ebook img

Recent advances in stereoselective bromofunctionalization of alkenes using N-bromoamide reagents PDF

12 Pages·2013·3.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recent advances in stereoselective bromofunctionalization of alkenes using N-bromoamide reagents

ChemComm FEATURE ARTICLE View Article Online View Journal | View Issue Recent advances in stereoselective e. c en bromofunctionalization of alkenes using c AM. ed Li C4i9t,e7t9h8is5:Chem.Commun.,2013, N-bromoamide reagents 2:17 nport 4U 2:0 Chong Kiat Tan and Ying-Yeung Yeung* 3/2023 1bution 3. Bromination reactions have been made a lot more convenient since the invention of N-bromoamide ded on 2/2mons Attri rtgeoivaigonetghnettsrh.eThmhaelosagenerneasad,gvbearnnottmsaaginreeatiminnogsroermeeaaegseiclnyatshseassn.itdRlieendcebwnethtlywe,nesecenovmecrhpallaoriremindpetooartnmadnotlieoacdudilnvaaernbocrenosmtihnineee.rneInaanccttoiivomisteyplaesrccitsaiovlene, ownloae Com RAeccceeipvteedd236rtdhJMulyay20210313, bthroemchoafullnenctgioensaalinzdatimonethoofdaslkteonessurumsionugntsutchhesreeapgreonbtlsemhas.veInbaedednitrioepno,rttheids.aTrhtiicslearwtiicllleawlsoillshhiogwhligthhet Dv 013. Creati DOI:10.1039/c3cc43950j uosfeaolkfenNe-bs.roEmxaomampliedse irnecalguednetsbirnomexinpeanidniintigattehdecsyccolpiceeotfhedriasctaesrceaodseeslecatnivde nborovmelofmunuclttiicoonmalpizoanteionnt uly 2er a www.rsc.org/chemcomm reactions(MCRs). Jd ublished on 03 e is licensed un 1Br.omInintartioondrueaccttiioonnshavebeenaworkhorseinorganicsynthesis. N5b,r-5ob-mrdoiimmneoetaihcsyedmtaaomnrtieodirenea((NcDtBiBvADe)MtahnHadn).tIchnheltomerriomnreesbrouefathcltaeilsvosegre1en,a3c-rdteiiavbecrtoitvmhiatoyn-, s Article. P This articl HcinoovnwevneetvnieoirenntohtfedNuue-sbetrooomiftsobharomigmhidinreeeraeacatsgivaeintryte,savlgoikelanettNilii-ttbsyreoalfnmidsostnouoxcitccieintnyim.tiTriehdleey oaiolfkdtyihnlebertlooemawvaiidrndegssgoerffleoecurtprhoiapgbhhiielliritcyrehoaafcltotighveietnyhattaoilwoonagreodnfssaSlikn2entdheises.p2plaIrncoedtmeurcemtnsst, s N cce (NBS)1 (Fig. 1) for example has greatly enhanced the utility thanalkylchlorides.Inaddition,alkylbromidesarealsomore A n of bromination reactions due to its safe and easy handling. stabletowardsunwantednucleophilicdisplacementwhencom- e Op InadditiontoNBS,anumberofcommerciallyavailableN-bromo- paredtoalkyliodides.3 amide reagents exist including N-bromophthalimide (NBP), Reactions ranging from the radical bromination of allylic4 andbenzylic5positionstoelectrophilicbrominationofcarbonyl compounds,6 aromatic7 and heterocyclic8 compounds are DepartmentofChemistry,NUS,3ScienceDrive3,11754,Singapore. E-mail:[email protected];Fax:+65-6779-1691;Tel:+65-6516-7760 just some examples of the bromination reactions that are ChongKiatTanisafinalyearPhD Ying Yeung Yeung received his candidate at the Department of BSc (2001) at The Chinese Chemistry at the National Univer- University of Hong Kong. He sityofSingapore.Heobtainedhis continued his graduate research BSc (Hons) from the same in the same university under the university. His research interests supervision of Prof. Tony K. M. include organic synthesis and Shing. After four years research the development of asymmetric dedicated to natural product organocatalysis. synthesis,DrYeungmovedtoUSA to conduct postdoctoral research with Prof. E. J. Corey at Harvard University. In 2008, he joined National University of Singapore, ChongKiatTan Ying-YeungYeung Department of Chemistry, as an assistant professor. His research interests include asymmetric catalysis,greenoxidation,andmethodologydevelopment. Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Commun., 2013, 49, 7985--7996 7985 View Article Online FeatureArticle ChemComm 2. PartI–recent progress inenantioselective bromofunctionalization of alkenes The enantioselective bromofunctionalization or more broadly halofunctionalizationofalkeneshasbeenanareaofintensive research in recent years. Many of the difficulties in achieving bromofunctionalizationwithausefullevelofenantioselectivity havebeenworkedoutmechanisticallybyBrownetal.aswellas Denmarketal. e. c n Brown and co-workers were the first to demonstrate that a e c AM. ed Li rbarpoimdoannidumdegioennearnatdivfereoeleafilnk-etno-eosleifninNtMraRnssfeturdeixeissts(Sbcehtewmeeen2t)h.1e2 2:17 nport Therateofthisolefin-to-olefintransferprocesswasalsofound 2:40 U tobecompetitivewiththenucleophiliccaptureofthebromonium n 2/23/2023 1Attribution 3. pFiog.s1sibElexamwpitlehsosfuNch-brroemaogaemnidtse.reHagoewnetsv.er, this feature article will imamonneecc.ehhnWaaannniiittsshimmoet,nhtohreniucehsexecmidasntaebknrreacostemiothononefailuidszumeevcethhilooenapp.morTeashnpsiiitbsdiolpfibtoytrshosoemifbeorleanncaireunammctieiozmsateritlazieoancntstiifovoenerf ded omons only review selected examples from the recent advances of bromofunctionalizationofalkeneachallengingtask. oam the electrophilic bromofunctionalization of alkenes starting Thenextimportantmechanisticrationalizationoftheproblem ownle Co from2005. of enantioselective bromofunctionalization was demonstrated 013. DCreativ withThtehgeenfoerrmalalytiaocnceopftetdhembercohmanoinsmiumofisounchornecaecttihonesebleecgtirnos- ianndacsoe-rwieosrkoefrsa.1c3etTohlyesiesxpexepriemriemnetsntssimcounladtuectthede ebnyviDroennmmaenrkt uly 2er a philicbrominesourcecomesintocontactwiththealkene.Such where the configurational stability of both bromonium and ublished on 03 Je is licensed und sbcdtaruuopcSdmttuuiseobrsetnshdepiauqetbmuryfceooinarontmnlctyaseo,idmwnthebpirayasentOoirbeablalansehcteitrn-ievrvuteeecldaalbleti.irn9ooopnlmihsqiohulneiipdiu(SSbmcOeht2iewoimneneeancs1aetn)h.riebSeisebnorcffouemNrtpMhirdeoRer- ci(cnnEahu)nl-cso4tlrger-ooooecnnnptigeheulrniymaleetieo(aivonntinhiadzseioenclrxegaecfnseimpnsbes-etcedooti-ildaovee.elfetiTnefbhir.nrmeoTtmrhirnaaeotenenbdss-ifhuioenamrf,ltroShaacscenhuedpemlfmroceiznhseaeal2otnti)erocoscnena1noibaufytmahbenuoxdictsohe1bnsbaess s Article. P This articl abneldBiervnoemudcoltefouoonppchteiilnoentahalreiezbatrgioeomnneoornafilaluylkmeonrbeitnsagigneienndea,rnatlhlSyeNa2ffnfouarcsdlhesiooppnrho.1id0leuctiss cthoemThphaaelryoenddiiustcomotvhieoernerd.attehoatftihneteardmdoilteiocnuloafr4n-uocclteeonpehiinlitcocaaspotluurteioonf s e cc ofhighdiastereoselectivity,assuggestedbytheproposedmecha- ofbromotosylate1aresultedintheerosionofenantiospecificity A n nisminScheme1. in the highly polar hexafluoroisopropyl alcohol (HFIP) solvent e Op In recent years a renewed focus has been cast on the long medium(Scheme3).Themainfactorsaffectingtheerosionof standingchallengeofenantioselectivebromofunctionalization enantiospecificity were identified to be the concentration of of alkenes. More broadly, the solving of this long standing theolefin(4-octene)andthecountercationoftheacetate.The problem should be addressed under the umbrella of enantio- observation for bromotosylate stands in complete contrast to selective halofunctionalization of alkenes. Several reviews on theanalogouscaseofchlorotriflate1b,whereenantiospecificity thistopicarealreadyintheliterature.11 was preserved even in the presence of 4-octene. These results This article will only limit its coverage to the electrophilic establishedtherelativestabilityofthechloroniumioncompared bromofunctionalization of alkenes using N-bromoamide tothebromoniumion. reagents.Thearticleconsistsoftwoparts:partonewillreview Theabovetwoobservationssuggesttheinherentdifficultyof therecentprogressinthecatalyticenantioselectivebromofunc- formingastableandchiralbromoniumionduetothepresence tionalizationofalkenesusingN-bromoamidereagents,andthe ofarapidanddegenerateolefin-to-olefintransfermechanism. second part will address the other significant progress in Nonetheless,somesolutionstothisproblemhavebeenunravelled diastereoselective bromofunctionalization of alkenes. Efforts inrecentyearsandwillbedescribedinthefollowingsections. from our own laboratory in these two fields will be described It is noteworthy that breakthroughs in chloro-14 and aswell. Scheme1 Generalmechanismoftheelectrophilicbromofunctionalizationofalkene. Scheme2 Degenerateolefin-to-olefintransferofbromonium. 7986 Chem.Commun., 2013, 49, 7985--7996 Thisjournalis c TheRoyalSocietyofChemistry2013 View Article Online ChemComm FeatureArticle quinuclidine of the quinine scaffold. This proposed mechanism wasalsosupportedbythechangeinenantioselectivitiesofthe bromolactonization with various halogen sources especially betweenNBSandtetrabromocyclohexadienone.16b Another competent chiral organocatalyst came in the form oftheC -symmetrictrisimidazoline4reportedbyFujiokaetal. 3 (Scheme 5).18 Using their protocol, a variety of 5-aryl-substituted hexenoicacidsareamendabletoenantioselectivebromolactoniza- e. tion. Their substrate scope includes 1,1-disubstituted, trisub- c n stituted, and tetrasubstituted hexenoic acids. Mechanistically, e c M. d Li they found the presence of the three imidazoline units to be Ae crucialtoachievinghighenantioselectivity.Theuseofboththe 2:17 nport mono- and di-imidazoline variants of catalyst 4 resulted in 2:40 U much lower enantioselectivities. Additionally, NMR studies n 2/23/2023 1Attribution 3. Sthceheemroesio3noEfffeenctanotfiohsapleocgifeicni,tyc.ountercation,andconcentrationofalkeneon ctinhornmeAdenououdctnteheliedtAsrodb(Sfyiffchhteehrexeemenngetors5oioc)ul.uapctiisodunsgwtgoeasostnoetffheuernepidtrobofbyacoabutlraellyatsbetmo4rpaaltasotrsiynhwgowitonhf ded omons iodofunctionalization15 of alkenes were also achieved concur- aclassofamino-thiocarbamatecatalysts.Thefirstofthisclass ownloae Com rentlyinrecentyears. o(Sfcahmemineo-6th).ioAcfatrebraemxtaetnesciavme estwuidtihesa,ctiwncohcoantaalaylsktaltouindinscgaffsiotelds Dv 013. Creati 2.1 Enantioselectiveintramolecularbromofunctionalization uly 2er a ofalkenes Jd Onesuccessfulreportofthe enantioselectivebromofunctiona- ublished on 03 e is licensed un bqlcioruzo-aiwnmtioionornkleaeodcrfteso.ar1nil6vkiezTedanhtetieoosirnswysloaoufslurdZet-iia1soc,3n3lo-atesosnettydhhnebiesyscpht(hrSiorceabhllleaeombmrogerawa4nta)oo.scrtyahtoaeflyuTssatenfoogrfattnhhdee s Article. P This articl f1r,o4m-Tdhiaethzdaebiersicilgyacnblooor-[fa2tc.o2ar.ty2a]lwoycshttiac3nhewd(aDesmABporCneOscte)rdaaetsedadbbtryhoeamcpoolrmaecvptiooentueisnzacwteoioronkf s ce catalyst.17Inthisreporttheyproposedadualactivationmode c A n where NBS is activated via a hydrogen bonding with the NH e Op groups of the urea and the carboxylate anion is bound to the Scheme4 EnantioselectivebromolactonizationofZ-1,3-enynes. Scheme5 EnantioselectivebromolactonizationwithC3-symmetrictrisimidazoline. Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Commun., 2013, 49, 7985--7996 7987 View Article Online FeatureArticle ChemComm e. c n e c M. d Li Ae 2:17 nport 4U 2:0 3/2023 1bution 3. n 2/2Attri ded omons Sthcihoecmarbea7maEtensa.ntioselectivebromolactonizationwithbothO-andS-alkylamino- oam wnlCo oe Dv 013. Creati uly 2er a Jd ublished on 03 e is licensed un s Article. P This articl Scheme8 Synthesisof(R)-(+)-boivinianinAfromchiralbromolactone. s e cc The enantioenriched bromolactones can be converted into A Scheme6 Enantioselective bromolactonization with amino-thiocarbamate en catalysts. valuable intermediates. In one example, we were able to perform p O the debromination of a bromolactone into (R)-(+)-boivinianin A (Scheme8).24Theenantiomerof(R)-(+)-boivinianinAcanreadilybe were discovered. These are the N-aryl substituent indicated as accessedbyusingtheenantiomeroftheprolinebasedcatalyst7. R1andtheO-alkoxysubstituentatthequinolineunitindicated Theamino-thiocarbamatecatalystswerealsofoundtobeable as R2. The tuning of these sites allowed a number of alkenoic toperformtheenantioselectivebromoaminocyclizationofavariety acids to be accommodated into this protocol. These include ofolefinicamides(Scheme9).Intheseriesofstudies,amides9,11 1,1-disubstituted pentenoic acid,19 both E and Z-pentenoic and 13 were found to be possible substrates for achieving high acid,20,21andthestyrenetypecarboxylicacid.22 enantioselectivities.25 One of the essential requirements for this Whiletheaboveexampledemonstratedtheessentialityofusing reactionisthepresenceofthenosylsubstituents.TheNHofthe O-alkylthiocarbamateonacinchonaalkaloidscaffold,subsequent 4-nosyl amide is then sufficiently acidic for the reaction to take workshownthatS-alkylthiocarbamatesarealsocompetentchiral place smoothly in an enantioselective fashion. The resulting organocatalystsonaprolinebackbone(Scheme7).23Inoneof enantioenriched bromo-pyrrolidine and piperidine products are ourstudies,S-alkylthiocarbamatecatalyst6wasabletoserveas usefulbuildingblocksofvariouspharmaceuticals. a chiral catalyst for the bromolactonization of hexenoic acids. Mechanistically, the above reactions catalyzed by amino- On the other hand, O-alkyl thiocarbamate 7 could catalyze thiocarbamateswereproposedtoproceedviaadualactivation the enantioselective bromolactonization of pentenoic acids. mode. The sulfur atom in the catalyst is believed to act as a Anadditionalmotivationforcarryingouttheworkonaproline Lewisbaseactivatorofbromine,26whiletheaminemayinteract scaffold is that both enantiomers of proline are available. In with the nucleophile via an acid–base interaction (Model B, contrast,onlypseudo-enantiomericpairsofcinchonaalkaloids Scheme10).19 arecommerciallyavailable.Themagnitudesofenantioselectivityof Sulfur or more broadly chalcogens have been known to form some bromolactones are not equal when a pseudo-enantiomeric stable1:1molecularadductswithbromine.27Denmarketal.have pairofcinchonaalkaloidderivedthiocarbamateswereusedin alsodemonstratedthecompetenceofsulfur-containingcompounds somespecificstudies.21,22 asbothbromolactonizationandbromoetherificationcatalysts.28 7988 Chem.Commun., 2013, 49, 7985--7996 Thisjournalis c TheRoyalSocietyofChemistry2013 View Article Online ChemComm FeatureArticle e. c n e c M. d Li Ae 2:17 nport 4U 2:0 3/2023 1bution 3. Scheme11 Enantioselectivebromoaminocyclizationwithcyclicdialkylselenide. n 2/2Attri ded omons to be unstable for long term storage as well as during the oam reaction.29 wnlCo Building up from d-mannitol, cyclic selenide catalyst 15 was oe 013. DCreativ coalepfaibnliecoafmeffiedcetsin.3g0thIneteenreasnttiinosgelyle,ctiinveccoycnltizraatsitontooftthrie-sucbinstcihtuotneda uly 2er a alkaloid based amino-thiocarbamates, the 3-nosyl amide was Jd foundtobetheoptimalsubstituentforthesubstrate. ublished on 03 e is licensed un abanbrooTmovheleoecfeiaantbhtaoealvryneitf-diimccaesatnyisotstiunoeffinmsecswdi.eeeInrnxtealsymtnepaaocldtei,dsreisecnhpaononwruttciesoludesboepsbltehyrcaitltegiev.rseoEcubonprnaostnmatuiinoosiesinnetghlgeebcrttoiihvfthiee- s Article. P This articl caactidiHonednsernwieveacrkteievreeasp.nodrtecdo-bwyosrkeveerrsalregproourtpesdutshinegdcehsiyrmalmpheotrsipzahtoiorinc s e cc of 1,8-oct-4-ene-diols with the chiral phosphate catalyst 18 A Scheme9 Enantioselectivebromoaminocyclizationwithamino-thiocarbamates. n (Scheme 12).31 While modest enantioselectivity was achieved e Op with NBS, much higher enantioselectivity was reported with N-iodo-2-pyrrolidone. Later, more highly enantioselective bromoetherifications werereportedindependentlybyDenmarkandShi.InDenmark’s case, the use of a co-catalyst triphenylphosphine sulfide was foundtobeanessentialrequirement(Scheme13).32Anumber ofsubstratesincluding5-aryl-4-pentenolsareapplicabletotheir protocol.Intheirstudy,theyobservedthattheZ-pentenolsgave Scheme10 Proposed mechanism of the amino-thiocarbamate catalyzed enantioselectivebromocyclization. In addition to the bifunctional amino-thiocarbamate catalyst, we later discovered that dialkyl cyclic selenides arealsocapablechiralcatalystfortheenantioselectivebromo- aminocyclization of olefinic amides (Scheme 11). The motiva- tion for designing such dialkyl selenides is to overcome the low reactivity of certain olefinic amides towards catalysis byamino-thiocarbamates.Whilehigherreactivitywasobserved with amino-selenothiocarbamates, however, they were found Scheme12 Desymmetrizationof1,8-oct-4-enediolswithachiralphosphate. Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Commun., 2013, 49, 7985--7996 7989 View Article Online FeatureArticle ChemComm e. c n e c M. d Li Ae 2:17 nport Scheme15 Enantioselectivesemi-pinacolrearrangement. 4U 2:0 3/2023 1bution 3. ecantaanlytisot,sethleecytiwvietyre(Sacbhleemtoea1ff5o).r3d5T(2hRe,3enS)a-n21tioweinthricghoeodd(y2iSe,l3dRa)-n2d1 n 2/2Attri was obtainable by switching to (DHQ)2Pyr and N-Boc-D-phenyl- ded omons glycine(NBDP)catalyst. Downloave Com Sanchdetmripeh1e3nylpEhnoasnptihoisneelescutlipvehidberocmo-oceatthaelyrsifti.cation with chiral phosphoric acid 2o.f2alkEennaenstioselectiveintermolecularbromofunctionalization 013. Creati Incomparisontoenantioselectiveintramolecularbromofunctiona- ublished on 03 July 2e is licensed under a apIewhnxneiagonsthateceldrymnemecnotloseliasszcnotegttefdaeidvoxebecsnfrleaoauolnremsmctitviithoxoietevesuityetrheilieneeeeldcosrdts.foibvOobciofyunttyctht,hltimhehezxeeiuoegdxochahotbnhe-rdcreeoyeremcwdnlhudiaozaosceenetcddhddyece,btelreitrnszhoc.eatemdendEobti-erocaotosmhmenelooferinescgtgtuhwivertihierttshdey. ltsccdioehozuulauieergtlcaidthtoloienvbprtehheopeiofrnooscatbpbaelthkrltaeameoimlnnryoiesecltstdeo,caautt(cchaSiltdaccienkrhgiclenebama.rtteosaIenrlmaym1saocto6oerl)e2sme.3tc2ce6epu,rneliTpafttihrricroteaeifmvoptiyerooiimsenrnitlnu,adwgctaslahepewsoarneopsdarmhniepsitriclishoeloiovonsisenewgenldeeoevc.tpnoteeUiarvnnbsiltitieoinnieowggas- s Article. P This articl athpepSlhsicoialebanlcedastuaclboy-sswttroa(rStkeceshrwesmituhetigl1io4zoe).dd33ec5nh-aiArnlaktliyolps-4he-lopesecptnihtveoitnryio.clIsnacwaidedrde1it9aiolsanos, ethsteeArbnifroioctmahteioornniouwrmgaasnirnoetcceaertnmatllyeytdicrieaptaeop.rpterdoabcyhTtaonginatnedrmcoo-lwecourlkaerrsb.rUosminog- s Acce tphheiylewtoertehealscoataalbylteictporoaptopcloyl.substrates with nitrogen nucleo- (DHQD)2PHALwith(+)-camphorsulfonicacid(CSA)asanadditive, n they were able to obtain the highly enantioselective bromoester- Ope In another recent study, Toste et al. reported a highly enantio- ificationofarangeofallylicsulfonamides(Scheme17).37 selective bromocyclization using chiral phosphoric acids together withaspecializedDABCOderivedtricationicbrominatingreagent.34 ThefinalexampleofN-bromoamideinducedenantioselective intramolecular bromofunctionalization in this section is the N-bromoacetamideinducedsemi-pinacolrearrangementoftertiary alcohol20tobromoketones21.Usingacombinationofcinchona alkaloid based (DHQD)2Pyr and N-Boc-L-phenylglycine (NBLP) Scheme16 Enantioselective intermolecular bromoesterification with chiral Scheme14 Enantioselectivebromoetherificationwithchiralphosphoricacidcatalyst. phosphoricacid. 7990 Chem.Commun., 2013, 49, 7985--7996 Thisjournalis c TheRoyalSocietyofChemistry2013 View Article Online ChemComm FeatureArticle Scheme17 Enantioselectiveintermolecularbromoesterificationwith(DHQD)2PHAL. e. c n e c M. d Li Ae 2:17 nport Scheme19 Tin(IV)chloridecatalyzedhaloamidationofolefin. 4U 2:0 n 2/23/2023 1Attribution 3. NoamlBefAoiunansstinothfaeSnRbCitrlto4emrcoitnyupaldetincfaagstahslioyozuner.cteIhte(wShacashloeramempeoird1tae9td)i.o4t2nhapIntroaaccedasdtsiatwliyoittnihc, ded omons areavcatriioenty. of nitriles and olefins could be subjected to this oam wnlCo Themechanismwasproposedtoproceedviaabromonium Dove ion ring intermediate which was opened by acetonitrile to uly 2013. er a Creati gnineittnroeilrtehateceobuirnlodtmerromeasemudlitidaitenepCirnot(deSurcmchtee.mdieat2e0D). Awthtaicchk bcoyuwldatiesromonertihzee Jd ublished on 03 e is licensed un ScheAmheig1h8lyEennaanntiotisoesleeclteivcetiivneteirnmtoelremcuolalercburolamrobamroinmatoiofunnocftciohanlacolinzea.tion btchoreouHymldaodjarfeuaffmnoeocrtdtnisoaatnlr.saaetlrierezidpeastoitrohotnefadt1o,fw5aa-idltskhieseurnZibeensss(t.OiotITunftfte)m2hdeeattfesaitlrrstahttzreooiffllecatsahtete2ai7lrcyasrwttea,iptlhoythzraetesndy, s Article. P This articl mcwaaetsatalyrlesctpooamrntdepdlelixbgaycnaFtdaelnyssgytste(eStmcah,l.etmhweietyh1w8ae).r3se8caUanbsdileniugtmojuastctrhi0fil.ea0vt5ee–mNth,oeNl%0e-dnoiaofnxttiihdoee- oanptein-rienlgatioofnsthheipbtroomthoenbiurommiidnete(rSmchedemiatee2b1y).4t3hFeolalzoiwdiengfrothme s e c selectivebromoaminationofchalconewithNBSandTsNH.High c 2 A n yields and high diastereoselectivities were also achieved. It is also e Op worth noting that successful chloro-39 and iodoamination40 of chalconeswerereportedbythesamegroup. 3. Part II – recent progress in diastereose- lective bromofunctionalization of alkenes AlthoughitismentionedinScheme1thattheopeningofarigid bromonium intermediateleadstoananti-relationshipbetween thebromineandnucleophile,therehasbeenmuchroomforthe developmentofnoveldiastereoselectivebromofunctionalization ofalkenes.Inmanycases,aLewisacidoraLewisbasecatalyst is needed to activate the brominating reagent towards such Scheme20 Proposedmechanismofhaloamidationofolefin. reactions.Nevertheless,recentlydiscoveredNBS-initiatedcascades andmulticomponentreactions(MCRs)havebeenfoundtoproceed without the need for an additional catalyst. The Lewis acid catalyzedandcatalyst-freeMCRswillbeaddressedaccordingly inthissection. 3.1 Diastereoselectivebromofunctionalizationofalkeneswith aLewisacidcatalyst InCorey’sconcisesynthesisofoseltamivirphosphate(Tamiflu),41 they disclosed a novel Lewis acid catalyzed haloamidation of Scheme21 NBSinducedsynthesisof1,5-disubstitutedtetrazolesfromalkenes. Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Commun., 2013, 49, 7985--7996 7991 View Article Online FeatureArticle ChemComm toCorey’shaloamidation,thebromoamideswereabletoconvert intooxazolinesinthepresenceofNaHCO andwater. 3 3.2 NBSinitiatedcyclicetheropeningcascades In Braddock and co-workers’ study of model obtusallene sys- tems, they discovered that NBS can be utilized to initiate a Scheme22 NBS induced bromoazidation of a,b-unsaturated carboxylic acid transannular oxonium ion formation–fragmentation reaction derivatives. (Scheme25).47Whenthemacrocycliccompound33wastreated ce. withNBS, the reaction proceeded inthe presence of a nucleo- n e c phile, for example acetic acid. Addition of 1 mol% of tetra- M. d Li methylguanidine(TMG)wasfoundtobenecessary.Inaddition, Ae 42:17 Unport intuwcalesoaplhsoilifcopuanrdtntehrastfborrotmhiisnereaancdtiowna.tercanalsoserveasthe 3/2023 12:bution 3.0 esypnoItxhniedaseils-aotpoefernseitnnut-gddyico,axJseacpmaadinsedoetnoheyadtffraool.trhdfoyrpusrniofeddruothlcat(stScNlehBaedSmicneagn2t6io)n.4ti8htieaWtteohtaeannl n 2/2Attri the poly epoxide 35 with an OBoc terminal group was treated oaded ommons w(HitFhIP)N,BthSeidnesairehdigbhrloympinoalaterdspoolvlyecnytclehewxaasfluaoffrooridseodprionp3an6%ol wnlCo Scheme23 NBSpromotedFriedel–Craftsalkylationofalkene. yield. The polycycle 36 was further elaborated tocomplete the Dove totalsynthesis. uly 2013. er a Creati sToMlvSeNn3t,.aTshseemrebalcatgioeninwtoastefotruanzodletoenbesuaepdpwlicitahbltehetoaacertaonngiteriolef nJaomtOibsneosnti’emsthcpealersered4s8ytsaotnetdmhoes,theBperoradxeidadroelc-icekoranrnetadpioncroitn-swg,4o9mrtkhoeelresncfuuolcuelsne.od50pthhSiialmetsuilnnarleiektdoe Jd olefinsaswellasanumberofnitrilesources. ublished on 03 e is licensed un aaabu,bxlW-eiulintiatosrhaieatYsuchbrsai(ueOtevcTdehf)ca3aasrhabsio(g2xhtRyhll)yei-cbdcoaiaracntisadatlenydrseeet,orsisvHueallatteaijcvrmaetisvaeawnnibdtdhroc(tmo2h-Sewo,a5aozSirdi)kd-edoariftspicohwhneienrorayefll NbtfhrrBaeogiSmrmaoeneaendrtlthiaaeetcrrieosstnit3cu,8dataychniedodynw3foit9thuhienn1dtarmat1nhos:ala1%tnmtnoruiefxlaTatturMmroeGexnwoatniftfiohuofrmadecepiodoomnxtihbdfeoienrisme3od7amtywiieoeirntlihd–c ss Article. P This articl pSmyr(ArOonlToifdt)h3ineares(itSnhcteherecemasttaeinly2gs2t)fe.4ox4ramapNleBSwparsomaoctheidevFerdiedveial–Ctrhaeftsuaslekyloaf- cce tion of alkenes (Scheme 23).45 With electron-rich aromatic rings A n including toluene, o-xylene, anisole, 1,2-dimethoxy benzene, and e Op 1,2,3-trimethoxybenzene,theywereabletoachievethistransforma- tionwithanumberofolefinicpartners. Lastly, with Cu(OTf) or Zn(OTf) Hajra and co-workers were 2 2 abletoachievethestereoselectiveone-potsynthesisofoxazolines viaabromoamideintermediate(Scheme24).46Inaprocesssimilar Scheme25 NBSinitiatedtransannularoxoniumionformation–fragmentation. Scheme24 NBSpromotedstereoselectiveone-potsynthesisofoxazolines. Scheme26 NBSinitiatedepoxideopeningcascade. 7992 Chem.Commun., 2013, 49, 7985--7996 Thisjournalis c TheRoyalSocietyofChemistry2013 View Article Online ChemComm FeatureArticle e. c n e c Scheme27 NBSinitiatedepoxideopeningwithanexternalnucleophile. M. d Li Ae 2:17 nport of 43% (Scheme 27). While the yield of such NBS-initiated 4U 2:0 epoxide cascades was moderate, Snyder and co-workers have 3/2023 1bution 3. rtievpeoErtte2dSBhri(cid:2)SgbhBerrCyli5el(dBiDngSBe)proexaidgeencta.5s1cadeswiththemorereac- n 2/2Attri ded omons 3.3 CatalystfreeNBSinitiatedMCRs oam In contrast to the above-mentioned examples, our laboratory ownle Co discovered a range of catalyst-free NBS-initiated multicompo- 013. DCreativ neleencttrorpeahciltiiconMsC(RMsCaRres)lewssithrepaovrtaerdie,tpyaortflyodleufeintso.iSnuccohmkpiantidbsiliotyf uly 2er a of the reagents.52 In our initial conception, we envisaged the Scheme29 Synthesis of pharmaceutically relevant molecules via the NBS ublished on 03 Je is licensed und cfoaeymxacoslTininicbhieuieelmsittrohyeueairornccsftteeiyoartimcnoetliedygvdiieaenintlaigdnetergtianhFltoeleylredcmwfoeisnuoeirlsdrdkeiadtsottwhewaemeaEnlrlidn(wbsSoeicatahlhkfeunomNruxtseychNllaee2Htro8iop)a.nhattTisaplhicrtcekhoedeardutentcsaubtuccyklGtlie.na5bo3ngy- iainnffittioraartedmdoMthlCeeRc.urelasrpedcitsipvelacbermomenotamofidtehse(bScrohmemidees30i)n. Sthuebsberqoumenot- s Article. P This articl pb(Mheialtreokloaennradikteoadvv-.tayTrpihee)teyaposfrowodeluellfcitanssssoatbnetdraeiocny-escdelilcehcetaitdvhietirgesos2o.wdIenrepaofsodiuteinmodnoantlo-- atghmueaindbierdsoimnaenosda.mciydcelisz)atlieodnt(oeitthheerfoinrmsiattuioonrobfyimfuirdthaezorlirnefelsuxainndg s cce strationoftheusefulnessofthereaction,theone-potassembly Oxygen nucleophiles in the form of carboxylic acids were A alsofoundtobefeasiblereactionpartnersinthistypeofMCR. Open orefsutlrtaends-i1n-pthheenfyolr-1m-partoiopnenoef,thNesNkeHy2i,nteetrhmyleednieateo4xi0de(S,chaenmdeN2B9)S. In a demonstration, the one-pot reaction of cyclohexene, NBS, acetic acid, and THF was found to yield the alkoxylether With further synthetic manipulation, ((cid:3))-phenmetrazine and BontrilTMwerebothobtainedwithgoodyields.54 product 44 in good yield (Scheme 31).57 Likewise for this reaction,avarietyofolefins,cyclicethersaswellascarboxylic In addition to using cyclic ethers, nitriles and cyanimides could be used in place to afford a range of imidazoline55 and acidswerefoundtobeapplicabletothisMCRprotocol. guanidine,56 respectively. The MCRs proceed via the one-pot assembly ofolefin, NBS, NsNH , and nitrilesor cyanimides to 2 Scheme28 ProposedmechanismofNBSinitiatedaminoalkoxylationofolefins. Scheme30 NBSinitiatedMCRinthesynthesisofimidazolinesandguanidines. Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Commun., 2013, 49, 7985--7996 7993 View Article Online FeatureArticle ChemComm e. c n e c M. d Li Ae 2:17 nport 4U 2:0 3/2023 1bution 3. Scheme31 NBSinitiatedalkoxyetherificationofolefin. SNcBhSeimnietia3t3edMEnCaRn.tioselective synthesis of 2,2,6-trisubstituted morpholine via n 2/2Attri ded omons oam wnlCo oe Dv 013. Creati uly 2er a Jd ublished on 03 e is licensed un s Article. P This articl s e c c A n e p O Scheme32 ProposedmechanismofMCRwithmono-substitutedepoxide. AmorechallengingMCRinvolvingmono-substitutedepoxides Scheme34 NBSinitiatedphenoxyetherificationMCRanditsapplication. wasalsotackledbyourgroup(Scheme32).58Inthisreaction,after theformationofthebromooxoniumintermediate,thesubsequent oxonium ring opening can proceed via the anti-Markovnikov phenols, were subjected to the reaction, no desired product (path1)ortheMarkovnikov(path2)pathways.Inourinvestiga- was detected. This result is consistent with our previous tion,wediscoveredthatpropyleneoxidegavenoregioselectivity observation in which the acidic proton plays a crucial role in (H:I = 1:1) despite the high reaction yield. Other bulky the MCR, potentially acting as the NBS activator. Again, mono-substituted epoxides (e.g. R2 = OTBDPS) resulted in low the MCR tolerates a range of olefinic partners as well as regioselectivity as well. Nonetheless, it was found that when ether partners for a wider reaction scope. More interestingly, electron-deficientepoxideslikeepichlorohydrinandepibromo- the dibromides on the aromatic ring can undergo a double hydrinwereused,goodregioselectivitieswereachieved. Sonogashira coupling to generate compound 48, which may In a demonstration of the synthetic utility, enantiopure serve as ligands to self-assembly spherical complexes that are (R)-epichlorohydrincouldassemblewitholefin45,NBS,andNsNH potentiallyapplicabletotheconstructionofhigh-densitydata- 2 (Scheme 33). Upon treatment with base, enantiopure 2,2,6-trisub- storagematerials.60 stitutedmorpholine46wasobtainedwithgoodyield. Morerecently,itwasalsodiscoveredthatsufficientlyacidic 4. Conclusion phenolscouldbeusedasanucleophileinthisMCRtogenerate aphenoxyetherificationproductlike47(Scheme34).59Crucially, Thisfeaturearticlehaschartedtherecentadvancesoftheuse it was discovered that when relatively electron-rich phenols, of N-bromoamideinthebromofunctionalizationofalkenes.In including 4-methyl, 4-tert-butyl, and 2,6-dibromo-4-methyl thecourseofthearticle,therecentflurryofreportsinthearea 7994 Chem.Commun., 2013, 49, 7985--7996 Thisjournalis c TheRoyalSocietyofChemistry2013

Description:
supervision of Prof. Tony K. M. worth noting that successful chloro-39 and iodoamination40 of chalcones .. R. N. Sheppard, S. Solanki and A. J. P. White, J. Org. Chem., 2009, 54 R. B. Rothman and M. H. Baumann, Curr. Top.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.