ebook img

Recent Advances in Research on Unmanned Aerial Vehicles PDF

211 Pages·2013·5.51 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recent Advances in Research on Unmanned Aerial Vehicles

LLeecctture Notes in Control and Information Sciences 444 Fariba Fahroo Le Yi Wang George Yin (Eds.) Recent Advances in Research on Unmanned Aerial Vehicles 123 Lecture Notes in Control and Information Sciences 444 Editors ProfessorDr.-Ing.ManfredThoma InstitutfuerRegelungstechnik,UniversitätHannover,Appelstr.11,30167Hannover, Germany E-mail:[email protected] ProfessorDr.FrankAllgöwer InstituteforSystemsTheoryandAutomaticControl,UniversityofStuttgart, Pfaffenwaldring9,70550Stuttgart,Germany E-mail:[email protected] ProfessorDr.ManfredMorari ETH/ETLI29,Physikstr.3,8092Zürich,Switzerland E-mail:[email protected] SeriesAdvisoryBoard P.Fleming UniversityofSheffield,UK P.Kokotovic UniversityofCalifornia,SantaBarbara,CA,USA A.B.Kurzhanski MoscowStateUniversity,Russia H.Kwakernaak UniversityofTwente,Enschede,TheNetherlands A.Rantzer LundInstituteofTechnology,Sweden J.N.Tsitsiklis MIT,Cambridge,MA,USA Forfurthervolumes: http://www.springer.com/series/642 Fariba Fahroo, Le Yi Wang, and George Yin (Eds.) Recent Advances in Research on Unmanned Aerial Vehicles ABC Editors FaribaFahroo GeorgeYin AFOSR/RSL DepartmentofMathematics ComputationalMathematics WayneStateUniversity Arlington Detroit Virginia Michigan USA USA LeYiWang ECEDept. WayneStateUniversity Detroit Michigan USA ISSN0170-8643 ISSN1610-7411 (electronic) ISBN978-3-642-37693-1 ISBN978-3-642-37694-8 (eBook) DOI10.1007/978-3-642-37694-8 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013935113 (cid:2)c Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Unmannedaerialvehicles(UAVs),alsoknownasunmannedaircraftsystems(UAS) ordrones,haveseenanunprecedentedgrowthrecentlybothinmilitarymissionsand innewdevelopmentstowardcivilandcommercialapplications.Althoughremotely operated small UAVs are commercially available and their successful operations in reconnaissance, combat operation, logistic support have been well recognized, autonomouscontrolofUAVsasateamforacommonmissionremainsaverychal- lengingtask. A team of launched and coordinated UAVs requires advanced technologies in sensing,communication,computing,andcontrolto improvetheirintelligenceand robustness towards autonomousoperations.At present, capabilities for command, control,communications,computing,intelligence,surveillance,andreconnaissance ofnetworkedUAVsareinadequatewhichrestrictpotentialapplicationsofUAVs.To enhancereliability,robustness,andmissioncapabilityofateamofUAVs,asystem- orientedandholisticapproachisdesirableinwhichallcomponentsandsubsystems areconsideredintermsoftheirrolesinandimpactontheentiresystem. Thisvolumeaimstosummarizetherecentprogress,identifychallengesandop- portunities,anddevelopnewmethodologiesandsystemsoncoordinatedUAVcon- trol.Agroupofexpertsworkinginthisareahavecontributedtothisvolumeinsev- eraldiversifiedbutrelatedaspectsofautonomouscontrolofnetworkedUAVs.Their papersintroducenewcontrolmethodologies,algorithms,andsystemsthataddress severalimportantissuesindevelopingintelligent,autonomousorsemi-autonomous, networked systems for the nextgeneration of UAVs. The papers share a common focusonimprovedcoordinationofthemembersofthenetworkedsystemtoaccom- plishacommonmission,toachieveheightenedcapabilityinsystemreconfiguration tocompensateforlostmembersorconnections,andtoenhancerobustnessagainst terraincomplicationsandattacks. In their paper, Fariba Fahroo and Michael Ross present the theoretical frame- work for Pseudospectral (PS) optimal control theory that can be used for design ofnewmaneuversforUAVsthatservetheneedsofthemission.Giventheexpan- sion of the operationalenvelopefor agile UAVs, design of these maneuversin an VI Preface optimalmannerhasbecomefeasibleandtheuseofadvancednumericaltechniques for these design problems is essential. In this paper, the authors explore the the- oretical (convergence)and implementationissues of these PS controlsonboardof UAVs. BenG.FitzpatrickconsiderscertainidempotentmodificationsofBayesiananal- ysiswhicharesuitablefordecisionmakinginmixedinitiativeandmulti-agentsys- temsinhighlyautonomousoperations.ThepaperexaminesBayesiannetworksand Bayesian knowledgebases within the contextof max-plusprobability.Then these techniquesareusedtotreatdecentralizedcontrolofunmannedairsensingassets. ThepaperbySeungHakHanandWilliamM.McEneaneydealswiththeprob- lemwhereonewishestointerceptavehiclebeforeitreachesaspecifictarget.The vehicletravelsonaroadnetwork.Thereareunattendedgroundsensors(UGSs)on theroadnetwork.Thedata obtainedbya UGSisuploadedto anunmannedaerial vehicle (UAV) when the UAV overflies the UGS. There is an interceptor vehicle which may travel the road network. The interceptor uses intruder state estimates based on the data uploaded from the UGSs to the UAV. There is a negative pay- offiftheintruderisinterceptedpriortoreachingthetargetlocation,andapositive payoffiftheintruderreachesthetargetlocationwithouthavingbeenpreviouslyin- tercepted.TheintruderpositionismodeledasaMarkovchain.Theobservationsare corruptedbyrandomnoise.Adynamicprogrammingapproachistakenwherethe value is propagated using a min-plus curse-of-dimensionality-freealgorithm. The double-descriptionmethodforpolyhedraisusedtoreducecomputationalloads. Laura R. Humphrey’s paper explores the use of model checking for verifica- tion in several UAV related applications, including a centralized cooperative con- trol scheme, a decentralizedcooperativecontrolscheme, and a scenario involving ahumanoperator.Therehasbeenincreasedinterestsinverificationtechniquesfor complex,autonomoussystems.TheteammightincludeseveralautonomousUAVs andunattendedgroundsensors,aswellasahumanoperator.Insuchcases,thereis aneedfortechniquestoverifytheaggregatebehavioroftheteam.Currentresearch suggests that standard software modeling and verification techniques can be ex- tendedtomeetthisneed.Dependingonwhetherteamcoordinationisimplemented in acentralizedordecentralizedmanner,behaviorofa cooperativecontrolsystem orbehaviorof the individualagentscanbe modeledusinga formalmodelinglan- guage, system specifications can be expressed using a modal logic, and a model checkercanbeusedtoverifythatthemodeledbehavioroftheteammeetsallspec- ifications. Specificationsare written in linear temporallogic. Examplemodelsare codedinPROMELA,whichareverifiedusingthemodelcheckerSPIN. To determineoptimalpolicies for largescale controlledMarkovchains, K. Kr- ishnamoorthy, M. Park, S. Darbha, M. Pachter, and P. Chandler consider a base perimeterpatrolstochasticcontrolproblem.To determinetheoptimalcontrolpol- icy, one has to solve a Markov decision problem, whose large size renders ex- act dynamic programming methods intractable. They propose a state aggregation based approximate linear programming method to construct provably good sub- optimalpoliciesinstead.Thestatespaceispartitionedandtheoptimalcost-to-goor valuefunctionisapproximatedbyaconstantovereachpartition.Byminimizinga Preface VII non-negativecost functiondefinedon the partitions,one can constructan approx- imate value function that is an upper bound for the optimal value function of the originalMarkovchain.Theyshowthatthisapproximatevaluefunctionisindepen- dentofthenon-negativecostfunction(orstatedependentweights;asitisreferred tointheliterature)andmoreover,thisistheleastupperboundthatonecanobtain, given the partitions. Furthermore,we show that the restricted system of linear in- equalitiesalsoembedsafamilyofMarkovchainsoflowerdimension,oneofwhich canbeusedtoconstructatightlowerboundontheoptimalvaluefunction.Ingen- eral, the construction of the lower bound requires the solution to a combinatorial problem. Khanh Pham’s paper considers a class of distributed stochastic systems where interconnectedsystemscloselykeeptrackofreferencesignalsissuedbyacoordina- tor.Muchoftheexistingliteratureconcentratesonconductingdecisionsandcontrol synthesis based solely on expected utilities and averaged performance. However, research in psychology and behavioral decision theory suggests that performance risk playsan importantrolein shapingpreferencesin decisionsunderuncertainty. A new equilibrium concept, called “person-by-person equilibrium” for local best responses,is proposedto analyzesignalingeffectsand mutualinfluencesbetween anincumbentsystem,itscoordinatorandimmediateneighbors.Individualmember objectivesaredefinedbythemulti-attributeutilityfunctionsthatcapturebothper- formance expectation and risk measures to model the satisfaction associated with localbestresponseswithrisk-averseattitudes.Theproblemclass andapproachof coordinationcontrolofdistributedstochasticsystemsproposedhereareapplicable toandexemplifiedinmilitaryorganizationsandflexiblyautonomoussystems. InthepaperofLeYiWangandG.Yin,ateamofUAVsinsurveillanceoperations aimstoachievefastdeployments,robustnessagainstuncertaintiesandadversaries, and adaptability when the team expands or reduces under time-varying and local communicationconnections.ThispaperintroducesanewframeworkforUAVcon- trolbasedontheemergingconsensuscontrolfornetworkedsystems.Duetounique featuresofUAVtasks,theconsensuscontrolproblembecomesweightedandcon- strained,beyondthetypicalconsensusformulation.Usingonlyneighborhoodcom- municationsamongUAVmembers,theteamcoordinationachievesaglobaldesired deployment.Algorithmsareintroducedandtheirconvergencepropertiesareestab- lished.ItisshownthatthealgorithmsachieveasymptoticallytheCrame´r-Raolower bound, and hence is optimal among all algorithms in terms of MS errors. Perfor- manceoptimizationwithinnetworktopologyconstraintsisfurtherexplored,includ- ing optimal convergencerates and optimalrobustness. Examplesand case studies demonstrateconvergence,robustness,andscalabilityofthealgorithms. Thisbookiswrittenforresearchers,engineers,practitioners,andstudentsinUAV researchandrelatedfields.Selectedmaterialsfromthebookmayalsobeusedina graduateseminarcourseonspecialtopicsinUAVs. Without the help of many individuals, the book project would not have been completed.First,wewouldliketothankalltheauthorsfortheircontributions.This bookprojectwas initiated duringseveral visits of GeorgeYin and Le Yi Wang to the Air Force Research Laboratory,Wright-PattersonAir Force Base. Our special VIII Preface thanksgotoDr.SivaBandaforprovidinguswiththeopportunityandforconnecting us with the researchers in the Control Science Center of Excellence, Air Vehicles Directorate. Our thanks also go to the Editor of the Series for providing us with anexcellentforumandoutlettopresentourresults.Finally,wethanktheSpringer professionalsforfinalizingthebook. Arlington,Virginia FaribaFahroo Detroit,Michigan LeYiWang Detroit,Michigan GeorgeYin February2013 Contents Preface ....................................................... V 1 Enhancing the PracticalAgilityofUAVs viaPseudospectral OptimalControl ........................................... 1 FaribaFahroo,I.MichaelRoss 2 MaxPlusDecisionProcessesinPlanningProblemsforUnmanned AirVehicleTeams .......................................... 31 BenG.Fitzpatrick 3 SolutionofanOptimalSensingandInterceptionProblemUsing IdempotentMethods........................................ 47 SeungHakHan,WilliamM.McEneaney 4 ModelCheckingforVerificationinUAVCooperativeControl Applications............................................... 69 LauraR.Humphrey 5 ApproximateDynamicProgrammingAppliedtoUAVPerimeter Patrol .................................................... 119 K.Krishnamoorthy,M.Park,S.Darbha,M.Pachter,P.Chandler 6 A Framework for Coordinationin Distributed Stochastic Systems:PerfectStateFeedbackandPerformanceRiskAversion .. 147 KhanhPham 7 WeightedandConstrainedConsensusControlwithPerformance OptimizationforRobustDistributedUAV Deploymentswith DynamicInformationNetworks .............................. 181 LeYiWang,GeorgeYin AuthorIndex ..................................................... 207 Chapter 1 Enhancing the Practical Agility of UAVs via Pseudospectral Optimal Control FaribaFahrooandI.MichaelRoss Abstract.UAVshavethecapabilitytoperformmaneuversthatwouldotherwisebe unrealistic to do in an inhabited craft due to human limitations of both response timeaswellascomfortorblack-outlimits.Giventhisexpansionofitsoperational envelope, a natural question to ask is on the design of new maneuvers for UAVs thatservetheneedsofthemission.Oneoftheseneedsisarapidresponsetime.In thiscontext,weexplorethedesignofaminimum-timevelocityreversalmaneuver forafixed-wingUAV.Pseudospectraloptimalcontroltheoryisusedtoaddressthis problem.We discuss a wide-rangeof issues fromtheoryto flightimplementation. We showthatthese issues areinterdependentandexplorekeyconvergenceresults that are critical for a successful flight. Results for a MONARC UAV are used to illustratethecloseconnectionbetweentheoryandpractice. 1.1 Introduction The agility of UAVs can be characterized in terms of solutions to minimum-time optimal control problems. A flight implementationof solutions to these problems requirescarefulconsiderationofthemismatchbetweenthemodel(usedinsolving theoptimalcontrolproblem)andtheactualvehicledynamicsaswellasconsidera- tionsoftheinteractionsbetweentheinner-loopandouterloop.Whenthesepracti- calconsiderationsareproperlytakenintoaccount,theresultingproblemistypically nonlinear,constrained in state and controlspaces with possible interdependencies betweenthesespaces[1]. FaribaFahroo AirForceOfficeofScientificResearch(AFOSR),Arlington,VA e-mail:[email protected] I.MichaelRoss DepartmentofMechanicalandAerospaceEngineering,NavalPostgraduateSchool, Monterey,CA93943 e-mail:[email protected] F.Fahrooetal.(Eds.):RecentAdv.inRes.onUnmannedAerialVeh.,LNCIS444,pp.1–30. DOI:10.1007/978-3-642-37694-8_1 (cid:2)c Springer-VerlagBerlinHeidelberg2013

Description:
A team of launched and coordinated Unmanned aerial vehicles (UAVs), requires advanced technologies in sensing, communication, computing, and control to improve their intelligence and robustness towards autonomous operations. To enhance reliability, robustness, and mission capability of a team of UAV
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.