ebook img

Recent developments in the modeling of heavy quarkonia PDF

0.03 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recent developments in the modeling of heavy quarkonia

Recent Developments in the Modeling of Heavy Quarkonia Stanley F. Radford∗ and Wayne W. Repko† ∗DepartmentofPhysics,MariettaCollege,Marietta,OH45750 6 †DepartmentofPhysicsandAstronomy,MichiganStateUniversity,EastLansing,MI48824 0 0 2 Abstract. We examine the spectra and radiative decays of the cc¯ and bb¯ systems using a model n whichincorporatesthecompleteone-loopspin-dependentperturbativeQCD shortdistancepoten- a tial, a linearconfiningterm including(spin-dependent)relativistic correctionsto orderv2/c2, and J a fully relativistic treatment of the kinetic energy. We compare the predictions of this model to 3 experiments,includingstatesanddecaysrecentlymeasuredatBelle,BaBar,CLEOandCDF. 1 v 0 1. INTRODUCTION AND THE POTENTIAL MODEL 2 0 Overthepast25+years,potentialmodelshaveprovenvaluableinanalyzingthespectra 1 0 and characteristics of heavy quarkonium systems [1, 2, 3, 4, 5, 6, 7]. Motivation for 6 revisiting the potential model interpretation of the cc¯ and bb¯ systems is provided by 0 recent experimentalresults: / h p • Thediscoveryofseveralexpectedstates inthecharmoniumspectrum(h C and hC) - p • The discovery of new states [X(3872), X(3943)], which could be a interpreted as e abovethresholdcharmoniumlevels h v: • Thediscoveryofthe13D2 stateoftheupsilonsystem i • ThedeterminationofvariousE1widthsforcc¯and bb¯. X r Ourpurposehere isto examineto what extentasemi-relativisticpotentialmodelwhich a includes all v2/c2 and one-loop QCD corrections can fit the below threshold cc¯ and bb¯ dataand accommodatethenewabovethresholdstates. In ouranalysis,weuseasemi-relativisticHamiltonianoftheform 4a a H = 2 ~p2+m2+Ar− S 1+ S(12−n )(ln(m r)+g ) +V +V 3r 3p f E S L p (cid:16) (cid:17) = H +V +V , 0 S L where m is the renormalization scale,V contains the v2/c2 corrections to the confining L potentialand theshortdistancepotentialisV =V +V +V +V , with S HF LS T SI 32pa ~S ·~S a V = S 1 2 1− S (26+9ln2) d (~r) HF 9m2 12p nh i a lnm r+g 21a lnmr+g − S (33−2n )(cid:209) 2 E + S(cid:209) 2 E 24p 2 f (cid:20) r (cid:21) 16p 2 (cid:20) r (cid:21)(cid:27) 2a ~L·~S a 11 V = S 1− S −(33−2n )lnm r+12lnmr−(21−2n )(g −1) LS m2r3 (cid:26) 6p (cid:20) 3 f f E (cid:21)(cid:27) 4a (3S~ ·rˆS~ ·rˆ−S~ ·S~ ) a 4 V = S 1 2 1 2 1+ S 8+(33−2n ) lnm r+g − T 3m2r3 (cid:26) 6p (cid:20) f (cid:18) E 3(cid:19) 4 −18 lnmr+g − E (cid:18) 3(cid:19)(cid:21)(cid:27) 4pa a a lnm r+g 7a m V = S 1− S(1+ln2) d (~r)− S (33−2n )(cid:209) 2 E − S SI 3m2 (cid:26) 2p 24p 2 f (cid:20) r (cid:21) 6p r2(cid:27) h i UsingthevariationalproceduredescribedinRef.[8],wefittheexperimentaldataforthe the charm and ¡ systems by varying the parameters A,a ,m,m and f , the fraction of S V vectorcouplinginthescalar-vectormixtureoftheconfiningpotential,tofindaminimum in c 2. Thiswas donein twoways: first by treatingV +V as aperturbation and second L S bytreatingtheentireHamiltoniannon-perturbatively.Theresultsare showninTable1. TABLE1. FittedParameters cc¯ Pert cc¯ Non-pert bb¯ Pert bb¯ Non-pert A(GeV2) 0.168 0.175 0.170 0.186 a 0.331 0.361 0.297 0.299 S m (GeV) 1.41 1.49 5.14 6.33 q m (GeV) 2.32 1.07 4.79 3.61 f 0.00 0.18 0.00 0.09 V 2. RESULTS AND CONCLUSIONS Our results1 for the fit to the cc¯ spectrum and the predicted E1 transition rates from the resulting wave functions are comparable to recent results for charmonium [6, 7], with the non-perturbative treatment yielding the best fit. The non-perturbative results1 for the bb¯ spectrum and decays are quite reasonable, though not as good as those from the perturbative treatment. In Table2, we show the fit to the bb¯ spectrum for the case oftheperturbativetreatment ofV +V , and in Table3, weshow ourpredictionsfor the L S observedE1transitionsandthefortheE1 decaysassociated withthe¡ (13D ). 2 Asidefromtheabovethresholdstatesincc¯,wheremixingaswellascontinuumeffects must be included to describe the X(3872) and the X(3943), both treatments of cc¯ and bb¯ yield very good overall fits. It is striking that for both systems the perturbative fits require the confining terms to be pure scalar, while the non-perturbative fits require a smallamountofvectorexchange. 1 See:http://www.panic05.lanl.gov/sessions_by_date.php#sessions3 TABLE2. Pert Expt Pert Expt h (1S) 9411.6 9300±28 h (3S) 10339.5 b b ¡ (1S) 9459.5 9460.3±0.26 ¡ (3S) 10359.5 10355.2±0.5 1c 9862.5 9859.44±0.52 3c 10511.6 b0 b0 1c 9893.2 9892.78±0.40 3c 10534.5 b1 b1 1c 9914.0 9912.21±0.17 3c 10549.8 b2 b2 1h 9902.1 3h 10540.9 b b h (2S) 9996.5 13D 10149.8. b 1 ¡ (2S) 10020.9 10023.26±0.31 13D 10157.6 10161.1±1.7 2 2c 10228.9 10232.5±0.6 13D 10163.5 b0 3 2c 10254.0 10255.46±0.55 11D 10158.9 b1 2 2c 10270.8 10268.65±0.55 b2 2h 10261.1 b TABLE3. G g(E1)(keV) Pert Expt G g(E1)(keV) Pert Expt ¡ (2S)→g 1c 1.12 1.16±0.15 ¡ (3S)→g 2c 1.64 1.30±0.20 b0 b0 ¡ (2S)→g 1c 1.79 2.11±0.20 ¡ (3S)→g 2c 2.61 2.78±0.43 b1 b1 ¡ (2S)→g 1c 1.76 2.19±0.20 ¡ (3S)→g 2c 2.59 2.89±0.50 b2 b2 2c →g ¡ (13D ) 1.47 2c →g ¡ (13D ) 0.47 b1 2 b2 2 ¡ (13D )→g 1c 19.7 ¡ (13D )→g 1c 5.16 2 b1 2 b2 ACKNOWLEDGMENTS This research was supported in part by the National Science Foundation under Grant PHY-0244789. REFERENCES 1. J.Pumplin,W.W.RepkoandA.Sato,Phys.Rev.Lett.35,1538(1975). 2. H.J.Schnitzer,Phys.Rev.Lett.35,1540(1975). 3. E.Eichten,K.Gottfried,T.Kinoshita,K.D.Lane,andT.M.Yan,Phys.Rev.D17,3090(1978). 4. S.N.Gupta,S.F.RadfordandW.W.Repko,Phys.Rev.D26,3305(1982). 5. S.N.Gupta,J.M.Johnson,W.W.RepkoandC.J.SuchytaIII,Phys.Rev.D49,1551(1994). 6. E.Eichten,K.LaneandC.Quigg,Phys.Rev.D69,094019(2004);arXiv:hep-ph/0511179. 7. T.BarnesandS.Godfrey,Phys.Rev.D72,054026(2005)arXiv:hep-ph/0505002. 8. S.F.RadfordandW.W.Repko,Int.J.Mod.Phys.A20,3774(2005)arXiv:hep-ph/0409290.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.