Recent Developments in the Modeling of Heavy Quarkonia Stanley F. Radford∗ and Wayne W. Repko† ∗DepartmentofPhysics,MariettaCollege,Marietta,OH45750 6 †DepartmentofPhysicsandAstronomy,MichiganStateUniversity,EastLansing,MI48824 0 0 2 Abstract. We examine the spectra and radiative decays of the cc¯ and bb¯ systems using a model n whichincorporatesthecompleteone-loopspin-dependentperturbativeQCD shortdistancepoten- a tial, a linearconfiningterm including(spin-dependent)relativistic correctionsto orderv2/c2, and J a fully relativistic treatment of the kinetic energy. We compare the predictions of this model to 3 experiments,includingstatesanddecaysrecentlymeasuredatBelle,BaBar,CLEOandCDF. 1 v 0 1. INTRODUCTION AND THE POTENTIAL MODEL 2 0 Overthepast25+years,potentialmodelshaveprovenvaluableinanalyzingthespectra 1 0 and characteristics of heavy quarkonium systems [1, 2, 3, 4, 5, 6, 7]. Motivation for 6 revisiting the potential model interpretation of the cc¯ and bb¯ systems is provided by 0 recent experimentalresults: / h p • Thediscoveryofseveralexpectedstates inthecharmoniumspectrum(h C and hC) - p • The discovery of new states [X(3872), X(3943)], which could be a interpreted as e abovethresholdcharmoniumlevels h v: • Thediscoveryofthe13D2 stateoftheupsilonsystem i • ThedeterminationofvariousE1widthsforcc¯and bb¯. X r Ourpurposehere isto examineto what extentasemi-relativisticpotentialmodelwhich a includes all v2/c2 and one-loop QCD corrections can fit the below threshold cc¯ and bb¯ dataand accommodatethenewabovethresholdstates. In ouranalysis,weuseasemi-relativisticHamiltonianoftheform 4a a H = 2 ~p2+m2+Ar− S 1+ S(12−n )(ln(m r)+g ) +V +V 3r 3p f E S L p (cid:16) (cid:17) = H +V +V , 0 S L where m is the renormalization scale,V contains the v2/c2 corrections to the confining L potentialand theshortdistancepotentialisV =V +V +V +V , with S HF LS T SI 32pa ~S ·~S a V = S 1 2 1− S (26+9ln2) d (~r) HF 9m2 12p nh i a lnm r+g 21a lnmr+g − S (33−2n )(cid:209) 2 E + S(cid:209) 2 E 24p 2 f (cid:20) r (cid:21) 16p 2 (cid:20) r (cid:21)(cid:27) 2a ~L·~S a 11 V = S 1− S −(33−2n )lnm r+12lnmr−(21−2n )(g −1) LS m2r3 (cid:26) 6p (cid:20) 3 f f E (cid:21)(cid:27) 4a (3S~ ·rˆS~ ·rˆ−S~ ·S~ ) a 4 V = S 1 2 1 2 1+ S 8+(33−2n ) lnm r+g − T 3m2r3 (cid:26) 6p (cid:20) f (cid:18) E 3(cid:19) 4 −18 lnmr+g − E (cid:18) 3(cid:19)(cid:21)(cid:27) 4pa a a lnm r+g 7a m V = S 1− S(1+ln2) d (~r)− S (33−2n )(cid:209) 2 E − S SI 3m2 (cid:26) 2p 24p 2 f (cid:20) r (cid:21) 6p r2(cid:27) h i UsingthevariationalproceduredescribedinRef.[8],wefittheexperimentaldataforthe the charm and ¡ systems by varying the parameters A,a ,m,m and f , the fraction of S V vectorcouplinginthescalar-vectormixtureoftheconfiningpotential,tofindaminimum in c 2. Thiswas donein twoways: first by treatingV +V as aperturbation and second L S bytreatingtheentireHamiltoniannon-perturbatively.Theresultsare showninTable1. TABLE1. FittedParameters cc¯ Pert cc¯ Non-pert bb¯ Pert bb¯ Non-pert A(GeV2) 0.168 0.175 0.170 0.186 a 0.331 0.361 0.297 0.299 S m (GeV) 1.41 1.49 5.14 6.33 q m (GeV) 2.32 1.07 4.79 3.61 f 0.00 0.18 0.00 0.09 V 2. RESULTS AND CONCLUSIONS Our results1 for the fit to the cc¯ spectrum and the predicted E1 transition rates from the resulting wave functions are comparable to recent results for charmonium [6, 7], with the non-perturbative treatment yielding the best fit. The non-perturbative results1 for the bb¯ spectrum and decays are quite reasonable, though not as good as those from the perturbative treatment. In Table2, we show the fit to the bb¯ spectrum for the case oftheperturbativetreatment ofV +V , and in Table3, weshow ourpredictionsfor the L S observedE1transitionsandthefortheE1 decaysassociated withthe¡ (13D ). 2 Asidefromtheabovethresholdstatesincc¯,wheremixingaswellascontinuumeffects must be included to describe the X(3872) and the X(3943), both treatments of cc¯ and bb¯ yield very good overall fits. It is striking that for both systems the perturbative fits require the confining terms to be pure scalar, while the non-perturbative fits require a smallamountofvectorexchange. 1 See:http://www.panic05.lanl.gov/sessions_by_date.php#sessions3 TABLE2. Pert Expt Pert Expt h (1S) 9411.6 9300±28 h (3S) 10339.5 b b ¡ (1S) 9459.5 9460.3±0.26 ¡ (3S) 10359.5 10355.2±0.5 1c 9862.5 9859.44±0.52 3c 10511.6 b0 b0 1c 9893.2 9892.78±0.40 3c 10534.5 b1 b1 1c 9914.0 9912.21±0.17 3c 10549.8 b2 b2 1h 9902.1 3h 10540.9 b b h (2S) 9996.5 13D 10149.8. b 1 ¡ (2S) 10020.9 10023.26±0.31 13D 10157.6 10161.1±1.7 2 2c 10228.9 10232.5±0.6 13D 10163.5 b0 3 2c 10254.0 10255.46±0.55 11D 10158.9 b1 2 2c 10270.8 10268.65±0.55 b2 2h 10261.1 b TABLE3. G g(E1)(keV) Pert Expt G g(E1)(keV) Pert Expt ¡ (2S)→g 1c 1.12 1.16±0.15 ¡ (3S)→g 2c 1.64 1.30±0.20 b0 b0 ¡ (2S)→g 1c 1.79 2.11±0.20 ¡ (3S)→g 2c 2.61 2.78±0.43 b1 b1 ¡ (2S)→g 1c 1.76 2.19±0.20 ¡ (3S)→g 2c 2.59 2.89±0.50 b2 b2 2c →g ¡ (13D ) 1.47 2c →g ¡ (13D ) 0.47 b1 2 b2 2 ¡ (13D )→g 1c 19.7 ¡ (13D )→g 1c 5.16 2 b1 2 b2 ACKNOWLEDGMENTS This research was supported in part by the National Science Foundation under Grant PHY-0244789. REFERENCES 1. J.Pumplin,W.W.RepkoandA.Sato,Phys.Rev.Lett.35,1538(1975). 2. H.J.Schnitzer,Phys.Rev.Lett.35,1540(1975). 3. E.Eichten,K.Gottfried,T.Kinoshita,K.D.Lane,andT.M.Yan,Phys.Rev.D17,3090(1978). 4. S.N.Gupta,S.F.RadfordandW.W.Repko,Phys.Rev.D26,3305(1982). 5. S.N.Gupta,J.M.Johnson,W.W.RepkoandC.J.SuchytaIII,Phys.Rev.D49,1551(1994). 6. E.Eichten,K.LaneandC.Quigg,Phys.Rev.D69,094019(2004);arXiv:hep-ph/0511179. 7. T.BarnesandS.Godfrey,Phys.Rev.D72,054026(2005)arXiv:hep-ph/0505002. 8. S.F.RadfordandW.W.Repko,Int.J.Mod.Phys.A20,3774(2005)arXiv:hep-ph/0409290.