coatings Review Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light SamiRtimi*,CesarPulgarinandJohnKiwi* EcolePolytechniqueFédéraledeLausanne,EPFL-SB-ISIC-GPAO,Station6,CH-1015Lausanne,Switzerland; cesar.pulgarin@epfl.ch * Correspondence:sami.rtimi@epfl.ch(S.R.);john.kiwi@epfl.ch(J.K.);Tel.:+41-21-69-36150(S.R.&J.K.) AcademicEditor:NabaDutta Received:15September2016;Accepted:23January2017;Published:6February2017 Abstract: This review focuses on Cu/TiO sequentially sputtered and Cu-TiO co-sputtered 2 2 catalytic/photocatalyticsurfacesthatleadtobacterialinactivation,discussingtheirstability,synthesis, adhesion,andantibacterialkinetics. TheinterventionofTiO ,Cu,andthesynergiceffectofCuand 2 TiO onfilmspreparedbyacolloidalsol-gelmethodleadingtobacterialinactivationisreviewed. 2 Processesinaerobicandanaerobicmedialeadingtobacteriallossofviabilityinmultidrugresistant (MDR)pathogens,Gram-negative,andGram-positivebacteriaaredescribed. Insightisprovidedfor theinterfacialchargetransfermechanismundersolarirradiationoccurringbetweenTiO andCu. 2 Surfacepropertiesof2DTiO /CuandTiO -Cufilmsarecorrelatedwiththebacterialinactivation 2 2 kineticsindarkandunderlightconditions. Theinterventionoftheseantibacterialsputteredsurfaces in health-care facilities, leading to Methicillin-resistant Staphylococcus Aureus (MRSA)-isolates inactivation,isdescribedindarkandunderactiniclightconditions. Thesynergicinterventionofthe CuandTiO filmsleadingtobacterialinactivationpreparedbydirectcurrentmagnetronsputtering 2 (DCMS),pulseddirectcurrentmagnetronsputtering(DCMSP),andhighpowerimpulsemagnetron sputtering(HIPIMS)isreportedinadetailedmanner. Keywords: magnetronsputtering;highpowerimpulsemagnetronsputtering(HIPIMS);bacterial inactivationkinetics;Cu-TiO synergiceffects;interfacialchargetransfer(IFCT) 2 1. Introduction Thefocusofinnovativeantibacterialmaterialsistofindcompositesincolloidformordeposited on surfaces that are able to inactivate bacteria/pathogens within very short times and that have longoperationallifetimes(highstability)[1–5]. Biofilmsthatspreadbacteriainhospitals, schools, andpublicplacesarethemostcommonanddangerousformsofinfectionbypathogens:bacteria,fungi, andviruses. Pathogensarecapableoflivinginanyenvironmentwheretheminimalconditionsoflife areencountered,sincetheyhavetheabilitytoformbiofilms,adheringtoeachotherandtosurfaces. Thesepathogenicbacteriaarecontinuouslyspreadinclosedenvironments,mostcommonlyinhealth facilities[6–14]. Healthcareassociatedinfections(HCAIs)arebecomingaworldwideproblemsince bacteriacansurviveonabioticsurfacesforalongtime. Inthisway,theydisseminateawiderangeof infections. TheCenterforDiseaseControlandPrevention(CDC)estimatesthatapproximatelytwo millionpatients/yearareaffectedbyHCAIsintheUSA[15,16]. InEurope,HCAIsaffect~3.2million patients/year,andleadtomortalityoranincreaseofthedurationofahospitalstayandassociated costs[17]. Nosocomialinfectionoccursbysimplytouchingthehandsofhealthcareworkersorby hospitalclothing,equipment,airconditioners,andhospitalwaterdistributionnetworks[18]. Theuse Coatings2017,7,20;doi:10.3390/coatings7020020 www.mdpi.com/journal/coatings Coatings2017,7,20 2of29 ofgloves,gowns,andmasks,aswellaspatientisolation,havelimitedthespreadofinfections,butby themselvesarenotabletopreventthetransmissionofHCAIs[19,20]. ThelevelsofcontaminationinUKhospitalshavebeenreportedtobe~105CFU/cm2indiabetic wound dressing rooms, and in hospital residence rooms a density of 102 CFU/cm2 was found. ThisreviewwilladdressseveralstudiesonsurfacescoatedwithTiO ,Cu,andCu/TiO thathave 2 2 thepotentialtodecreasetheenvironmentalbacterialdensityinhospitalfacilities. Theaddedbenefit ofthesecoatingsisthattheyavoid,toacertaindegree,biofilmformation[21–26]. WhenHCAIsare causedbymultidrug-resistant(MDR)pathogensthisproblembecomescritical,sinceantibioticsarenot availableorareineffectiveduetotheirprolongedapplicationtimes,makingthepathogensresistantto theirinitiallydesignedabatementeffect. At the present time, more work is required to improve antibacterial coatings that induce fast bacterialreduction,andhavehighadhesion,robustlayeredstructures,andstabilityprecludingHCAIs. Theapplicationofnanotechnologytoproduceinnovative2Dbiomaterialsurfacesthatareusefulin medicinepossessesasignificantpotentialforthepreventionandtreatmentofinfections. Nevertheless, concernsexistabouttheuseofthesenewnanoparticulatematerialsduetotheincompleteknowledge oftheirtoxicology[27,28]. The present write-up reviews the recent work on TiO , Cu, and the recent films made by Cu 2 andTiO thatleadtofastbacterialinactivationkineticsprecludingpartialortotalbiofilmformation. 2 The spread of pathogenic infections will be decreased depending on the type of pathogen or its local concentration. Biofilm formation is the origin of 80% of all microbial infections in the body, makingbiofilmsaprimaryhealthconcern[6–14]. Biofilmpathogensadheretoahostsurface,organize theircommunitystructure,andremaintherebyproducinganextra-cellularpolysaccharides(EPS) polymer matrix to cement the biofilm to the support in a permanent way. In the present review, theco-sputteredfilmsofCuandTiwillbedesignatedasCu-TiO andthesequentiallysputteredfilms 2 (TiO sputteredfirst,followedbyCusputtering)willbedesignatedasCu/TiO . WereportCu-TiO 2 2 2 inactivationofE.coliandMethicillin-resistantStaphylococcusAureus(MRSA),abacteriastrainresistant totheeffectofantibioticsandtoalesserdegree,totheabatementofotherbacteria. Whatmakesthe problemevenmorecomplicatedisthatbacteriaembeddedinabiofilmcansurviveconcentrationsof antiseptic/antibioticsthatareseveraltimeshigherthantheconcentrationabletokillplanktoniccells ofthesamespecies[29]. 2. BacterialInactivationPerformanceonTiO /CuandSurfaceProperties 2 2.1. ShortDescriptionoftheMainIssuesofConcernAffectingtheTiO PhotocatalysisApplicationin 2 MicrobialAbatement After the seminal report by Matsunaga et al. [30], a large number of papers appear devoted to the issue of microbial abatement in suspension or on supported TiO surfaces. Lately, some 2 reviews/monographs/reportshaveappearedonTiO photocatalysisinvolvingalarge-scaleeffort 2 addressedto: (a)thereportingofthereferencesonTiO photocatalysis;(b)theclassificationofthe 2 availabledata;and(c)proofofvalidityofthereporteddatabytherecentreviews. Fosteretal. havereportedontheTiO mediateddisinfectionofalargevarietyofpathogens[31]. 2 The main barriers to the application of TiO photocatalysis in suspension have been recently 2 reported by Guillard et al. [32], Morawski et al. [33], Robertson et al. [34], Dalrymple et al. [35], andGamageetal.[36].ReviewsontheantimicrobialmechanismmediatedbyTiO compositefilmsand 2 suspensionshavesbeenreportedbyseveralgroupssuchasKubackaetal.[37]andDalrympleetal.[38]. TiO , upon band–gap light irradiation, photogenerates charges that react with adsorbed O and 2 2 H O (at the solid-air interface), leading to reactive oxygen species (ROS) that present a high 2 vapor oxidationpotentialtodegradeorganiccompoundsandbacteria[39,40]. These(ROS)radicalsareHO•, O •−,andHO •,andhavebeendocumentedandcharacterizedformostoftheirpropertiessuchas 2 2 concentration,lifetimes,spectra,andredoxpotentialsbynumerousresearchers. Linsebigleretal.[41], Nakanoetal.[42],Fujishimaetal.[43],Douadetal.[44],Griesseretal.[45],andHuetal.[46]reported Coatings2017,7,20 3of29 thephotocatalyticactivityofTiO thinfilms. However,moreworkusingfastkineticsbyfemto-and 2 picosecondspectroscopyinthevisibleregionisstillnecessarytoidentifythenatureandlifetimeof theseROSspeciesinterveningintheindividualpathogeninactivation. Recentworksinvolvingthe fastkineticsofsurfacesproducingROSundervisiblelightthatleadtosubsequentE.coliinactivation havebeenreportedrecentlybyKiwietal.[47]andRtimietal.[48]. PhotocatalyticdegradationofpollutantsandbacteriamediatedbyTiO isapromisingapproach 2 tofacetheincreasingenvironmentalcontamination. However,becauseofitswidebandgap(3.2eV) TiO canabsorbmostlyUV-light(λ<387nm)andonlyabout4%–5%ofthevisibleradiationofthe 2 solarspectrum. SensitizationofTiO modificationbySorNanions,ormetal/oxidessuchasCu/CuO 2 x has been used to extend the TiO response into the visible region. In this way, accelerated TiO 2 2 reactionkineticsundervisiblelight,leadingtobacterialinactivationondopedTiO ,binaryoxides, 2 TiO composites,ordecorated2D-surfaces,havebeenrecentlyreportedbyDionysiouetal.[49,50], 2 Pillaietal.[51–53],Rtimietal.[48],Kavithaetal.[54],Fotiouetal.[55],andBahnemanetal.[56]. WettabilityplaysanimportantroleontheTiO surfaceunderband-gapirradiation. Thesurface 2 wettabilityisevaluatedbythewatercontactangle(CA).TheCA(θ)isdefinedastheanglebetween thesolidsurfaceandthetangentlineoftheaqueoussolutionattheliquid-solidinterface. Hashimoto, Fujishima,etal.[57,58]reportedtheimportanceofthehydrophilicitychangesinTiO underband-gap 2 irradiationontheTiO surfaceduringpollutant/bacteriadegradation. AhydrophobicTiO surfaceat 2 2 timezerowasreportedtobecomehighlyhydrophilicorsuperhydrophilic(θ<5◦)underband-gap excitation. Thissurfacewillgraduallyreverttotheoriginalsurfaceafterrelativelylongperiodsin thedark. Thisconsiderationisimportantinbacterialinactivationprocesses,sincehighlyhydrophilic conversionsleadtocleansurfacesduetothedestructionofbacteriaadsorbedontheTiO surface 2 duringthesampleirradiation. Thephoto-generatedholeshavebeenshowntoberesponsibleforthe TiO surfaceconversiontoahighlyhydrophilicsurface. Theseholes(a)diffusetotheTiO surface 2 2 andtotheoxygenlatticesitesreactingwithbacteriaor(b)produceHO•-radicalsreactingwiththe embeddedHO• ontheTiO surface. However,apartofthephoto-generatedholesbreakthe–Ti–O– 2 lattice bonds by coordinating H O at the Ti-lattice sites. The coordinated water releases a proton 2 (chargecompensation)andanewHO• isformed,increasingthenumberofsurfaceHO• radicals[59]. Transparent, non-scattering PE (PE = polyethylene), sputtered by direct current magnetron sputtering (DCMS) for 8 min with TiO thin film, inactivated E. coli within one hour under low 2 intensitysolarsimulatedirradiation(52mW/cm2). Theschemeofthesputteringunitisshownin Figure1. ThePEwaspretreatedfor15minbyRF-plasmatograftalargeramountofpolarnegative groupsabletobondthepositiveTiO onthePE-surface[60–62]. ThePE-TiO samplespretreatedfor 2 2 15minandsputteredfor8minpresentedthehighestamountofTiO sitesinexposedpositions,leading 2 tothefavorablebacterialinactivationkinetics.Adecreasefromtheinitialcontactangle(CA)ofPE-TiO 2 attimezeroand~121◦Ctoθ<5◦ within60minofirradiation,inducingPE-TiO super-hydrophilicity, 2 wasobservedtobeconcomitantwiththetimeofbacterialinactivation. Thisseemstobeanecessary conditiontoattaintheoptimalE.coliinactivationkinetics. Samplessputteredfortimes>8minledto athickercoating,inducingchargebulkinwarddiffusionthatdecreasedthechargetransferbetween thePE-TiO andbacteria[63]. Therateofthehydrophobictohydrophilictransformationwasfoundto 2 be0.28min−1. Thereversereactionrateinthedarkwasfoundtobe8.7×10−3 min−1. Thereverse reactiontimenecessarytoreachtheinitialhydrophobicCA~121◦ wascompletedwithinabout24h. TheserateswerecalculatedbyintegratingcosθintheYoung’sequation[58,59]. TiO sputteringfor8minledtoaTiO loadingwiththemostsuitablethicknessforthecharge 2 2 diffusiongeneratedintheTiO toreachthebacteria. Nobacterialre-growthwasobserved,meaning 2 that there were no bacteria adhered to the surface after the inactivation cycle. After each cycle, thesampleswerewashedwithdistilledwateranddried. Then,thesampleswerekeptinanovenat 60◦Ctoavoidbacterialcontamination. Afterwashing,thePE-TiO sampleswereleftstandingfor24h 2 toregaintheinitialhydrophobicity. Coatings2017,7,20 4of29 Coatings 2017, 7, 20 4 of 28 Figure 1. Sputtering unit used during the sputtering of antibacterial layers on diverse substrates. Figure1.Sputteringunitusedduringthesputteringofantibacteriallayersondiversesubstrates. According to Young’s theory, the cosθ of a liquid droplet on a solid is a function of the interfacial Acceonerdrgiyn gbettowYeeonu nthge’ ssothlideo arnyd, tthhee clioqsuθido. fTaheli qwueitdtabdirliotyp lies tcoonmmaosonllyid eivsalauafutendc tinio tneromfst hoef tihnet erfacial energybceotnwtaecet nantghlee (sCoAli)d, wanhidcht hise gliivqeuni dby. TYohuenwg’es tetqaubailtiitoyn i[s58c]o: mmonlyevaluatedintermsofthecontact angle(CA),whichisgivenbyYoung’sequaγtSi o=n γS[5L8 +] :γL·cosθ (1) In Equation (1), γS and γL are the surface free energies per unit area of the solid and the liquid, γS=γSL+γL·cosθ (1) respectively, and γSL is the interfacial free energy per unit area. In addition, γSL can be approximated using the Girifalco‐Good Equation (2), with γS and γL, as: InEquation(1),γSandγLarethesurfacefreeenergiesperunitareaofthesolidandtheliquid, γSL = γS + γL − Φ(γS/γL)1/2 (2) respectively,andγSListheinterfacialfreeenergyperunitarea. Inaddition,γSLcanbeapproximated usingtheGiHriefrael,c Φo -iGs ao ocodnsEtaqnuta ptaioranm(e2t)e,r wraintghinγgS fraonmd 0γ.6L t,oa 1s.:1, depending on the solid. In addition, γL is the water surface free energy, which has a constant value of 74 mJ/m2. Therefore, by combining Equations (1) and (2), the CA canγ bSeL s=imγpSly +exγpLre−sseΦd (aγs:S /γL)1/2 (2) cosθ = cγS1/2 − 1 (c: constant) (3) Here, ΦThies haigcholyn shtyadnrotpphailriac mstaettee grernaenragteind gbyf rUoVm lig0h.6t gtroad1u.1a,llyd ereptuenrnds itnog thoen intithiael shoydlirdo.phInobaicd dition, γListhestwatea tienr tshuer fdaacrek.f rTeheee inneitrigaly ,cwonhtaiccth ahnagslea ocno nRsFt‐apnrettvreaaltuede oDfC7M4Sm sJp/umtte2r.eTdh PeEre‐TfoiOre2 ,sbamypcloems bining Equatiodnesc(r1ea)saend dto( 2an), atnhgeleC <A 5°c wanithbien s6i0m mpinly oef xirprardesiasteiodn.a Ts:he hydrophobic or hydrophilic nature of a surface is important for the adhesion of bacteria to a TiO2 layered surface and for regulating the subsequent light or dark inducedc oksinθe=ticc bγaSc1te/r2ia−l in1a(ccti:vcaotinonst. ant) (3) E. coli and Staphylococcus aureus present a preferential adhesion to hydrophilic surfaces [32,64–67]. Efficient antimicrobial activity on Cu‐surfaces has been recently reported against methicillin‐resistant ThehighlyhydrophilicstategeneratedbyUVlightgraduallyreturnstotheinitialhydrophobic Staphylococcus aureus (MRSA) and the bacterial reduction was evaluated by four methods. A state in the dark. The initial contact angle on RF-pretreated DCMS sputtered PE-TiO samples reduction of 4log10 in the initial MRSA concentration of 106 CFU was found for ten clinical MR2SA decreaseisdolatotesa nwiathnign l1e h<, 5su◦gwgeistthining t6h0e msuiintaboiflitiyrr oafd tihaet iCoun‐.suTrhfaecehs yind rporpevheonbtiincg othreh tyradnrsompihssiiloicn nofa tureof asurfacteheissei gmrapmo‐rptoasnittivfeo rbatchteeriaad [6h4e]s. iTohne loofssb oafc vteiarbiailittyo taesTtiniOg 2wlaasy peerrefodrmsuedrf bayc ecoamnbdinfionrg rtheeg udalatat ingthe subsequoebntatilniegdh btyo rdidreacrtk trianndsfuecr eodn kaginare tpilcatbeas catnedr isatlerienoamctiicvroastcioopny.. Two different methods were used to evaluate the bactericidal activity of the Cu‐sputtered samples. E.coliandStaphylococcusaureuspresentapreferentialadhesiontohydrophilicsurfaces[32,64–67]. Bacteria with hydrophobic surface properties such as S. epidermis adhere preferentially to EfficientantimicrobialactivityonCu-surfaceshasbeenrecentlyreportedagainstmethicillin-resistant hydrophobic surfaces [66]. Hydrophobic bacteria such as E. coli, with an initial contact angle of 121° Staphylococcusaureus(MRSA)andthebacterialreductionwasevaluatedbyfourmethods. Areduction reduced to less than 5° (full hydrophilicity) have been reported within 5–10 min. E. coli was shown to of4log10adinhetrhe etoi nCiuti aalnMd TRiSOA2‐Ccuo nsucrefnactersa t[i4o0n,46o,6f01,6016,6C7]F. UThwe naesgfaotiuven dchfaorgret eonn cthlien iccaatallyMstR/pShAotoiscaotlaalytests within 1h,suggspeustttienrgedt hseursfuacitea obnil iTtyiOo2,f TthiOe2C‐Cuu-, saunrdfa TceiOs2i‐nZrpOr2e‐pvoelnyteisntegr t(hPeEStr) asnusrfmaciesss iios nouotflitnheeds ebeglroawm i-np ositive bacteriaE[q6u4a]t.ioTnhs e(5l)–o(s9s): ofviabilitytestingwasperformedbycombiningthedataobtainedbydirect transfer on agarBapcltaetreias +a [nPdES‐sTteiOre2]o +m liigchrto sc [oPpEyS.‐TiTOw2*o] Bdaicftfeerirae nt Bmacetethrioa+d +s PwESe‐r(TeiOu2s)cebde‐t o ev(a4l)u ate the bactericidalactivityoftheCu-sputteredsamples. PES‐(TiO2) cbe‐ + O2 + H+ HO2• E0 ‐0.05 NHE [43,56] (5) Bacteria with hydrophobic surface properties such as S. epidermis adhere preferentially to hydroph obicsurfaces[66]. HydrophobicbacteriasuchasE.coli,withaninitialcontactangleof121◦ reducedtolessthan5◦ (fullhydrophilicity)havebeenreportedwithin5–10min. E.coliwasshownto adheretoCuandTiO -Cusurfaces[40,46,60,61,67]. Thenegativechargeonthecatalyst/photocatalyst 2 sputtered surface on TiO , TiO -Cu, and TiO -ZrO -polyester (PES) surfaces is outlined below in 2 2 2 2 Equations(5)–(9): Coatings2017,7,20 5of29 Bacteria+[PES-TiO ]+light→[PES-TiO *]Bacteria→Bacteria++PES-(TiO )cbe- (4) 2 2 2 PES-(TiO )cbe-+O +H+→HO • E -0.05NHE[43,56] (5) 2 2 2 0 PES-(TiO )cbe-+O →O •− E -0.16NHE[43,56] (6) 2 2ads 2 ads 0 PES-(TiO )vbh++OH− →HO◦ E -1.90NHE[49] (7) 2 ads 0 PES-(TiO )vbh++H O →HO• +H+ (8) 2 2 ads ads O •−+H+⇔HO • pKa4.8 (9) 2 2 Inreaction(2),theHO •radicalisstableatpH<4.8,andabovethispH,morethan50%ispresent 2 intheformofO •−,asnotedinEquation(9). 2 Mostofthebacteriaacquireanegativeelectricchargeinaqueoussuspensionorinthepresence ofairhumidity,andthisaspecthasbeenrevealedtobeimportantinbacterialadhesiontocharged surfaces[68]. Ithasbeenknownforalongtimethatsurfaceswithhighsurfaceenergies,suchasthe ones encountered in hydrophilic surfaces, are to a great extent negative and develop resistance to bio-adhesion[69,70]. Thesetwolastconsiderationshavetobeconsideredfromcase-to-casewhen inactivatingaspecificpathogenonawell-definedantibacterialsurface[6–13]. Inthelast30years,theTiO mediatedphotocatalyticinactivationofpathogenshasbeenthefocus 2 of bacterial disinfection studies. Inactivation by TiO suspensions, supported photocatalysts, and 2 nano-rodsunderdiverselightsourceshasbeenreportedwithinminutes/hours[71]. Indarkcontrol experiments,TiO hasbeenreportedtoexertnomicrobialinactivationorverylowantibacterialactivity. 2 Recently,researchhasprovidedevidencethatselectedexperimentalconditions(pH,TiO amount 2 andparticlesize,bacterialconcentration)belowtheTiO isoelectricpointledto104CFU/mLE.coli 2 inactivationinthedarkwithin120min. Thiswasabout50%oftheE.coliinactivationinducedunder thesameexperimentalconditionswhenapplyingaUV-lightcenteredat366nm. Nophoto-generated electrons/holesorROSwerepresentintheabsenceofband-gapirradiation[71]. Thisworkshowed thattheelectrostaticandorCoulombinteractionatpHsbetween4and4.5suppressesthedivisionof bacterialeadingtoE.colilossofcultivability. A subsequent study presenting evidence for the lack of cultivability in the dark due to the interactionbetweenTiO surfacesintheminuterangehasbeenrecentlyreported[72]. Thebacterial 2 cellsinteractionwithTiO aggregateswasfollowedbyelectronmicroscopy. TheinteractionoftheTiO 2 2 inthedarkwithE.coliledtocellwalldamage/inactivationduetoelectrostaticforcescompetingwith VanderWaalsforcesoccurringatphysiologicalpH-valuesandinducingdamage/deformationinthe cell-wallpackingstructure,withanincreaseofthemembranepermeability. TiO -polyestersamples 2 demonstratedrepetitivebacterialinactivation(lossofcultivability)inthedark. Bacterialinactivation in the dark occurred within 120 min compared to the E. coli mediated TiO photocatalysis that 2 occurredwithin60minunderanactiniclightLumilux18W/827source(OSRAMGmbH,Winterthur, Switzerland),radiatingwithin350and740nm,withanintensityof4.1mW/cm2. Thisstudyreports onanimportantissueinthefieldofdisinfectiontechnology. TheTiO -polyesterledtodisinfection 2 processesbeingcarriedoutinarepetitiveway. Thisisamoreconvenientapproachwhencomparedto TiO suspensionswheretheTiO nanoparticleshavetoberemovedfromthesolutionaftereachcycle, 2 2 notallowingforacontinuousdisinfectiontreatment. Therefore,TiO -supportedpolyestersurfaces 2 showapracticalpotentialtoprecludepathogenicbiofilmformationinthedark. AlterationoftheE.coli cellpermeabilityincontactwithTiO inthedarkhasalsobeenreportedrecentlyandthemorphological 2 changesofthebacteriawerefurtherdocumentedbyGuillardetal.[32]. Thedamagetothebilayercell envelopewasascribedtothelipo-saccharide(LPS)packingstructuredamage. Incontrast,SiO under 2 thesameconditionsdidnotinducedetrimentaleffectsonthebacteria,inhibitingitsreproductiondue tothevarianceoftheelectrostaticcharges/interactionatthereactionpH.TiO nanoparticlespresent 2 apotentialriskoftheseparticlestopenetrateintissuesandbiologicalmembranes. Ecotoxicologyof TiO hasrecentlybeenaddressedinseveralstudies/reviews,whichindicatethehighstabilityofTiO 2 2 nanoparticleswithlimitedcytotoxiceffects[27,73–76]. ThewaylightisappliedtoTiO suspensionstoinactivatebacteriahasbeenreportedrecently 2 in detail by Pulgarin et al. [77] to have significant effects on the inactivation kinetics. The way Coatings2017,7,20 6of29 light is applied during bacterial disinfection may or may not lead to complete bacterial removal: continuousirradiationleadstoarapidremovalofbacteriacomparedtothesamelightdoseapplied intermittently. No bacterial re-growth was observed after illumination of a contaminated TiO 2 suspension. In contrast, without catalyst, illuminated bacteria in solution recovered their initial concentrationafter3hinthedark. Inasubsequentstudy,TiO suspensionswereshowntobeeffective 2 inreducingE.coliwhenirradiatedinthepresenceofabacterialconsortium. Theinactivationratewas dependentonbiologicalparameterssuchasphysiologicalstate,pH,initialconcentrationofbacteria, andtheorganic/inorganicimpurities/residuespresentinthesolution. Afterilluminationperiods withdifferentlengths,a“residualdisinfectingeffect”inthedarkwasobservedafterthelightwas turnedoff,asafunctionoftheappliedintensity(40–100mW/cm2). Enterococcussp.,aGram-positive bacteriumwithcell-wallthicknessesbetween30and80nmappeartobelesssensitivecomparedto coliformsandotherGram-negativebacteriawithcell-wallthicknesses10–20nmtotheeffectofTiO 2 underlight[78]. Generally, the bacterial inactivation kinetics is determined by the hydrophobic-hydrophilic properties of the surface mediating the bacterial disinfection. For different processes involving TiO surfaces,thehydrophobic-hydrophilicconversioninairundersolarlightirradiationproceeds 2 with shorter times compared to the time required for E. coli inactivation. References [79,80] by Rtimietal. showthatinitialhydrophobicPE-TiO surfacesundersolarsimulatedirradiationbecame 2 super-hydrophilicsurfacewithintimes<1h.Theconversionoftheinitialhydrophobicsurfaces(contact angle>150◦)tosuper-hydrophilicsurfaces(contactangle<5◦)isacceptedasanecessaryconditionbut nottheonlynecessaryconditionforbacterialinactivationonPE-TiO surfaces. ThePE-filmpresents 2 asmoothsurfacethatallowsthemeasurementofsputteredTiO byapplyingdifferentpowersand 2 convenientlyfollowsthechangeinthedynamiccontactanglemeasurementswithtime[81]. In TiO dispersions/suspensions made up of colloids or pre-formed powder nanoparticles, 2 thephotocatalysisledtomanystudiesfocusingonbacterialabatement[12,30–63,71,72]andshowing the inactivation of spores [82–85], viruses [86], algae [87], and fungi [88]. The TiO suspensions, 2 althoughsuccessfulinabatingavarietyofpathogensunderlightirradiation,requiretimesthatseemto betoolongtotreatlargewatervolumes. Thesecondinconvenienceistheseparationofthesuspension fromthebacterialresiduesafterthedisinfectionprocess. Thisisexpensiveintermsoftime,labor,and reagents. Therefore,somelaboratorieshavebeguntousesupportedTiO materialsindisinfection 2 processes mediated by TiO . To avoid the separation step at the end of the bacterial abatement, 2 Kuhnetal.[89]reportedin2003thatpreformedTiO nanoparticlesgraftedonplexiglasssurfaces 2 inactivateE.coliunderUV-light,butonlytoasmallextent. Nevertheless,thesesurfacesshowedavery heterogeneous(non-uniform)TiO coating. Generally,coatingwithcolloidalTiO onthermalresistant 2 2 substratessuchasglass,ironplates,andceramicsprovidelayersthatarenotreproducibleandcanbe wipedoffbyrubbingusingnakedhands[90]. The synthesis of uniform 2D-coatings on supports by applying direct current magnetron sputtering(DCMS),pulseddirectcurrentmagnetronsputtering(DCSMP),andhighlyionizedpulsed plasma magnetron sputtering (HIPIMS) have been reported to uniformly cover surfaces resistant tothermalstress. However,sputteringmethodshavebeenusedtocoattextilessuchascottonand polyester (PES) and low cost inert thin polymer films such as polyethylene (PE) that present low thermalstability≤100–130◦Ccomprise80%ofthecommercialmarket. 2.2. TiO /CuSynthesisLeadingtoUniform,Adhesive,andAntibacterialFilms 2 Physicalvapordeposition(PVD)iscarriedoutinavacuumbycondensationofametal/non-metal vaporontothesupportsurfacethatisgenerallyinthereactionchamberatarelativelylowtemperature. This method involves high temperature vacuum evaporation of the material to be coated on the support. Anataselayershavebeendepositedinthisway,showingasuper-hydrophilicbehaviorunder band-gapirradiationasreportedbyseveralresearchersinthefield[91]. Whenusingchemicalvapor deposition(CVD),thesubstrateisexposedtovolatilecompoundsthatdecomposeonthesubstrate, Coatings2017,7,20 7of29 leadingtothedesiredcoatings[92–94]. Auniform,thin,adhesive,robustTiO filmhasbeendeposited 2 onglass[95]fromTi-chloride/ethyl-acetateatabout500◦C.CVDisabletodepositcontinuousfilms withouttheneedofapost-annealingprocesstocrystallizetheTiO nanoparticulates. 2 Diversepulsemagnetronsputtering(PMS)systemshavebeenusedtodepositTiO filmswith 2 thicknessesofupto300nmandlayerscomprisingmainlyanataseattemperatures≤130◦C.Using thisapproach,textilespresentinglowthermalresistance,thinpolymerfilms,andpolycarbonates(PC) havebeencoatedwithTiO ,TiO -metal,andTiO metal-oxides[61,96–98]. Thebasicinstallationof 2 2 2 aDCMSunitisshowninFigure1. OneofthefirstreportsonDCMSsputteredphotocatalyticTiO onSi-wafersandceramictargets 2 was reported by Miron et al. [99]. The utility of TiO sputtered surfaces was already recognized 2 manyyearsago. Duringthephotocatalyticdisinfection,theelectronacceptor,O ,incontactwiththe 2 sputteredTiO ,isreadilyavailablefromtheairanditsconcentrationisnormallyreplenishedbythe 2 catalystsurfaceduringdisinfection. Theefficiencyoftheantibacterialcatalyticsurfaceisinfluenced bythesurfaceporosity,theintensityofthelight,thesampleroughnessanduniformity,thetypeof bacteria (eitherGram-negative orGram-positive), thedistance ofthe light source tothe sputtered sample,thesurfacepH,andthehydrophilic-hydrophobicbalanceofthesputteredsample. 2.3. Cu-LoadedSputteredSurfacesActiveintheDarkandunderLight,LeadingtoMicrobialAbatement Antimicrobialnanoparticulatefilmspreparationisatopicofincreasingattentionsinceitsobjective is to reduce or eliminate the formation of infectious bacteria biofilms leading to hospital acquired infections(HAI)[100]. However,moreeffectivebacterialinactivationfilmsonflatorcomplex2D/3D surfacesareneededduetotheincreasingresistanceofpathogenicbacteriatosyntheticantibiotics administeredforlongperiodsoftime. Additionally,nosocomialinfectionsduetoantibioticresistant bacteriaarebecomingmorefrequent[25]. SurfacessputteredbyDCMS/DCMSPcontainingmetals, oxides,orsemiconductors(eitherheatresistantornot)havebeenreportedrecently,leadingtoeffective, stable,anduniformbactericidefilms[101–103]. Therecentlydevelopedhighlyionizedpulsedplasma magnetronsputtering(HIPIMS)leadstofilmsbyapplyinghighelectricalpulsesof1–10Aandup to100V,whichleadstolayersthatpresentsuperiorresistanceandcompactnessagainstcorrosion andoxidation. TheHIPIMSsputteringon3D-complexobjectsaddressestheproblemsencountered whendepositingthinfilmsonsubstratesbyDCMS/DCMSP[102]sincetheadhesionofthesputtered films(byDCMS/DCMSP)isnotverystrong. Thisisduetotherelativelylowbiasvoltageapplied onthesubstrateduringthesputteringtime[103]. HIPIMSsputteringinducesastronginteraction with2D/3DsubstratesduetothehigherfractionoftheCu+/Cu2+-ions;upto70%comparedwith DCMS/DCMSP[104]. TheCu-ionsgeneratedbyDCMSwerereportedbyCastroetal.[105]andby usingX-rayPhoto-electronSpectroscopy(XPS),evidencewasshownfortheCu+/Cu2+ andCu3+ ions. Subsequently,alargeramountofCu-ionswasreportedonasupportbyOsorioetal. afterapplying DCMSP[106]. Morerecently,astudyusingHIPIMSreportedbyRtimietal.[107]ledtoasignificantly higheramountofCu-ionsontheCu-PESsurfaces, acceleratingbacterialinactivationcomparedto DCMSandDCMSP.TherelativelylowersputteringenergiesemployedduringDCMSandDCMSP sputteringwouldatfirstsightbeareasontoexpectahigheramountofCu-ionsbeingabletoleavethe Cu-PESsurfaceandinteract/sticktotheoutercellwallofE.coli,andthendiffusethroughtheporins andtranslocatetothecytoplasm,inducingbacterialinactivation/death. However,theoppositeeffect wasobserved. HIPIMSsputteringionized70%oftheCu• toCu-ionsintheHIPIMSchamber,leading tohighlychargedCu-ionsurfaces. ThehigheramountofCu-ionslatertranslocatedthroughtheE.coli porins,inducinganacceleratedbacterialinactivation[108]. The strong adherence of the sputtered atoms/ions on complex shape biased objects is due to thehigherion-arrivalenergyonthesurfacecomparedtothemoretraditionalDC/DCPsputtering methods [104]. Cu-ions in ppb-amounts, besides electrostatically interacting with the bacterial envelope, lead to the partial unpacking/damage of the LPS of the outer E. coli bacterial cell wall, later penetrating the bacterial cell-porins with diameters of 1.1–1.3 nm [109]. Cu-ions will Coatings2017,7,20 8of29 also diffuse through skin pores of ~100 nm [6,12,27–31]. To preclude the viral and diverse types of nosocomial infections caused by antibiotic resistant bacteria, Borkow and Gabbay have reported studies on Cu-loaded textiles [110–113]. These studies report in a detailed, systematic, andcomprehensivewaythepreparationandevaluationofthepathogenabatementontheseinnovative surfaces. Furthermore,colloidalCu-coatedtextilesshowingantibacterialpropertieswerereportedby Gedanken’sgroup[114,115],focusingonZnOandCuOcolloidsdepositedontextilesbysonication. Cu-colloidswereimpregnatedonpolyester(PES)toinactivatebacteriaunderlowintensitysunlight. The PES was previously pre-treated by RF-plasma to increase the amount of negative carboxylic sitesabletobondtoCu-ions[116]. Thenon-uniformdispersionoftheCu/CuO onthePESsurface x motivatedustoworkonthepreparationofCu-antibacterialfilmsbysputteringinordertoobtain adhesive,uniform,andreproducibleCu/CuO coatings. Inthisway,weovercametheshortcomings x ofcolloidallyloadedPESandthisworkwillbedescribedintheparagraphbelow. DCMSpreparedsampleswerecarriedoutwithCu-targets(99.9%)fromLeskerAG,Hastings, East Sussex, UK, and the textiles/thin polymer films were sputtered in a magnetron chamber at apressureof0.1–1Pa.ThedistancebetweentheCu-targetandthesubstratewas~10cm,thedeposition currentwas30–250mA,andthevoltagewasvariedbetween100and500V.TheCu-filmthickness wasdeterminedwithaprofilometer(Alphastep500,Tencor,Rocklin,CA,USA).Cu-DCMSsputtered for40sformeda3nmthickfilm(or15atomiclayers)andledtothefastestE.coliinactivation[105]. The most favorable structure-reactivity Cu-cluster agglomerates sputtered on cotton is defined as the Cu-nanoparticulate on cotton, and led to the most favorable bacterial inactivation kinetics. During several studies on Cu, CuO, and Cu/TiO sputtered nanoparticulates, it was shown that 2 the Cu-sputtering time or the amount of Cu sputtered on the substrate did not directly relate to thebacterialinactivationtime[105–107,117–119].FromthisitwasconcludedthattheCu-ionsplay animportantroleinmediatingbacterialdisinfectionandtheseCu-ionsweredeterminedbyX-ray photoelectronspectroscopy(XPS). ThemagneticsputteringchambercontainsArthatuponimpactoftheappliedcurrentionizes toAr+ Ar→Ar++e− orAr*+e− (10) Ar++Cu• →Cu++Ar• (11) e− +Cu• →Cu++2e− (12) InEquation(12),thedirectelectronimpactofhighlyenergetic/highspeedelectronskicksoff an e− of the Cu-target. The intensity of the e− collision with the Cu•-target is proportional to the energy/currentappliedinthesputteringchamber. TheArmayalsoattainonlyexcitedstatesand ionize the Cu•, as shown in Equation (13), because the Ar has a higher energetic content than the ionizationenergynecessarytoionizeCuObyaprocesscalledpenningionization: Ar*+Cu• →Cu++Ar+e− (13) The Cu ions produced in the Ar-plasma are accommodated on the substrate, leading to Cu-films by epitaxial growth through nucleation, followed by growth that leads to atomic clusters/agglomeration/crystals that present metal/oxide character depending on their size and thegrowthsymmetry[21,117,120]. ThecondensationofCuandCu-ionsnecessarytoformCu-films on the substrate involve the preference of Cu-atoms for binding to other Cu-atoms/ions rather thantothesubstrate,leadingtoagglomerates[121,122]. DependingontheCu-sputteringtimeand energy,Cu-clustersareformedthatarenotnecessarilycrystallographic,whichdependontheaffinity betweentheCu-atomsandthesubstrate. DuringtheCu-atom/ionscondensation/coalescenceduring the formation of the film, sometimes the Cu-nuclei merge on the substrate without forming grain boundaries[123,124]. Coatings2017,7,20 9of29 Once the Cu clusters/atoms are on the surface of a substrate, they interact with O which 2 leadstoCuOorCu O[105–107,117,119–122,125–131]. TheoxidativestateofthenanoparticulateCu 2 determinesthebacterialmechanism/kinetics. ThesemiconductorcharacterofCuOallowsforthe generationofphoto-inducedcharges. Theamountofthesespeciesisafunctionoftheappliedlight dose. TheCuOandCu Omechanisticstepsinducingchargeseparationunderband-gapirradiation, 2 leadingsubsequentlytobacterialinactivation,couldbesuggestedas: CuO+hν(sunlight)→CuO(cbe−),CuO(vbh+) (14) whereCuO(cbe−)referstotheconductionbandelectronsgeneratedandtheCuO-semiconductorunder band-gapirradiation,andCuO(vbh+)aretheholesgeneratedconcomitantlyintheCuO-valenceband. UnderphotonenergiesexceedingtheCuOband-gap,thecbe− electroncouldeitherreactdirectlywith theO ,formingO −,orreducetheCu2+toCu+assuggestedbelow: 2 2 CuO(cbe−)+O →CuO+O − (15) 2 2 CuO(cbe−)→CuO(Cu+) (16) CuO(Cu+)+O →CuO(Cu2+)+O − (17) 2 2 The cbe− in Equation (17) is produced by a CuO (p-type) with a band-gap energy of 1.7 eV, aflat-bandpotentialof−0.3VSCE(pH7),andavalencebandat+1.4VSCE[56]. CuO(Cu+)→CuOvacancy+Cu+ (18) CuO(vbh+)+bacteria→CO ,H O,inorganicN,S (19) 2 2 The photocatalytic reactions for the Cu O mediated bacterial inactivation are suggested in 2 Equations (20)–(23). The highly mobile electrons first transfer from Cu O(cbe−) to the TiO cb as 2 2 suggestedinEquation(21). Cu O+hν→Cu O(cbe−),Cu O(vbh+) (20) 2 2 2 Cu O(cbe−)+TiO →TiO − or(Ti3+) (21) 2 2 2 TiO − +O →TiO +O − (22) 2 2 2 2 Cu O(vbh+)+bacteria→CO ,H O,inorganicN,S (23) 2 2 2 Taking 0.3 nm as the distance between the Cu-atoms on the film surface and the thickness of anatomiclayer~0.2nm,aCu-coating20nmthick(about100layers)wasdepositedbyDCMSfor20s withacontentof1×1017Cuatoms/cm2atarateof5×1015atoms/cm2·s. DCMSPofCuwithenergypulsesbetween5and15eVledtofasterbacterialinactivationkinetics comparedtoDCMS[106]. Morerecently,higherenergiesperpulsecomparedtoDCMSPinvolving HIPIMSsputteringwasreportedbyPetrovetal.[104]. HIPIMSsputteringonCu-PESledtoE.coli bacterialinactivationwithin90minwhenCuwassputteredbyHIPIMSpulsesthatwere60slongat 60A[117]. Effectivebacterialinactivationwasalsoobservedinthedark. Theenergyanddurationof theHIPIMSpulsewasalsolimitedbytheheatresistanceoftheCu-target. TheamountofCu-sputtered by HIPIMS inactivated E. coli with a Cu-loading three times lower that that compared to DCMS, leadingtoE.colibacterialinactivationwithinsimilartimes. ThisdemonstratessubstantialCu-metal savingswhenusingCutoprepareCu-HIPIMSantibacterialfilms. AhigheramountofCu-ionswas detectedbyX-rayphotoelectronspectroscopy(XPS)onthetextilesurfaceforHIPIMSsputteredfilms comparedtofilmssputteredbyDCMSandDCMSP[64,105,106,117]. Coatings2017,7,20 10of29 2.4. BehaviorofCu-SputteredSurfacesintheDarkandunderHospitalSettings(IndoorActinicLight), LeadingtoMRSA-IsolateInactivation Coatings 2017, 7, 20 10 of 28 StudiesshowingthereductionofthebacterialloadonvariousCu-surfacesareofgrowinginterest regarfdilimngs.i Cndu‐oPoErSe snavmirpolnesm sepnuttst.erFeidg uforre 126s0h so wwesrea osibmseprvliefide dtos icnhdeumcee af o6rlobga1c0 tCeFriUa lloinsas cotfi vvaiatiboilnitym feodr iated MRSA and A. baumanni within 30 min. The loss of bacterial viability on the Cu‐PES surface for other byCu/CuOunderlightirradiation. Cu-particlesarecoveredbyCuOwhenexposedtoairandpresent MDR bacteria proceeded with similar times in dark/light conditions, suggesting that Cu/Cu‐ions and semiconductorbehavior,leadingtotheseparationofchargesthatinducesbacterialinactivationunder not CuOx led to the observed bacterial loss of viability. The use of gloves, gowns, and masks, as well light. This mechanism has been accepted during the last three decades addressing the bacterial as patient isolation, have limited the spread of infections, but on their own are not able to avoid the inactivationbyCuOasshowninFigure2. transmission of HCAIs [134,135]. FigureF2ig.uCreo n2.v Ceonntvioennatilonbaalc btearcitaerliianl aincatcivtiavtaitoionnm mooddeell oonn PPEE‐C-CuuOOx fxilmfilsm usnduenrd soelrasr olilgahrt liirgrhadtiiartrioand.i ation. Copper is required by eukaryotic and prokaryotic cells at low concentrations as cofactors in Tmheetail‐nparcottievinast iaonnd oefnzVyamnecso, mbuytc aint hriegshi sctoannctenetnratetirooncso, cCcui‐((VII)R hEa)s aan todxiMc eRffSeAct. iCsoul aintetesrviseniems pboy rtant due stuhbesirtitusttirnogn gessiennfteiaclt iioounss aenffde cbtlsocakinndg tthhee fufanccttiotnhaal tgrtohuepys coaf nprsouterivnsiv, einafcotrivamtiongn tehnszyimnehs,e alth facilitwiehsic[6h– p1r4o,2d3u–c2e6s ]h.Tighhelyi noaxcitdiavtaivtieo nfreoef mraudlitciadlsr usgu-crhe saiss taHnOt•(,M HDOR2•), paantdh oOg2e−•n swshuicchh adsamGraagmes- pthoes itive, membrane integrity [30–40]. A number of studies have demonstrated the efficient killing of Gram-negative,orfungionCu-polyester(Cu-PES)hasbeenreported[132,133]. TheDCMSofCuwas bacteria/fungi on Cu‐surfaces and Cu‐alloys, both in vitro and in a clinical setting; Espirito Santo et al. carriedoutonpolyester(PES)fordifferenttimesandledtouniformadhesiveCunanoparticulate [136,137], Grass et al. [138], and Casey et al. [139]. These studies show that Cu‐surfaces rapidly and films. Cu-PESsamplessputteredfor160swereobservedtoinducea6log CFUlossofviabilityfor efficiently kill bacteria, in some cases accumulating Cu‐ions on the cell wal1l 0membranes. This step MRSAandA.baumanniwithin30min. ThelossofbacterialviabilityontheCu-PESsurfaceforother seems to be followed by Cu‐uptake, leading to loss of integrity of the cell wall and Cu‐translocation. MDRbacteriaproceededwithsimilartimesindark/lightconditions,suggestingthatCu/Cu-ionsand These studies also report that Cu/Cu‐ions are effective against a wide variety of microbes, but the notCmuOodxel oefd intotetrhveenotbiosne rovf ethdeb Cauct/Ceruia‐ilolnoss asnodf tvhiea binialicttyi.vaTthioenu mseecohfagnliosmve sst,ilgl orewmnasi,nas ncodnmtroavsekrss,iaals. well aspaEtixepnetriimsoelnattaiol env,ihdaenvceel fiomr irteeadcttihvee osxpirdeaatidveo sftirnesfes c(tRiOonSs) ,obnu ttheo ncytthopeilrasomw onf aCrue‐sntroetssaebdl eyetoasat vhoasid the transmbeiesns ipornesoefntHedC. ANIesw[ 1b3io4m,13at5e]r.ials consider additives that interfere with biofilm formation, adhesive Cprooppperetrieiss, arnedq uinivreodlveb ay meiuckroasrtyruocttiucrae nddrivpinrogk thaer yaonttiibcaccetelrlsiala atcltoiown [c1o3n]. cTeensttirnagt itohne sanatsibcaoctfearcitaol rs in metala-cptiroont eoifn msaannyd meentzaylsm ones T,ibOu2 tfialmths,i gthhe cmoentcael‐niotrna ttoioxincsit,yC ouf -C(IuI‐)iohnass waatso fxoiucnedff teoc tb.eC muuicnht ehrigvheenre sby compared to Ag‐, Zn‐, Co‐, Al‐, and Hg‐ions. The in vitro growth inhibition revealed the higher substitutingessentialionsandblockingthefunctionalgroupsofproteins,inactivatingenzymes,which activity of Cu‐ions as an antibacterial and bio‐tolerant additive in ppb amounts [140]. Due to the fact produceshighlyoxidativefreeradicalssuchasHO•,HO •,andO −• whichdamagesthemembrane that many bacteria grow easily on polyethylene that is 2widely us2ed to wrap all kinds of objects: integrity [30–40]. A number of studies have demonstrated the efficient killing of bacteria/fungi pharmaceuticals, perishables, and surgical materials by Cu‐polyethylene (Cu‐PE) thin polymeric on Cu-surfaces and Cu-alloys, both invitro and in a clinical setting; Espirito Santo et al. [136,137], films, our laboratory decided to sputter Cu on PE by DCMS and test its bacterial inactivation Grasspeertfoarlm.[a1n3c8e] ,[1a4n1d]. CCua‐sceoyateintgasl o.f[ 12359 n]m. T thhiecskenesstsu wdieerse ssphuotwtertehda att C60u W-su arnfda cdeesporasipteidd l0y.1a6%nd weefifighcite ntly kill bCauct/wereiiag,hitn PEs,o lmeaedincags teos baacctceurimal uinlaacttiinvgatiConu -uinodnesr olonwt ihnetecneslitlyw siamllulmateemd sburnalnigehst. (2T0h%i sthset esoplasre ems to beirfroadllioawtioend rbeaychCinug- uthpet aekqeu,atloera daitn ngootno ploresssenotfinign t1e0g0r imtyWo/cfmth2)e. Tcheelslew fialmllsa wndereC aul-stor aanbslelo tcoa tion. Theseinsdtuucdei ecosmalpsloetree bpaocrtetrtihala itnCacuti/vCatuio-nio inns thaer edearffke wctiitvheina 9g0a imnisnt aanwd iadt ea vfaasrtieert yraotef wmiitchrion b1e5s m,binu tthe under low intensity sunlight. Repetitive photo‐induced bacterial inactivation was observed on the modeofinterventionoftheCu/Cu-ionsandtheinactivationmechanismstillremainscontroversial. ExpeCriumOexn‐PtEal. eTvhied eCnuc erefloearsereda cinti vtheeo pxpidba‐rtaivneges tdruesrisng(R tOheS )caotnalythste rceycytoclpinlags mwaos fdCetue-rsmtrinesesde dbyy east inductively coupled plasma mass‐spectrometry (ICP‐MS). An increase in the applied light intensity has been presented. New biomaterials consider additives that interfere with biofilm formation, accelerated the bacterial inactivation kinetics, providing evidence for the semiconductor behavior of adhesiveproperties,andinvolveamicrostructuredrivingtheantibacterialaction[13]. Testingthe the CuOx film. Using X‐ray photoelectron spectroscopy (XPS), the binding energy (BE) of the Cu‐ antibsapcetecireisa wlaacst oiobnseorvfemd taon syhimft eatftaelrs thoen bTaciOter2iafil limnasc,titvhaetiomn ecytaclle-i, opnrotvoidxiincgit eyvoidfeCncue- fioorn resdwoxa psrfoocuesnsdes tobe muchduhriignhg ebracctoemriapl ianraecdtivtaotiAong. -,Zn-,Co-,Al-,andHg-ions. Theinvitrogrowthinhibitionrevealed
Description: