@NNLO and HIGLU programs for the gluon- h SUSY HadronColliderPhysicssymposium,Paris2011 fusion process. For the bb¯ φ process, the 4-flavor cal- → culationandthe5-flavorcalculationasimplementedinthe BBH@NNLOprogramhavebeencombinedusingtheSan- tanderscheme.RescalingofthecorrespondingYukawacou- plings by the MSSM factors calculated with FeynHiggs hasbeenapplied.Wedonotquotelimitsabovetanβ=60 asthe theoreticalrelationbetweencrosssectionandtanβ becomesunreliable. 3.2 NeutralHiggsboson The MSSM neutralHiggsbosonanalysisis performedin threefinalstateseµ,µτ ,andeτ with p > 15GeV/cfor h h T muons,and p > 20GeV/cforeandτ .Ineµfinalstates T h one of the lepton is requiredto have p > 20 GeV/c and T other p > 10 GeV/c. Each final state is subdivided into T two categories, one with no b-tagged jets with p > 20 T GeV/candtheotherwithatleastoneb-taggedjet. Fig.4.Theexpectedone-andtwo-standard-deviationrangesand The largest source of events selected with these re- observed 95%CLupper limitsonσ B asafunctionofm . quirementscomes from the SM Z ττ production.The φ· ττ A → ThesignalacceptanceisbasedontheMSSMmodeldescribedin contributionfromthisprocessisestimatedusingasample thetext,assumingtanβ=30. ofsimulatedevents,normalizedtothenumberofobserved Z µµandZ eeeventsindata.Asignificantsourceof → → backgroundarises from QCD multijet eventsand W+jets eventsin which a jet is misidentified as τ , and thereis a h real or misidentified e or µ. The rates for these processes areestimatedusingthenumberofobservedevents,where both reconstructed leptons have the same charge, same- sign combination. Other backgroundprocesses include tt¯ productionandZ ee/µµevents,particularlyinthe eτ h → channel, due to the 2–3% probability for electrons to be misidentifiedasτ [4].Thesmallfake-leptonbackground h fromW+jetsandQCDfortheeµchannelisestimatedus- ingdata. TheeventgeneratorPYTHIA,andPOWHEG,andMad- GraphareusedtomodeltheHiggsbosonsignalandother backgrounds.TheTAUOLApackageisusedfortaudecays inallcases. To distinguish the Higgs boson signal from the back- Fig.5.Regionintheparameterspaceoftanβversusm excluded ground, we reconstruct the visible mass, defined as the A at95%CLinthecontextoftheMSSMmmax scenario,withthe invariantmass of the visible tau decay products. The ob- h effectof 1σtheoreticaluncertaintiesshown.Theothershaded servedvisiblemassdistributionsarefitineachcasetothe ± regions show the 95% CL excluded regions from the LEP and sum of the SM backgroundsand the Higgs boson signal. Tevatronexperiments. The visible mass spectra show no evidence for the pres- ence of a Higgs boson signal, and are used to set a 95% CL upperboundonthe productof the Higgsbosoncross sectionandthetau-pairbranchingfraction,σφ Bττ. eter spaceatlargervaluesofmA. Figure5also showsthe · regionexcludedbytheLEPexperiments. Figure4showstheupperboundonσ B asafunction φ ττ · of m , where we use as the signal acceptance model the A combinedvisiblemassspectrafromtheggandbb¯ produc- tion processes for h, A, and H, and assuming tanβ = 30. References The plot also shows the one- and two-standard-deviation rangeofexpectedupperlimitsforvariouspotentialexper- 1. CMSCollaboration,CMS-PAS-HIG-11-007,2011,and imentaloutcomes.Theobservedlimitsarewellwithinthe referencestherein expectedrangeassumingnosignal. 2. CMSCollaboration,CMS-PAS-HIG-11-008,2011,and One can interpret the upper limits on σ B in the referencestherein φ ττ MSSMparameterspaceoftanβversusm for·anexample 3. CMSCollaboration,CMS-PAS-HIG-11-020,2011,and A scenariointhesamewayitwasdoneaboveforthecharged referencestherein Higgs.TheresultsareshowninFig.5.Theyexcludeare- 4. CMSCollaboration,CMS-PAS-TAU-11-001,2011,ac- gion in tanβ down to values smaller than those excluded ceptedbyJINST by the Tevatron experiments for m . 140 GeV/c2, and A significantlyextendtheexcludedregionofMSSMparam-