MINIREVIEWARTICLE published:25January2013 doi:10.3389/fpls.2013.00004 Recent advances in the composition and heterogeneity of the Arabidopsis mitochondrial proteome ChunPongLee1*,NicolasL.Taylor2,3 andA.HarveyMillar2,3 1DepartmentofPlantSciences,UniversityofOxford,Oxford,UK 2ARCCentreofExcellenceinPlantEnergyBiology,TheUniversityofWesternAustralia,Crawley,WA,Australia 3CentreforComparativeAnalysisofBiomolecularNetworks,TheUniversityofWesternAustralia,Crawley,WA,Australia Editedby: MitochondriaareimportantorganellesforprovidingtheATPandcarbonskeletonsrequired JoshuaL.Heazlewood,Lawrence to sustain cell growth. While these organelles also participate in other key metabolic BerkeleyNationalLaboratory,USA functions across species, they have a specialized role in plants of optimizing photosyn- Reviewedby: thesis through participating in photorespiration. It is therefore critical to map the protein SebastienCarpentier,KULeuven, Belgium composition of mitochondria in plants to gain a better understanding of their regulation ChristianLindermayr,Helmholtz and define the uniqueness of their metabolic networks.To date, <30% of the predicted ZentrumMünchen–German number of mitochondrial proteins has been verified experimentally by proteomics and/or ResearchCenterforEnvironmental GFPlocalizationstudies.Inthismini-review,wewillprovideanoverviewoftheadvancesin Health,Germany mitochondrialproteomicsinthemodelplantArabidopsisthalianaoverthepast5years.The *Correspondence: ChunPongLee,DepartmentofPlant ultimate goal of mapping the mitochondrial proteome inArabidopsis is to discover novel Sciences,UniversityofOxford,South mitochondrialcomponentsthatarecriticalduringdevelopmentinplantsaswellasgenes ParksRoad,OxfordOX13RB,UK. involvedindevelopmentalabnormalities,suchasthoseimplicatedinmitochondrial-linked e-mail:[email protected] cytoplasmicmalesterility. Keywords:Arabidopsis thaliana, mitochondria, proteomics, heterogeneity, protein complex, post-translational modifications,functionalproteomics INTRODUCTION functional roles (Heazlewood et al., 2007; Cui et al., 2011). In Mitochondria are semi-autonomous, double membrane bound comparison,themitochondrialgenomeencodesforonly57gene organelleswithuniquemorphologiesandhighlyspecializedfunc- products (Unseld et al., 1997). The first extensive experimental tions.Whiletheseorganellesarewell-recognizedforenergymetab- studies of the mitochondrial proteome in Arabidopsis identified olismviacouplingtheoxidationof organicacidswithoxidative ∼100–150proteins(Kruftetal.,2001;Millaretal.,2001;Werhahn phosphorylation (OXPHOS), they also have diverse functional and Braun, 2002; Millar and Heazlewood, 2003). Improvement rolessuchasmetabolismofaminoacidsandbiosynthesisofcofac- of organellepurificationprocedure,availabilityof differentpro- torsandvitamins.Mitochondriainplantsaresetapartfromtheir teinmappingstrategies,enhancedsensitivityofpeptidedetection mammalian counterparts by their mediation of photosynthesis bymassspectrometry(MS),andimprovedgenomicresourcesand through providing alternative electron sinks for photosynthetic peptideidentificationsoftwarehavedrivenasignificantincreasein products and their participating in photorespiration (Padmas- thenumberofmitochondrialproteinsidentifiedacrossdifferent ree et al., 2002). In order to fully understand the functional model species – from 843 in Arabidopsis (Table S1A in Supple- roles of mitochondria in photosynthetic cells, it is essential to mentaryMaterial)and851inyeast(Reindersetal.,2006),to1404 establishtheirtotalproteinmake-up(proteome)andtheirpost- inmouse(Forneretal.,2009). translationalmodifications(PTMs),aswellastogenerateapro- Given the number of proteins identified so far in Arabidop- tein atlas that collects information about mitochondrial protein sis mitochondrion, it is clear that our understanding of its expressionpatternsduringstressandindifferentcells,tissues,and compositionandfunctionsinplantsisfarfromcomplete.Inthis organs. mini-review,wewillprovideanupdateonthestatusofArabidop- Arabidopsisthaliana becamethefirstmodelsystemforplants sismitochondrialproteomicsresearchbasedonpublisheddatain afteritsgenomewasfullysequencedandmadepubliclyavailable thepast5years(2007–2012).Wewouldreferreaderstoprevious in 2000 (The Arabidopsis Genome Initiative, 2000). In the last reviewarticlesformorecomprehensiveoverviewsontheprogress decade,tremendousprogresshasbeenmade,bybothexperimental ofplantmitochondrialproteomicsintheprecedingyears(Millar andbioinformaticsapproaches,todefinethemitochondrialpro- etal.,2005,2011;Itoetal.,2007;Dudkinaetal.,2010). teomeinthismodelplantspecies.Likeitsyeastandmammalian counterparts, most of the mitochondrial proteins in Arabidop- HOWFARAREWEFROMCOMPILINGTHECOMPLETESETOF sis areencodedbythenucleargenome.Basedontheanalysesof ARABIDOPSIS MITOCHONDRIALPROTEINS? theN-terminaltargetingpeptidesequencesinArabidopsis,there A recent in-depth analysis of the proteome in Percoll-purified are about 2500 predicted nuclear-encoded mitochondrial pro- mitochondriahasidentifiedanon-redundantsetof572proteins teins (representing 7–10% of all encoded proteins) with broad inArabidopsis cellculture(Tayloretal.,2011).Withacombined www.frontiersin.org January2013|Volume4|Article4|1 Leeetal. TheArabidopsismitochondrialproteome proteomics,localization experiment and literature confirmation FUNCTIONSOFTHEMITOCHONDRIALPROTEOMEIN approach,asetof38mitochondrialproteinshavebeenfoundin ARABIDOPSIS or associatedwith themitochondrial outermembrane (Duncan MITOCHONDRIALPROTEINFUNCTIONSANDABUNDANCE etal.,2011).Morerecently,atotalof66novelintegralmembrane Oftheconfirmedsetofmitochondrialproteins(TableS1BinSup- proteinshavebeenidentifiedinmitochondriausingaMS-based plementaryMaterial),∼22%arecomponentsofpyruvatemetabo- quantitativeenrichmentapproach(Tanetal.,2012).Anewsetof lism/TCAcycleandOXPHOS,whileasimilarnumber(∼20%)are componentswithunknownfunctionshavealsobeenidentifiedin identifiedassubunitsofmachineryformitochondrialgeneexpres- anumberofrecentstudies,includingtheanalysisofthemitochon- sion and maintenance (Figure 1A). In the yeast mitochondrial drial fraction from:(i) separated protein complexes (Klodmann proteome,asimilarproportion(∼15%)ofidentifiedproteinsare etal.,2010,2011;KlodmannandBraun,2011;Schertletal.,2012); involvedinenergymetabolism(Schmidtetal.,2010).Whencom- (ii) enriched phospho-proteome (Ito et al.,2009); (iii) different paring the abundance of proteins in these functional categories tissuetypes(Leeetal.,2012);(iv)varioustimepointsof adiur- usingtherecentlypublishedLC-MS/MSdata(Tayloretal.,2011), nalcycle(Leeetal.,2010);and(v)cellssubjectedtobioticstress energymetabolismcomprisesover50%ofthetotalproteinabun- (Livajaetal.,2008). danceinmitochondria,whereas<2%isassociatedwithprocessing While various large-scale proteomics studies over the last mitochondrialDNA/RNA(Figure1B).Theobservedabundance 5years have led to the identification of a non-redundant set of ofproteinsinenergymetabolismisconsistentwiththemainrole 843putativemitochondrialproteins(TableS1AinSupplementary ofmitochondriainthecellandbulkofthechemicalreactionsper- Material),itremainsdifficulttodiscriminatetruemitochondrial formedintheorganelle;incontrast,thelowabundanceofproteins proteins from contaminants,particularly for low abundant pro- formitochondrialDNA/RNAprocessingcanprobablybeattrib- teins,inasample.Ithasbeenestimatedthatabout11%ofthetotal utedtotheirrelativelylessstablenaturesothattheycanrespond spotintensityona2-DmapofmitochondriafromArabidopsiscell rapidlytoexternalstimuliortochangesinenergycost(Schwan- cultureareproteinsoriginatedfromothercompartments(Taylor hausseretal.,2011),thetransientneedfortheirfunctionsduring etal.,2011).Byqueryingpreviousevidencefromliteratureand/or thelifeof cellsandpresumablythehighspecificactivityof their consensussubcellularlocalizationpredictionscorefrompublicly functions. At the whole cellular level,components in this func- availabledatabases[SUBA3(Heazlewoodetal.,2007);ARAMEM- tionalcategoryhaverecentlybeenshowntohaveahighturnover NON7.0(Schwackeetal.,2003)],wedefineasetof504proteins rateinArabidopsis(Lietal.,2012).Mitochondrialproteinsinvolv- whichcanbeassignedtobemitochondrial-localizedinArabidop- ingnucleicacidprocessingappeartoperformhighlyspecialized sis withhighconfidence(TableS1BinSupplementaryMaterial). functionsanddonotseemtohaveoverlappingspecificity.Only This approach is biased toward proteins that are highly abun- ∼12% of the proteins in the yeast mitochondrial proteome are dantanddoesnotexplicitlyimplythattheremainingproteinsare dedicatedtogenomemaintenanceandprocessing(Schmidtetal., in fact contaminants from other compartments. Some of these 2010).TheproportionishigherinArabidopsisduetothepresence proteins lack a predictable targeting presequence, may be dual- ofmultipleplant-specificpentatricopeptiderepeat(PPR)proteins targetedtomultiplecompartmentsand/orarepresentinrelatively and/oritslargergenomesizewhichmayrequiremoreproteinsto low amount,thus their localization should be confirmed in the maintainandprocess.EachPPRproteinrecognizesandactsona futurethroughmultipleindependentproteomicanalysesand/or singlesiteinaspecifictranscriptsequence(Delannoyetal.,2007). byfluorescentproteinlocalization. Severaloftheunknownproteinsidentifiedbyourearlierstudy According to the SUBA database, a number of GFP tagging (Heazlewood et al., 2004) have since been re-assigned as plant- studieshaverevealedthemitochondriallocalizationof 222pro- specific components of OXPHOS (Klodmann et al.,2011). The teins that cannot be identified through proteomic approaches most nebulous subset of the known proteome is the more than (Table S1C in Supplementary Material), most of which are low 18% of the identified proteins that remain without any func- abundanceproteinsinvolvedintheprocessingandmaintenance tionalclass.However,whilethissubsetaregreatinnumberthey of the mitochondrial genome. Together with the proteomics contribute to <2% of mitochondrial protein abundance. Inter- set, 726 proteins can be confidently assigned as mitochondr- estingly, these include a number of plant-specific proteins. It is ial, <30% of the presumed number of predicted proteins. To thereforeclearthat manymorestudiesare requiredtoelucidate further expand the current Arabidopsis mitochondrial protein thefunctionsofthissubsetofproteinswhichcanpotentiallylead compendium, it is essential to overcome the challenge of iden- tothediscoveryof novelplant-specificmitochondrialmetabolic tifying low abundance proteins. To achieve this a number of pathways/functions. approaches could be employed including protein enrichment tools,suchasproteominer(Fröhlichetal.,2012)orproteinfrac- PROTEINCOMPLEXESANDINTERACTOME tionation approaches including strong cation exchange (SCX) Multipleproteins/isoformsoftenassembledintolargecomplexes or off-gel electrophoresis (OGE) prior to RP-LC-MS (Chenau which serve vital metabolic and regulatory roles. While earlier et al., 2008; Ito et al., 2011). Together with biological fraction- reports have extensively analyzed the structure and function of ation approaches such as investigation of pre-fractionated sub- individual enzyme complexes of interest, such as glycine decar- mitochondrialcompartmentsorenrichmentbymetalorco-factor boxylase complex (Douce et al., 2001), it is uncertain whether bindingapproachesandadvancesinLC-MStechniquesandequip- othermitochondrialproteinscouldalsoorganizeintomacromol- ment, it is likely that an increasing number of low abundance ecular structures. Using 2-D blue-native/SDS-PAGE, Klodmann proteinswillberevealed. etal.(2011)found35differentproteincomplexesinmitochondria FrontiersinPlantScience|PlantProteomics January2013|Volume4|Article4|2 Leeetal. TheArabidopsismitochondrialproteome FIGURE1|Overviewofthenumberandabundanceofmitochondrial beenfound(Schmidtetal.,2010).Inaddition,moreproteinsareinvolvedin proteinsacrossfunctionalcategories.(A)Piechartshowingoffunctional mitochondrialgenomemaintenance(white)inplants(∼20%)thaninyeast categoriesoftheconfirmedsetof726mitochondrialproteins(seeTable (∼12%),duetothepresenceofnumerousplant-specificpentatricopeptide S1B,CinSupplementaryMaterial).Acomparisonwiththemorecomplete repeat(PPR)proteinsandalargergenomesize.(B)Distributionofthe yeastmitochondrialproteomeshowsthatsimilarproportionofproteins abundanceofproteinsthatcanbeidentifiedbygel-freeMS(Tayloretal.,2011) involvingenergymetabolismaswellasproteinswithunknownfunctionshas acrosssevenfunctionalcategories. fromArabidopsiscellculture.OXPHOScomplexesareamongstthe and lysine acetylation (Finkemeier et al., 2011). However, there largestandthemostabundantproteincomplexesinmitochondria. appears to be no evidence for specific preference of PTMs to Mitochondrialcomplexassembliesarealsodominatedbycompo- particular functional categories of identified proteins (Table 1), nents in the TCA cycle, amino acid metabolism, PPR proteins, suggestingthatPTMshaveawidevarietyoffunctionaltargetsin andpre-proteinimportapparatus.Whilethepreliminarycompo- themitochondrion. sitionsoftheseproteinscomplexeshavebeenproposedbasedon ThetotalnumberofidentifiedproteinswithPTMsisverylikely thenumberofsubunitsidentifiedandtheirmigrationonthefirst agrossunderestimationduetoanumberoftechnicalchallenges, andseconddimension,theymustbeverifiedthroughindependent suchasthelossofPTMsduringmitochondrialpurificationpro- biochemicalanalysis. ceduresandtherelativelylowabundanceofthemodifiedpeptides Anumberofmitochondrialproteinsofdiversefunctionhave compared to their unmodified counterparts.Also,it is not clear beenidentifiedtointeractwithmetalions(Tanetal.,2010)and/or howmanyproteins,includingthoselistedinTable1,arefunction- havebindingaffinitywithATP(Itoetal.,2006)inArabidopsis.In allymodifiedthroughenzyme-catalyzedmitochondrialprocesses contrast,studiesonthemoretransientdirectinteractions(func- in vivo. For example, degradation products observed on a 2-D tionalandphysical)betweenmultiplemitochondrialproteinsin geloftenperceiveasartificialpost-purificationevents.Thesecon- plants are lacking. Such detailed studies in the future will lead cernscanbeatleastpartiallyovercomebyenrichmentofmodified to the construction of plant mitochondrial interactome, to sit peptides/proteinsand/orrepeatanalysisof multiplereplicatesto alongsidesidethecomplexome,andhelptodefineuniquemeta- ensurethatsimilarchangescanbeobservedinallsamples.Alterna- bolicregulationsinplantsthatdifferentiatethemfromyeastand tively,theincorporationofradioactivetracersintoproteinsinvivo mammals. (cells)orinvitro(isolatedmitochondria)canbeusedtoidentify proteinswithreversiblePTMs.Forinstance,18phosphoproteins POST-TRANSLATIONALMODIFICATIONS haverecentlybeenidentifiedby[γ32P]-ATPlabelingandaffinity ThecomplexityofArabidopsismitochondrialproteomeisfurther enrichmentofisolatedmitochondria(Itoetal.,2009). implicatedbythedynamicregulationofPTMswhichcancontrol activity,stability,and structural characteristics of proteins. Pro- CHANGESINTHEMITOCHONDRIALPROTEOMEIN teinswithPTMsoftenappearasmultiplespotswithdifferentpI DIFFERENTTISSUESANDINRESPONSETOOXIDATIVE and/ormolecularmassona2-Dgel,andtheregionofapeptide STRESS withmodifiedresiduescanbedetectedasanalteredm/zionspecies The mitochondrial proteome is not static, but has many com- byMS.Recentlarge-scaleproteomicstudieshavereportedanum- ponents that are dynamically regulated in order to meet energy ber of PTMs in Arabidopsis mitochondrial proteome (Table 1), andmetabolicneedsrequiredbythecellinresponsetodevelop- includingoxidation(Tanetal.,2010;Solheimetal.,2012),phos- mentaland/orenvironmentalchanges.Therearemanydifferent phorylation (Ito et al.,2009;Taylor et al.,2011),S-nitrosylation cell/tissue/organ types which have functions that are unique to (Palmierietal.,2010),N-terminalacetylation(Huangetal.,2009), plants.Thus,mitochondrialcomposition,metabolism,andstress www.frontiersin.org January2013|Volume4|Article4|3 Leeetal. TheArabidopsismitochondrialproteome Table1|ThesetofmitochondrialproteinsinArabidopsiswithknownpost-translationalmodifications. AGIaccession ProteinID PTM Reference OXIDATIVEPHOSPHORYLATION AT1G15120 ComplexIIIQCR6-1,Hingeprotein N-acetylation Huangetal.(2009) AT1G22840 Cytochrome Lysacetylation Finkemeieretal.(2011) N-acetylation Huangetal.(2009) AT1G47420 SDH5succinatedehydrogenasesubunit5 Phosphorylation Itoetal.(2009) AT1G51980 MPPalpha-1mitochondrialprocessingpeptidasealphasubunit Oxidation Solheimetal.(2012) AT3G12260 NADHdehydrogenaseB14subunit N-acetylation Huangetal.(2009) AT3G62810 Complex1familyprotein/LVRfamilyprotein N-acetylation Huangetal.(2009) AT4G21105 COXX4 Oxidation Solheimetal.(2012) AT5G08670 ATPsynthasebetasubunit Oxidation Solheimetal.(2012) AT5G52840 NADHdehydrogenaseB13subunit Phosphorylation Tayloretal.(2011) AT5G66760 SDH1-1succinatedehydrogenaseflavoproteinsubunit Phosphorylation Itoetal.(2009) ATMG01190 ATPsynthasealpha-1subunit S-Nitrosylation Palmierietal.(2010) Oxidation Solheimetal.(2012) PYRUVATEMETABOLISMANDTCACYCLE AT1G24180 E1alpha-2(pyruvatedehydrogenase) Phosphorylation Itoetal.(2009) AT1G48030 mtLPD-1(mtlipoamidedehydrogenase-1) S-Nitrosylation Palmierietal.(2010) Oxidation Solheimetal.(2012) AT1G53240 Malatedehydrogenase-1 Oxidation Solheimetal.(2012) At1G59900 E1alpha-1(pyruvatedehydrogenase) Phosphorylation Itoetal.(2009) AT2G05710 Aconitatehydratase-2 Phosphorylation Tayloretal.,2011;reftherein Oxidation Tanetal.(2010) AT2G20420 Succinyl-CoAligase(GDP-forming)beta-chain Oxidation Solheimetal.(2012) AT3G13930 E3-1(dihydrolipoamidedehydrogenase) Phosphorylation Tayloretal.,2011;reftherein AT3G15020 Malatedehydrogenase-2 Oxidation Solheimetal.(2012) AT3G17240 mtLPD-2(mtlipoamidedehydrogenase-2) S-Nitrosylation Palmierietal.(2010) AT4G26970 Aconitatehydratase-1 Oxidation Tanetal.(2010) AT5G03290 Isocitratedehydrogenase-5 Oxidation Solheimetal.(2012) TRANSPORT AT2G29530 Translocaseinnermembranesubunit10,TIM10 N-acetylation Huangetal.(2009) AT3G08580 AAC1(ADP/ATPcarrier1) Oxidation Solheimetal.(2012) AT3G46560 Translocaseinnermembranesubunit9,TIM9 N-acetylation Huangetal.(2009) AT5G13490 AAC2(ADP/ATPcarrier2) Oxidation Solheimetal.(2012) AT5G14040 mtphosphatetransporter Oxidation Solheimetal.(2012) AT5G50810 Translocaseinnermembranesubunit8,TIM8 N-acetylation Huangetal.(2009) NUCLEICACIDPROCESSINGANDPROTEINFOLDINGANDSTABILITY AT1G74230 GR-RBP5(glycine-richRNA-bindingprotein5) Phosphorylation Itoetal.(2009) AT3G13160 PPR8-2 Oxidation Solheimetal.(2012) AT3G23990 HSP60-3B Oxidation Solheimetal.(2012) AT4G02930 ElongationfactorTu Oxidation Solheimetal.(2012) AT4G26780 Co-chaperonegrpE Phosphorylation Itoetal.(2009) AT4G37910 HeatshockproteinHSP70-1 Phosphorylation Tayloretal.,2011;reftherein AT5G26860 LON1(LONprotease1) Phosphorylation Itoetal.(2009) AT5G40770 Prohibitin-3 N-acetylation Huangetal.(2009) AT5G61030 GR-RBP3(glycine-richRNA-bindingprotein3) Phosphorylation Itoetal.(2009) PHOTORESPIRATION AT1G11860 GDT1aminomethyltransferase S-Nitrosylation Palmierietal.(2010) Phosphorylation Tayloretal.(2011) AT1G32470 GDHGlycinedecarboxylaseHsubunit S-Nitrosylation Palmierietal.(2010) Oxidation Solheimetal.(2012) AT2G35370 GDHGlycinedecarboxylaseHsubunit S-Nitrosylation Palmierietal.(2010) Oxidation Solheimetal.(2012) (Continued) FrontiersinPlantScience|PlantProteomics January2013|Volume4|Article4|4 Leeetal. TheArabidopsismitochondrialproteome Table1|Continued AGIaccession ProteinID PTM Reference AT4G33010 GlycinedecarboxylaseP-protein1 S-Nitrosylation Palmierietal.(2010) Oxidation Solheimetal.(2012) AT4G37930 SHM1(serinetranshydroxymethyltransferase1) S-Nitrosylation Palmierietal.(2010) Oxidation Solheimetal.(2012) AT5G26780 SHM2(serinehydroxymethyltransferase2) Oxidation Solheimetal.(2012) OTHERMETABOLISM AT3G61440 Cyanoalaninesynthase Phosphorylation Tayloretal.,2011;reftherein AT3G22200 4-Aminobutyrateaminotransferase Oxidation Solheimetal.(2012) AT4G15940 Fumarylacetoacetatehydrolasefamilyprotein N-acetylation Huangetal.(2009) AT5G07440 GDH2(glutamatedehydrogenase-2) Phosphorylation Itoetal.(2009) N-acetylation Huangetal.(2009) Oxidation Solheimetal.(2012) AT5G14780 FDHFormatedehydrogenase Phosphorylation Itoetal.(2009) Oxidation Solheimetal.(2012) AT5G18170 GDH1(glutamatedehydrogenase-1) Phosphorylation Itoetal.(2009) N-acetylation Huangetal.(2009) AT5G50370 Adenylatekinasefamily Phosphorylation Tayloretal.(2011) N-acetylation Huangetal.(2009) AT5G63400 ADK1Adenylatekinase1 N-acetylation Huangetal.(2009) PROTEINSWITHUNKNOWNFUNCTIONS AT2G39795 mtglycoproteinfamilyprotein Phosphorylation Itoetal.(2009) AT3G18240 Unknownprotein Phosphorylation Itoetal.(2009) AT3G55605 Mitochondrialglycoproteinfamilyprotein Phosphorylation Itoetal.(2009) AT4G21460 Unknownprotein Phosphorylation Itoetal.(2009) AT4G27585 Stomatin-likeprotein Phosphorylation Itoetal.(2009) AT4G23885 Unknownprotein N-acetylation Huangetal.(2009) PTM,post-translationalmodification(s). response in these cells/tissues/organs from Arabidopsis will be in flowers. In mouse,it has been reported that just over half of differentfromwhathasbeenobservedinyeastandanimals. all proteins identified by gel-free MS approach can be found in Analysis of the mitochondria proteome from photosynthetic alltheinvestigatedorgans(Pagliarinietal.,2008).However,the shoots,non-photosyntheticcellculture,androotsidentifiedmajor numberof mitochondrialproteinsthatarehighlytissue-specific differences in the abundance of enzymes of the TCA cycle and (i.e.,totallyabsentinatleastonetissue)inArabidopsisremainsto photorespiration (Lee et al.,2008,2011). Quantitative compari- bedefined.Suchanalysiswillassistinidentifyingmitochondrial sonofthemitochondrialproteomeacross10differenttimepoints componentsthatcausesplant-specificdevelopmentalphenotypes, covering24-hof thelifeofArabidopsis shootsalsouncoversday e.g.,cytoplasmmalesterility. (photosynthetic)-andnight(non-photosynthetic)-enhancedpro- Using a gel-free quantitative MS approach, Tan et al. (2012) teins in central carbon metabolism (Lee et al., 2010). In these recentlyidentifyanumberofintegralmembraneproteinsinmito- studies,theabundancesofOXPHOScomplexesinpurifiedmito- chondriathatarealteredinabundanceinresponsetocoldand/or chondriagenerallyremainunalteredbuttheirrespiratorycapacity variouschemicalstresses.Theseproteinsincludethecomponents differs depending on the choice and/or availability of substrates ofthealternativeNADHdehydrogenases,alternativeoxidase,and (Leeetal.,2008,2011).However,onawholetissuebasisdifferences uncoupling proteins, but also several stress-sensitive subunits inmitochondrialelectrontransportchaincomplexratiosbetween within the OXPHOS complexes. Together with a similar study tissueshasbeenreported(Petersetal.,2012).Leeetal.(2012)have by Sweetlove et al. (2002),it is concluded that the reduction in reportedchanges intheisolatedArabidopsis mitochondrialpro- respiration in response to chemical-induced oxidative stress is a teomebeyonddifferencesinthecellularphotosyntheticcapacity. consequence of coordinated changes in the mitochondrial pro- Changesintheabundanceofawidevarietyofmitochondrialpro- teome,particularlyOXPHOScomplexsubunitsandstress-related teins can be observed from cells/tissues from various vegetative components. and reproductive phases of development. Differences in protein accumulationandmetabolicspecializationsofthesemitochondria APPLICATIONOFPROTEOMICSTOANALYZE generallycoincidewiththemainphysiologicalroleofeachcorre- MITOCHONDRIALPROTEINFUNCTIONS spondingtissuetype,suchasglycinecleavageviaphotorespiration Overthelastdecade,advancesintheunderstandingofmitochon- in shoot and maintenance of mitochondrial redox environment drialcompositionandproteincomplexassemblyhaveledtothe www.frontiersin.org January2013|Volume4|Article4|5 Leeetal. TheArabidopsismitochondrialproteome identification of many genes associated with genetic diseases in regulationofthemitochondrialproteomeinacellular/organismal humans(CalvoandMootha,2010).Incontrast,plantproteomics context. However, further work is needed to characterize mito- still needs to discovernovel mitochondrial components that are chondrialproteinsaccordingtotheirsub-organellarlocalization. associated with known developmental defects in plants. Never- In-depth identification of components in the intermembrane theless,bycombiningproteomicsandreverse-geneticsstrategies, spacehasnotbeenreportedsincetheimprovementsinMSanaly- a number of recent studies have highlighted the unique role of sis in recent years. Recent discoveries of a pyruvate transporter a mitochondrial component of interest in Arabidopsis that had (Herzig et al.,2012) and a calcium uniporter (Baughman et al., not been unraveled by other biochemical and molecular tech- 2011) in mouse mitochondria have been conducted through an niques.Metaboliteanalysesofmalatedehydrogenase(MDH)anti- integratedproteomics,bioinformatics,andgeneticsstrategy.Thus, senseandknockoutlinesintomatoandArabidopsis respectively identificationoflowabundanceproteinsshouldallowustocom- show an elevated foliar ascorbate level (Nunes-Nesi et al.,2005; pletethecatalogofmitochondrialproteinsinArabidopsis,which Tomazetal.,2010).Suchaccumulationcoincideswiththereduc- will provide us several candidates for identifying plant-specific tionofComplexI-associatedgalacton-1,4-lactonedehydrogenase transportersormetabolicpathwaysbyasimilarapproach. (GLDH) abundance in the mitochondrial proteome of a MDH double mutant (mmdh1mmdh2; Tomaz et al., 2010), indicating ACKNOWLEDGMENTS that there might be a complex metabolic regulation/interaction ThisworkwasfundedthroughagranttotheARCCentreofExcel- betweenOXPHOS,TCAcycle,andcellularascorbatebiosynthe- lence in Plant Energy Biology (CE0561495; A. Harvey Millar). sis.AmutationinmitochondrialLonproteaseleadstoaretarded A. Harvey Millar is funded as anARCAustralian Future Fellow growthphenotype(Rigasetal.,2009),whichcanbeexplainedby (FT110100242) and Chun Pong Lee is a receipt of an EMBO analteredabundanceofenzymesintheTCAcycleandOXPHOS, Fellowship(ALTF1140-2011). adecreaseintheabundanceof breakdownproductsandasmall increase in the number of proteins with oxidized peptides, but SUPPLEMENTARYMATERIAL notbyheightenedoxidativestress(Solheimetal.,2012).Incon- The Supplementary Material for this article can be found trast, knockout of the protease AtFtsH4 does not significantly online at http://www.frontiersin.org/Plant_Proteomics/10.3389/ affectArabidopsisgrowthunderlongdayconditions,butchanges fpls.2013.00004/abstract rosette development under short-day conditions (Gibala et al., 2009). The phenotypes correlate with elevated levels of oxida- TableS1|Mitochondrialproteinsidentifiedbymassspectrometryor fluorescentproteinlocalizationstudies.(A)Allproteinsidentifiedfrom tive stress, increased abundance of Hsp70 and prohibitins, and isolatedmitochondriafromArabidopsisusingproteomicsinthelast5years.(B) decreasedabundanceofATPsynthasesubunits. Asetofproteinswhichhasahighprobablybeinglocatedinthemitochondrion. Fortheinclusionofaproteininthelist,itshouldmeetthefollowingcriteria:(i)A CONCLUSIONANDPERSPECTIVES proteinisautomaticallyconsideredmitochondrialifatleasttwostudieshave identifieditinisolatedmitochondrialfraction.However,aproteinisconsidered The availability of the full genome sequence of Arabidopsis for tobenon-mitochondrialifitisidentifiedinequalnumberoformore morethanadecade,advancesinvariousproteomictechnologies, non-mitochondrialproteomicsstudiesthanthemitochondrialones.(ii)Ifthe as well as their wider adoption, have provided an opportunity locationofaproteinisverifiedindependentlybyfluorescentproteinlocalization to understand the protein make-up of mitochondria and their analysis,then(ii)isignoredanditisincludedinthelist.(iii)Ifaproteinis identifiedbyonestudy,thelocalizationbasedonSUBAconscoreand/or underlying metabolism in this plant more than in any other. ARAMEMNONlocalizationconsensusscoreisalsoconsidered.(C) SignificantprogressinextractinginformationonPTMsandpro- Mitochondrialproteinconfirmedthroughfluorescentproteinlocalizationstudies teinabundanceshasalsoimprovedourinsightintothedynamic (accordingtoSUBA)onlyandnotbyproteomics. REFERENCES of Arabidopsis mitochondr- mitochondrial supercomplexes. differences between brown and Baughman,J.M.,Perocchi,F.,Girgis,H. ial proteome and its function Biochim. Biophys. Acta 1797, white fat mitochondria reveal spe- S.,Plovanich,M.,Belcher-Timme,C. exploitation through protein 664–670. cialized metabolic functions. Cell A., Sancak, Y., et al. (2011). Inte- interaction network. PLoS ONE Duncan, O., Taylor, N. L., Car- Metab.10,324–335. grativegenomicsidentifiesMCUas 6:e16022.doi:10.1371/journal.pone. rie, C., Eubel, H., Kubiszewski- Fröhlich, A., Gaupels, F., Sarioglu, anessentialcomponentofthemito- 0016022 Jakubiak, S., Zhang, B., et al. H., Holzmeister, C., Spannagl, M., chondrialcalciumuniporter.Nature Delannoy, E., Stanley, W. A., Bond, (2011). Multiple lines of evidence Durner, J., et al. (2012). Look- 476,341–345. C. S., and Small, I. D. (2007). localizesignaling,morphology,and ing deep inside: detection of low- Calvo,S.E.,andMootha,V.K.(2010). Pentatricopeptiderepeat(PPR)pro- lipid biosynthesis machinery to abundanceproteinsinleafextracts The mitochondrial proteome and teinsassequence-specificityfactors themitochondrialoutermembrane of Arabidopsis and phloem exu- humandisease.Annu.Rev.Genomics inpost-transcriptionalprocessesin of Arabidopsis. Plant Physiol. 157, datesofpumpkin.PlantPhysiol.159, Hum.Genet.11,25–44. organelles.Biochem.Soc.Trans.35, 1093–1113. 902–914. Chenau, J., Michelland, S., Sidibe, 1643–1647. Finkemeier, I., Laxa, M., Miguet, L., Gibala, M., Kicia, M., Sakamoto, J., and Seve, M. (2008). Peptides Douce,R.,Bourguignon,J.,Neuburger, Howden, A. J. M., and Sweetlove, W., Gola, E. M., Kubrakiewicz, OFFGEL electrophoresis: a suit- M., and Rébeillé, F. (2001). The L. J. (2011). Proteins of diverse J., Smakowska, E., et al. (2009). able pre-analytical step for com- glycinedecarboxylasesystem:afas- function and subcellular location ThelackofmitochondrialAtFtsH4 plex eukaryotic samples fractiona- cinatingcomplex.TrendsPlantSci. arelysineacetylatedinArabidopsis. protease alters Arabidopsis leaf tion compatible with quantitative 6,167–176. PlantPhysiol.155,1779–1790. morphology at the late stage of iTRAQlabeling.ProteomeSci.6,9. Dudkina,N.V.,Kouril,R.,Peters,K., Forner, F., Kumar, C., Luber, C. rosette development under short- Cui, J., Liu, J., Li, Y., and Shi, T. Braun, H.-P., and Boekema, E. J. A., Fromme, T., Klingenspor, M., day photoperiod. Plant J. 59, (2011). Integrative identification (2010). Structure and function of and Mann, M. (2009). Proteome 685–699. FrontiersinPlantScience|PlantProteomics January2013|Volume4|Article4|6 Leeetal. TheArabidopsismitochondrialproteome Heazlewood, J. L., Tonti-Filippini, J. plant mitochondria. Plant Physiol. Millar, A. H., Sweetlove, L. J., Giege, Schmidt,O.,Pfanner,N.,andMeisinger, S., Gout,A. M., Day, D. A.,Whe- 157,587–598. P.,andLeaver,C.J.(2001).Analy- C. (2010). Mitochondrial protein lan, J., and Millar, A. H. (2004). Klodmann, J., Sunderhaus, S., Nimtz, sis of the Arabidopsis mitochon- import: from proteomics to func- Experimental analysis of the Ara- M., Jänsch, L., and Braun, H.- drial proteome. Plant Physiol. 127, tional mechanisms. Nat. Rev. Mol. bidopsis mitochondrial proteome P. (2010). Internal architecture of 1711–1727. CellBiol.11,655–667. highlightssignalingandregulatory mitochondrialcomplexIfromAra- Millar,A.H.,Whelan,J.,Soole,K.L.,and Schwacke, R., Schneider, A., van der components, provides assessment bidopsis thaliana. Plant Cell 22, Day,D.A.(2011).Organizationand Graaff, E., Fischer, K., Catoni, of targeting prediction programs, 797–810. regulationofmitochondrialrespira- E., Desimone, M., et al. (2003). and indicates plant-specific mito- Kruft, V., Eubel, H., Jaensch, L., tioninplants.Annu.Rev.PlantBiol. ARAMEMNON, a novel database chondrial proteins. Plant Cell 16, Werhahn, W., and Braun, H.-P. 62,79–104. forArabidopsisintegralmembrane 241–256. (2001).Proteomicapproachtoiden- Nunes-Nesi, A., Carrari, F., proteins.PlantPhysiol.131,16–26. Heazlewood, J. L., Verboom, R. tify novel mitochondrial proteins Lytovchenko, A., Smith, A. M., Schwanhausser, B., Busse, D., Li, N., E., Tonti-Filippini, J., Small, in Arabidopsis. Plant Physiol. 127, Loureiro,M.E.,Ratcliffe,R.G.,et Dittmar, G., Schuchhardt, J.,Wolf, I., and Millar, A. H. (2007). 1694–1710. al.(2005).Enhancedphotosynthetic J.,et al. (2011). Global quantifica- SUBA: the Arabidopsis subcellular Lee, C. P., Eubel, H., and Millar, performanceandgrowthasaconse- tionofmammaliangeneexpression database. Nucleic Acid Res. 35, A. H. (2010). Diurnal changes quenceofdecreasingmitochondrial control.Nature473,337–342. D213–D218. in mitochondrial function reveal malate dehydrogenase activity in Solheim,C.,Li,L.,Hatzopoulos,P.,and Herzig, S., Raemy, E., Montessuit, S., daily optimization of light and transgenic tomato plants. Plant Millar,A.H.(2012).LossofLon1in Veuthey, J.-L., Zamboni, N.,West- darkrespiratorymetabolisminAra- Physiol.137,611–622. Arabidopsischangesthemitochon- ermann, B., et al. (2012). Identifi- bidopsis. Mol. Cell. Proteomics 9, Padmasree, K., Padmavathi, L., and drial proteome leading to altered cationandfunctionalexpressionof 2125–2139. Raghavendra, A. S. (2002). Essen- metaboliteprofilesandgrowthretar- themitochondrialpyruvatecarrier. Lee, C. P., Eubel, H., O’Toole, N., tiality of mitochondrial oxida- dationwithoutanaccumulationof Science337,93–96. and Millar, A. H. (2008). Hetero- tivemetabolismforphotosynthesis: oxidativedamage.PlantPhysiol.160, Huang, S., Taylor, N. L., Whelan, J., geneity of the mitochondrial pro- optimizationofcarbonassimilation 1187–1203. and Millar, A. H. (2009). Refin- teomeforphotosyntheticandnon- andprotectionagainstphotoinhibi- Sweetlove,L.J.,Heazlewood,J.L.,Her- ing the definition of plant mito- photosyntheticArabidopsismetab- tion.Crit.Rev.Biochem.Mol.Biol. ald,V.,Holtzapffel,R.,Day,D.A., chondrial presequences through olism. Mol. Cell. Proteomics 7, 37,71–119. Leaver,C.J.,etal.(2002).Theimpact analysis of sorting signals, N- 1297–1316. Pagliarini, D. J., Calvo, S. E., Chang, of oxidative stress on Arabidopsis terminal modifications, and cleav- Lee, C. P., Eubel, H., O’Toole, N., B., Sheth, S. A.,Vafai, S. B., Ong, mitochondria.PlantJ.32,891–904. age motifs. Plant Physiol. 150, and Millar, A. H. (2011). Com- S.E.,etal.(2008).Amitochondr- Tan,Y.-F.,Millar,A.H.,andTaylor,N.L. 1272–1285. bining proteomics of root and ialproteincompendiumelucidates (2012).Componentsof mitochon- Ito, J., Batth, T. S., Petzold, C. shoot mitochondria andtranscript complexIdiseasebiology.Cell134, drialoxidativephosphorylationvary J., Redding-Johanson, A. M., analysis to define constitutive 112–123. inabundancefollowingexposureto Mukhopadhyay,A.,Verboom,R.,et and variable components in plant Palmieri,M.C.,Lindermayr,C.,Bauwe, cold and chemical stresses. J. Pro- al.(2011).AnalysisoftheArabidop- mitochondria. Phytochemistry 72, H.,Steinhauser,C.,and Durner,J. teomeRes.11,3860–3879. sis cytosolic proteome highlights 1092–1108. (2010).Regulationofplantglycine Tan,Y.-F.,O’Toole,N.,Taylor,N.L.,and subcellular partitioning of central Lee,C.P.,Eubel,H.,Solheim,C.,and decarboxylase by S-nitrosylation Millar,A.H.(2010).Divalentmetal plant metabolism. J. Proteome Res. Millar,A.H.(2012).Mitochondrial andglutathionylation.PlantPhysiol. ionsinplantmitochondriaandtheir 10,1571–1582. proteomeheterogeneitybetweentis- 152,1514–1528. role in interactions with proteins Ito,J.,Heazlewood,J.L.,andMillar,A. suesfromthevegetativeandrepro- Peters,K.,Nießen,M.,Peterhänsel,C., and oxidative stress-induced dam- H. (2006). Analysis of the soluble ductivestagesofArabidopsisthaliana Späth,B.,Hölzle,A.,Binder,S.,etal. age to respiratory function. Plant atp-bindingproteomeofplantmito- development. J. Proteome Res. 11, (2012).ComplexI-complexIIratio Physiol.152,747–761. chondriaidentifiesnewproteinsand 3326–3343. stronglydiffersinvariousorgansof Taylor, N. L., Heazlewood, J. L., and nucleotidetriphosphateinteractions Li,L.,Nelson,C.J.,Solheim,C.,Whe- Arabidopsisthaliana.PlantMol.Biol. Millar, A. H. (2011). The Ara- withinthematrix.J.ProteomeRes.5, lan, J., and Millar, A. H. (2012). 79,273–284. bidopsis thaliana 2-D gel mito- 3459–3469. Determiningdegradationandsyn- Reinders, J., Zahedi, R. P., Pfan- chondrial proteome: Refining the Ito, J., Heazlewood, J. L., and Mil- thesisratesofArabidopsisproteins ner, N., Meisinger, C., and Sick- valueof referencemapsforassess- lar,A. H. (2007). The plant mito- using the kinetics of progressive mann, A. (2006). Toward the ing protein abundance, contami- chondrial proteome and the chal- 15N labeling of two-dimensional complete yeast mitochondrial pro- nantsandpost-translationalmodi- lenge of defining the posttransla- gel-separatedproteinspots.Mol.Cell teome: multidimensional separa- fications.Proteomics11,1720–1733. tionalmodificationsresponsiblefor Proteomics11,M111.010025. tion techniques for mitochondr- The Arabidopsis Genome Initiative. signallingandstresseffectsonrespi- Livaja, M., Palmieri, M. C., von Rad, ial proteomics. J. Proteome Res. 5, (2000). Analysis of the genome ratoryfunctions.Physiol.Plant.129, U., and Durner, J. (2008). The 1543–1554. sequence of the flowering plant 207–224. effectof thebacterialeffectorpro- Rigas,S.,Daras,G.,Laxa,M.,Marathias, Arabidopsis thaliana. Nature 408, Ito,J.,Taylor,N.L.,Castleden,I.,Weck- teinharpinontranscriptionalprofile N., Fasseas, C., Sweetlove, L. J., et 796–815. werth,W.,Millar,A. H.,and Hea- andmitochondrialproteinsofAra- al.(2009).RoleofLon1proteasein Tomaz,T.,Bagard,M.,Pracharoenwat- zlewood, J. L. (2009). A survey of bidopsis thaliana. J. Proteomics 71, post-germinativegrowthandmain- tana,I.,Lindén,P.,Lee,C.P.,Car- theArabidopsisthaliana mitochon- 148–159. tenance of mitochondrial function roll,A.J.,etal.(2010).Mitochondr- drialphosphoproteome.Proteomics Millar, A. H., and Heazlewood, J. L. inArabidopsisthaliana.NewPhytol. ialmalatedehydrogenaselowersleaf 9,4229–4240. (2003). Genomic and proteomic 181,588–600. respirationandaltersphotorespira- Klodmann,J.,andBraun,H.-P.(2011). analysis of mitochondrial carrier Schertl,P.,Sunderhaus,S.,Klodmann,J., tionandplantgrowthinArabidop- Proteomic approach to charac- proteinsinArabidopsis.PlantPhys- Grozeff,G.E.G.,Bartoli,C.G.,and sis.PlantPhysiol.154,1143–1157. terize mitochondrial complex I iol.131,443–453. Braun, H.-P. (2012). l-Galactono- Unseld, M., Marienfeld, J. R., Brandt, from plants. Phytochemistry 72, Millar,A.H.,Heazlewood,J.L.,Kris- 1,4-lactonedehydrogenase(GLDH) P., and Brennicke, A. (1997). The 1071–1080. tensen, B. K., Braun, H.-P., and forms part of three subcomplexes mitochondrialgenomeofArabidop- Klodmann, J., Senkler, M., Rode, C., Moller,I.M.(2005).Theplantmito- ofmitochondrialcomplexIinAra- sis thaliana contains 57 genes in and Braun, H.-P. (2011). Defining chondrial proteome. Trends Plant bidopsisthaliana.J.Biol.Chem.287, 366,924nucleotides.Nat.Genet.15, the protein complex proteome of Sci.10,36–43. 14412–14419. 57–61. www.frontiersin.org January2013|Volume4|Article4|7 Leeetal. TheArabidopsismitochondrialproteome Werhahn,W.,andBraun,H.-P.(2002). conducted in the absence of any Citation: Lee CP, Taylor NL and Copyright©2013Lee,TaylorandMillar. Biochemicaldissectionofthemito- commercial or financial relationships Millar AH (2013) Recent advances Thisisanopen-accessarticledistributed chondrialproteomefromArabidop- thatcouldbeconstruedasapotential in the composition and heterogene- underthetermsoftheCreativeCommons sisthalianabythree-dimensionalgel conflictofinterest. ity of the Arabidopsis mitochondrial Attribution License,which permits use, electrophoresis. Electrophoresis 23, proteome. Front. Plant Sci. 4:4. doi: distribution and reproduction in other 640–646. 10.3389/fpls.2013.00004 forums,providedtheoriginalauthorsand Received: 18 November 2012; accepted: ThisarticlewassubmittedtoFrontiersin source are credited and subject to any Conflict of Interest Statement: The 03 January 2013; published online: 25 PlantProteomics,aspecialtyofFrontiers copyright notices concerning any third- authors declare that the research was January2013. inPlantScience. partygraphicsetc. FrontiersinPlantScience|PlantProteomics January2013|Volume4|Article4|8