ebook img

Realizing and Detecting the Haldane's Quantum Hall effect with Ultracold Atoms PDF

0.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Realizing and Detecting the Haldane's Quantum Hall effect with Ultracold Atoms

Realizingand Detecting theHaldane’s Quantum Halleffect withUltracoldAtoms L. B. Shao1,2,3, Shi-Liang Zhu1, L. Sheng2, D. Y. Xing2, and Z. D. Wang3 ∗ 1InstituteforCondensedMatterPhysicsandDepartmentofPhysics,SouthChinaNormalUniversity,Guangzhou,China 2NationalLaboratoryofSolidStateMicrostructureandDepartmentofPhysics,NanjingUniversity,Nanjing,China 3Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China WedesignaningeniousschemetorealizetheHaldane’squantumHallmodelwithoutLandaulevelsbyusing 9 ultracoldatomstrappedinanopticallattice. Threestanding-wavelaserbeamsareusedtoconstructawanted 0 honeycomblattice,wheredifferenton-siteenergiesintwosublatticesrequiredinthemodelcanbeimplemented 0 throughtuningthephaseofonelaserbeam. Thestaggeredmagneticfieldisgeneratedfromthelight-induced 2 Berry phase. Moreover, we establish a relationship between the Hall conductivity and the atomic density, enablingustodetecttheChernnumberwiththetypicaldensity-profile-measurementtechnique. n a PACSnumbers:73.43.-f,05.30.Fk J 8 2 The quantum Hall effect (QHE) [1] in two-dimensional Peierls phase from site j to its second neighbor l, which is electron systems is one of the most peculiar quantum- assumed to take the form ϕ = ϕ. The hopping direc- ] jl ± l mechanicalphenomenaobservedinnature. TheQHEisusu- tions for which ϕ = +ϕ are shown in Fig. 1a. The most l jl a allyassociatedwithauniformexternalmagneticfield,which interesting and unique feature of the model lies in that the h splits the electronenergyspectruminto discrete Landaulev- phase of the system can be changed from a normal insula- - s els(LLs).WhentheFermienergyliesinthegapbetweentwo tor to a Chern insulator by the simulation of parity anomaly e LLs, the Hall conductivity in units e2/h is accurately quan- [5, 6, 7, 8, 9, 10, 11]. However, it is extremely hard to m tizedtoaninteger. TheprecisequantizationoftheHallcon- realize the Haldane’s model experimentallyin ordinary con- . t ductivitywas explainedbyLaughlin[2] basedupona gauge densedmattersystemsbecauseoftheunusualstaggeredmag- a invariance argument, which is fundamentalto the picture of neticfluxassumedinthemodel. m edge states proposed by Halperin [3]. On the other hand, - Ontheotherhand,thetechnologyofultracoldatomsinan d Thouless, Kohmoto,NightingaleandNijs (TKNN)[4] inter- opticallatticeprovidesaperspectiveapproachtoexplorerich n pretedtheHallconductivityasthetopologicalChernnumber fundamentalphenomenaofcondensedmatterphysics[12,13, o of the U(1) bundle over the magnetic Brillouin zone of the 14].Inparticular,howtorealizetheQHEwithcoldatomshas c bulkstates. [ attractedconsiderableinterest[15, 16, 17, 18, 19]. Neverthe- Twentyyearsago,HaldaneshowedinprinciplethataQHE less,theatomicQHEhasnotbeenobservedyet,mainlydueto 2 may also result from breaking of time-reversal symmetry challengesinboththerealizationanddetectionoftheatomic v withoutanynetmagneticfluxthroughaunitcellofaperiodic 0 Halleffects. Althoughaneffectivemagneticfieldforneutral two-dimensional(2D)system,wheretheelectronstatesretain 5 atomscanbesimulatedeitherbyrotatingtheatoms[20]orby 8 their usual Bloch state character [5]. In his work, Haldane laser-induced Berry phases[21, 22, 23, 24], the strong mag- 1 constructedatight-bindingmodelonahoneycomblatticein- neticfieldregionrequiredforQHEhasnotbeenreachedyet 4. cludingacomplexsecondnearest-neighborhoppingintegral. inexperiments.Fortherotatingmethod,thesystemiscloseto 0 ThehoneycomblatticeconsistsoftwotriangularsublatticesA¯ thepointatwhichthecentrifugalpotentialcancelstheexter- 8 andB¯ with differenton-siteenergiesM and M, as shown nalharmonictrap,andtheatomsmayflyapartattherotation 0 − in Fig. 1a. For M = 0, the inversion symmetry is broken : 6 speedrequiredbyQHE[16,19]. Forthelaser-inducedBerry v and the lattice possesses the point group C3υ symmetry. A phaseapproach,thecoldatomsmovinginaspatiallyvarying i periodicvectorpotentialA(r) is appliedto thelattice, given X laser field feel an effective gauge potential[21, 22, 23, 24], that the total magnetic flux through each unit cell vanishes, r but the region of the strong uniform field is rather small for a i.e., the first-neighbor hopping integral t is unaffected. The twotypicalcounterpropagatingGaussianlaserbeams. Inad- ′ second-neighborhoppingintegralt acquiresa Peierlsphase dition, the detection method for cold atoms is very differ- factorexp(ie A dr/¯h), wheretheintegrationisalongthe ent from that for condensed matter systems; especially the · hoppingpath.RTheHamiltonianofthemodeliswrittenas widely used technique for QHE based on the transportmea- surementsisnotworkableforatomicQHE.InthisLetter,we H = (ta†lbj +H.c.)+ M(a†jaj −b†jbj) design an ingenious scheme to realize the Haldane’s quan- Xl,j Xj tumHallmodelwithoutLLsbyusingultracoldatomstrapped h i + t′eiϕjl(a†laj +b†lbj), (1) in an optical lattice. We work out a distinct method to con- Xl,j structthehoneycomblatticesthathavedifferenton-siteener- hh ii gies by three standing-wavelaser beams. Althoughit is still where a and b are the annihilation operators on site R in hardtoachieveastronghomogenousmagneticfieldrequired i i i sublattices A¯ and B¯, respectively. ϕ is the accumulated by the conventional QHE in atomic system, we may evade jl 2 (a) (b) are trappedat the minimaof the potential, forminga honey- 2 comblattice.Anamazingfeaturehereisthatthedifferentsite- 1 energiesofsublatticesA¯andB¯iscontrollablebythephaseof laser beam χ. For instance, we get exactly the honeycomb 0 lattice with the same on-siteenergies(M = 0) forχ = 2π, 3 −1 as shown in Fig.1b, while the two sublattices have different on-siteenergies(M =0)forχ= 2π. −2 6 6 3 −2 −1 0 1 2 Now we elaborate how to simulate the staggered mag- netic field in the Haldane’s model. Since the net flux per (d) (c) 2 unit cell vanishes, the vector potential applied to the lat- tice must be periodic. Such magnetic fields can be cre- 1 ated by Berry phase induced from two opposite-travelling 0 standing-wave laser beams [22]. For the two laser beams −1 with Rabbi frequencies Ω1 = Ω0sin(yk2L + π4)eixk1L and Ω2 = Ω0cos(yk2L + π4)e−ixk1L, the effective gauge poten- −−22 −1 0 1 2 tial is generated as A1(r) = h¯k1Lsin(2yk2L)ex [22]. Here, kL =kLcosθandkL =kLsinθwithkL thewavevectorof 1 2 FIG.1:(Coloronline)(a)IllustrationoftheHoneycomblatticestruc- thelaserandθ theanglebetweenthewavevectorandtheex tureofgraphene,whereopenandsolidcirclesrepresentsitesinsub- axis. We emphasizethatthechoiceofwavevectork2L ofthe lattices A¯ and B¯. a1 = (12a,−√23a), a2 = (12a,√23a) are the laser beamsmust be a multiple of 2√3a3π in order to be com- unit vectors of the underlying triangular sublattice. s1, s2 and s3 mensuratewiththeopticallattice. We takekL = 2√3π. The arethreevectorspointingfromaB¯ sitetoitsthreenearest-neighbor 2 3a Peierlsphasesforthenearest-neighborhoppinginFig.1aare sites. (b)and(c)showthecontoursofthepotentialVforχ=2π/3 andχ = 39π/60,respectively. Thevertical(horizontal)axisrepre- ϕ12 = ϕ61 = ϕ34 = ϕ45 = ϕ0 andϕ23 = ϕ56 = 0. For sentsykL/π(xkL/π).(d)Contoursofthemagneticfielddefinedby the next-neares−t-neighb−orhopping integrals, which are inte- 0 0 Eq.(2). grated on a period of the vectorpotential, the corresponding accumulatedphasesare ϕ13 = ϕ24 = ϕ46 = ϕ15 = 0, and thisbottlenecksinceLLsarenotnecessaryinthisunconven- ϕ35 = ϕ62 = ϕ, where ϕ = k1Lasina√k32L. Since the lattice hasthesymmetryofpointgroupC3v,thevectorpotentialA1 tional QHE. We elaborate that the staggered magnetic field, is rotated by 2π to obtain the other two vector potentials. which is hardto generatein condensedmatter systems, may ±3 Thenthetotalaccumulatedphasesalongthenearest-neighbor be rather easy to set up by other three standing-wave laser directions are found to cancel out because of the symmetry beams. Inthisscenario,differenton-siteenergiesintwosub- ofhoneycomblattice. However,thetotalaccumulatedphases latticescanbeeasilyadjustedthroughtuningthephaseofone for the next-nearest-neighborhopping along the arrowed di- of the laser beams, and thus the whole phase diagram[5] in- rectionsof the dashed lines in Fig. 1a are just ϕ. Therefore, cluding the exotic topological phase transition predicted by thetotalvectorpotentialandmagneticfieldcanbewrittenas Haldanemayberevealedexperimentally.Furthermore,based on (2 + 1)-dimensional relativistic quantum mechanics cal- A = h¯k1L[sin(2yk2L)+cos(√3xk2L)sin(yk2L)]ex culations,weestablishadirectrelationshipbetweentheHall √3h¯kLsin(√3xkL)cos(ykL)e (2) 1 2 2 y conductivityandtheequilibriumatomicdensity,suchthatthe − B = 2h¯kLkL[cos(2ykL)+2cos(√3xkL)cos(ykL)]e . famoustopologicalChernnumbermaybeexperimentallyde- 1 2 2 2 2 z − tectedwiththestandarddensityprofilemeasurementusedin The contours of the magnetic field are plotted in Fig. 1d, in atomicsystems[12]. which the red lines indicate where the magnetic field van- Let us first consider single component fermionic atoms ishes.Thetotalmagneticfluxthrougheachhexagonvanishes, (e.g.,40K,6Li,etc.)ina2Dhoneycomblattice[14,25],which as the Peierls phase accumulatedalong its edgesis zero. As can be realized by three detuned laser beams. A detuned aconsequence,thetotalHamiltonianofthiscoldatomicsys- standing-wavelaser beam will create a potential in the form tem can be described by Eq. (1). With Fourier transforma- V0sin2(kL0 ·r), where V0 is the potential amplitude and kL0 tionaj = √1N keik·Rjak andbj = √1N keik·Rjbk, the is the wave vector of the laser. To generate the honeycomb HamiltonianofPthesystemcanbewrittenbyPusing“spinors” lattice withdifferenton-siteenergiesinsublatticesA¯andB¯, (a ,b )tas k k thethreelaserbeamswiththesamewavelengthbutdifferent polarizationsare applied along three differentdirections: e Hk =h0(k)+h1(k)σ1+h2(k)σ2+h3(k)σ3, (3) y aVwnhd=er√e2V3α0e[xsi±n=2(12√αe3+yx,+kreLsπ2/p2)ec+tivyseiknlyL2.(/Ty2kh.e0LTph+oetepπ3no)ttie+anltsiisianlt2hc(uoαsn−tgoi−uvresnχ2ab)r]ye, 2swith)′,esrienhh2ϕ(0k(k))s=i=n(2kt′tcPoasi)ϕs.iPns(ki(cio·s=s(ki)1·,a,ia2)n,,dh31)h(ak3r)(ek=t)hetP=thrieceMosv(ekc+-· plottedin±Fig. 1ban0dFi±g. 1c0. Undertheseconditions,atoms torspointPingi froma· B¯isiteitoitsthreenearestneighbors.The 3 vectorh(k) = [h1(k),h2(k),h3(k)]isaneffectivemagnetic (a)6 field of the “spinors”. The energyspectraare E = h0(k) 4 C=0 bh|ha3(n(kKd)|−toa)un)cdwhetihsthethKeen±evrag=lyen±gcae43pπabi(as1n,|dh0)3a.|t,Itwwf hhoe3Dre=irha03c,p=thoeinhct3so(nKKd+u+c)t(ainoo±dnr ’--0242M/t C=-1 C=0 C=1 -6 -3 -2 -1 0 1 2 3 K . ThefamousTKNNindexorChernnumberforthissys- twemi−thishˆ(gkiv)eansbtyheCun=it8v1πecRt1oBrZofd2hk(kǫµ)ν.hˆIt·i(s∂dkµemhˆo×ns∂tkraνthˆe)d[t2h6a]t (b)-0121 (c)-0121 -2 -2 the gauge invariance C can only take integer values and the -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 quantumHallconductivityisproportionaltotheChernnum- (d)2 m+ (e)2 m+ ber[4]. FortheHaldane’smodel,differentphasesofthesys- 1 1 0 0 temcanbecharacterizedbydifferentvaluesofC. Thephase -1 -1 -2 -2 diagramisdepictedinFig. (2a)[5], in whichthesolidline is -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 thecriticalboundarybetweenthenormalinsulatorwithC =0 m+ m+ and the Chern insulator with C = 1. It is notable that the FIG.2: (a)Phasediagramofthesystem,wherethephaseboundary phase ϕ = πtanθ can be controll±able by simply choosing (solidline)correspondstoh3 = 0. Thesystembehaveslikeanor- mal insulator when C = 0 and aChern insulator when C = ±1. thelaserangleθ,whiletheenergydifferenceM betweensub- (b)-(e) Charge density in units B/φ0 for |m | = 0.5|m+| and lattice can be tuned by the phase of laser beams. With such eB¯hvF2 = 4|m+| as a function of normalize−d chemical potential controllability,itispromisingtorealizetheexotictopological µ/|m+|(correspondingtoarescaledatomicdensityprofileinatrap) phasetransitionbetweendifferentChernnumbersinFig. 2a. forfourdifferentcases: (b)m+ < 0 < m ,(c)m+ > 0 > m , We now turn to establish a direct connection between the (d)m+ <m <0,and(e)m+ >m >0−.In(b)and(c)thesh−ift topologicalChermnumberandtheatomicdensity,notingthat ofchargeden−sityatµ=0ispresents−othattheHallconductivityis nonzero. In(d)and(e),theshiftoftheatomicdensityisabsentand the latter can be detected with density profile measurements sotheHallconductivityvanishes. typicallyusedinatomicsystems. We firstdevelopaGreen’s functionmethodtocalculatetheatomicdensity.Thesystemis actuallydescribedbyaDirac-likeHamiltonianwhichcanbe Euclideanspace.FromthestandardGreenfunctionapproach, obtainedbyexpandingEq.(3)aroundtwoDiracpointsK = theatomicdensityisexplicitlyobtainedas 4π(1,0). By the substitution of k K + p, we h±ave H±3a= υFp1σ1 υFp2σ2 + m σ3→at K± , respectively, w3√h±e3rte′sυi∓nFϕ=. U√n32daetr−uisnitthaeryFterramnsifover±mloactiitoynaσn2d±Hm±σ2=, wMe ca±n ρ± = |φB0|sgn(µ)(cid:26)int(cid:20)2µh¯2v−F2|meB2±|(cid:21)+ 12(cid:27)Θ(|µ|−|m±|) writetheHamiltonianinamoresymmetricform− m B ± Θ(m µ), (7) H = vFp1σ1 vFp2σ2+mσ3, (4) ±2φ0|m±| | ±|−| | ± − − whereΘstandsfortheunitstepfunctionandint[x]meansthe where the notation m = m is introduced for simplicity ± ± largestintegerlessthanx. ThesecondtermofEq. (7)isthe (i.e.,wetemporallyomitsubscripts below). ± atomicdensityinducedintovacuumasµ 0bytheuniform Itisobservedthattheconductivityσ (Chernnumber)of → xy magneticfield. Itisofparityanomalysinceitscorresponding thesystemisrelatedtotheatomicdensityρaccordingtothe Hallcurrentisindependentofthe magneticfield aftermulti- Stredaformulaσ =∂ρ/∂ onceanadditionaluniform xy B|µ,T plyingthedriftvelocity / ,where istheelectricfield. magneticfield isapplied.Suchamagneticfieldcanbesim- E B E B The total atomic density is given by the sum of the den- ulated by rotating the optical lattice at a constant frequency sities of the two components ρ = ρ+ + ρ . At µ = 0, ω =eB/2m.WechoosethevectorpotentialasA0 =A1 =0 the Hall conductivity at = 0 can be obt−ained from the ean>dA0,2E=q.(B4)xc.aBnybeussionlgvetdheinsuthbestriteuatliospnapce→. Thpe+eigeeAnewneitrh- density by using the StreBda formula as σxy = Ceh2, where giesoftheHamiltoniancanbeobtainedas[5] C = 12[sgn(m+)−sgn(m−)]istheChernnumber. Toshow how to detect the Chern number of the system, we consider msgn(e ) n=0 a finite magneticfield . The calculateddensityρ in unitof En =(cid:26)− m2+B2n¯hv2 e n=1,2,3... , (5) e /φ0 is plotted as aBfunction of the normalized chemical and the dege±nepracy of each LFL| Bis| /φ0 per unit area with p|inoBtFe|ingt.ia2l.µ/It|mis+e|s(sfeonrt|imal−th|a=t t0h.e5|smpa+ti|aalnddeen¯hsivtFy2Bpr=ofi4le|mρ+(r|)) |B| φ0 the flux quantum. The density ρ in terms of the Green’s is uniquelydeterminedby the functionρ(µ/m+ ) in the lo- functionfortheDiracHamiltonianisgivenby | | caldensityapproximation,whichistypicallywellsatisfiedfor (D/ +m)G=1, ρ=−Tr[γ0G(x,x′)]|x→x′ (6) tTrhapeppeldatfeearumsiionntsh.eFaitgoumreisc2dbe-n2seitystahnadvefoornfeo-tuor-doinffeecroenrrtecsapsoens-. whereD/ =γτDτ,withD0 =h¯∂0 µ,D1 =h¯vF∂1,D2 = dencetotheplateausintheHallconductivityduetothefinite ¯hvF∂2 + ievF x, γ0 = σ3, γ1 =−σ2, and γ2 = σ1 in magneticfield > 0. We herefocusonµ = 0, whichisof B − B 4 ourmaininterest. Form+ < 0 < m ,whichcorrespondsto aware that a relation between the density profile and the − C = 1, the atomic density ρ = /φ0 < 0, as shown in HallconductivityinconventionalQHEwasalsoaddressedin − −B Fig. 2b. Form+ > 0 > m , whichcorrespondsto C = 1, Ref.[28]. We thankDr. H.Zhaiforbringingourattentionto − thedensityρ= /φ0 >0,asshowninFig.2c. Fortheother thatwork. B twocasesm+ < m < 0andm+ > m > 0,m+ andm − − − havethesamesign,correspondingtoC = 0,andthedensity ρ = 0,asseenfromFigs.2dand2e. Therefore,asimpledi- rect relation between the Chern number and the equilibrium atomicdensityisestablishedas ∗ Electronicaddress:[email protected] [1] K. v.Klitzing, G.Dorda, andM. Pepper, Phys.Rev. Lett.45, 494(1980). C =ρφ0/B. (8) [2] R.B.Laughlin,Phys.Rev.B23,5632(1981). [3] B.I.Halperin,Phys.Rev.B25,2185(1982). The important relation (8) actually provides us a feasible [4] D.J.Thoulessetal.,Phys.Rev.Lett.49,405(1982). waytoexperimentallydetecttheChernnumberC indifferent [5] F.D.M.Haldane,Phys.Rev.Lett.61,2015(1988). phases. In the absence of , the density of the cold atoms [6] G.W.Semenoff,Phys.Rev.Lett.53,2449(1984). B at µ = 0 is first measured, which is denoted as ρ0. Then [7] S.Deser,R.JackiwandS.Templeton,Phys.Rev.Lett.48,975 the opticallattice isrotatedto generatethe effectiveuniform (1982). magnetic field , and the new density of the cold atoms ρ1 [8] R.Jackiw,Phys.Rev.D.29,2375(1984). is measured. IfBρ1 > ρ0, the system is in a Chern insulator [9] W.A.Bardeenetal.,Nucl.Phys.B218,445(1983). [10] K.S.Novoselovetal.,Nature438,197(2005). phasewith ChernnumberC = 1. Ifρ1 < ρ0, the system is [11] Y.Zhangetal.,Nature438,201(2005). still a Chern insulator with C = −1. However, if ρ1 = ρ0, [12] J.R.AnglinandW.Ketterle,Nature416,211(2002). thesystembehaveslikeanormalinsulatorwithChernnumber [13] D.Jakschetal.,Phys.Rev.Lett.81,3108(1998). C = 0. Since the density differenceis actuallyquantizedin [14] L.M.Duan,E.Demler,andM.D.Lukin,Phys.Rev.Lett91, units /φ0,theabovemethodcouldberatherrobust. 090402(2003). B Finally, webrieflyaddressanalternativeapproachtoreal- [15] N.R.CooperandN.K.Wilkin,Phys.Rev.B60R16279(1999). izetheHaldane’sQHE.Thefermionswediscussedareinthe [16] N.K. Wilkin and J.M.F. Gunn, Phys. Rev. Lett. 84, 6 (2000); T.-L.Ho,ibid.87060403(2001);T.-L.HoandC.V.Ciobanu, s-band of the honeycomb lattice. As for fermions in the p- ibid,85,4648(2000);B.Paredesetal,ibid.87,010402(2001). orbitalbands, a Haldane’s quantumHall modelwithout LLs [17] A.S.Sorensen,E.Demler,andM.D.Lukin,Phys.Rev.Lett.94, can also be implementedby rotating each optical lattice site 086803(2005). aroundits own center[27]. Nevertheless, how to detectsuch [18] R.N.PalmerandD.Jaksch,Phys.Rev.Lett.96,180407(2006). p-bandQHEisstilldesirablyawaited. [19] S.Viefers,J.Phys.:Condens.Matter20,123202(2008). Insummary,wehaveshownthattheHaldane’sQHEmodel [20] N.K.Wilkin,J.M.F.Gunn, andR.A.Smith,Phys.Rev.Lett.80, canberealizedbyusingultracoldatomsinanopticallattice. 2265(1998). [21] G. Juzeliunas and P. Ohberg, Phys. Rev. Lett. 93, 033602 We haveestablishedarelationshipbetweentheHallconduc- (2004); J. Ruseckas et al., ibid. 95, 010404 (2005); tivity and the equilibrium atomic density, which provides a Y.Li,C.Bruder,andC.P.Sun,ibid.99,130403(2007). feasiblewaytoexperimentallydetecttheChernnumberC in [22] S.L.Zhuetal.,Phys.Rev.Lett97,240401(2006). differentphases. [23] K.Osterlohetal.,Phys.Rev.Lett.95,010403(2005). This work was supported by the State Key Program [24] G.Juzeliunasetal,Phys.Rev.A73,025602(2006). for Basic Researches of China (Nos. 2006CB921800, [25] S. L. Zhu, B. G. Wang and L. M. Duan, Phys. Rev. Lett 98, 2004CB619004, 2007CB925104, 2007CB925204, 260402(2007). [26] D. H. Lee, G. M. Zhang, and T. Xiang, Phys. Rev. Lett. 99, and 2009CB929504), the RGC of Hong Kong (Nos. 196805(2007). HKU7045/05P, HKU7049/07P and HKU7044/08P), the [27] C.Wu,arXiv:0805.3525(May,2008). URC fund of HKU, NCET and the NSFC under Grant Nos. [28] R.O.Umucalilar,H.Zhai,andM.O¨.Oktel,Phys.Rev.Lett.100, 10429401,10674049,and10874066. 070402(2008). Note added – After this work was completed we became

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.