ebook img

Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande PDF

0.5 MB·
by  K. Abe
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande

Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande K.Abea,ac,Y.Hagaa,Y.Hayatoa,ac,M.Ikedaa,ac,K.Iyogia,J.Kamedaa,ac,Y.Kishimotoa,ac, M.Miuraa,ac,S.Moriyamaa,ac,M.Nakahataa,ac,Y.Nakanoa,S.Nakayamaa,ac,H.Sekiyaa,ac, M.Shiozawaa,ac,Y.Suzukia,ac,A.Takedaa,ac,H.Tanakaa,ac,T.Tomuraa,ac,K.Uenoa, R.A.Wendella,ac,T.Yokozawaa,T.Irvineb,T.Kajitab,ac,I.Kametanib,K.Kaneyukib,ac,1, K.P.Leeb,T.McLachlanb,Y.Nishimurab,E.Richardb,K.Okumurab,ac,L.Labargac, 6 1 P.Fernandezc,S.Berkmane,H.A.Tanakae,S.Tobayamae,J.Gustafsond,E.Kearnsd,ac, 0 J.L.Raafd,J.L.Stoned,ac,L.R.Sulakd,M. Goldhaberf,1,G.Carminatig,W.R.Kroppg, 2 S.Mineg,P.Weatherlyg,A.Renshawg,M.B.Smyg,ac,H.W.Sobelg,ac,V.Takhistovg, r K.S.Ganezerh,B.L.Hartfielh,J.Hillh,W.E.Keigh,N.Hongi,J.Y.Kimi,I.T.Limi,T.Akirij, p A.Himmelj,K.Scholbergj,ac,C.W.Walterj,ac,T.Wongjiradj,T.Ishizukak,S.Tasakal, A J.S.Jangm,J.G.Learnedn,S.Matsunon,S.N.Smithn,T.Hasegawao,T.Ishidao,T.Ishiio, 1 T.Kobayashio,T.Nakadairao,K.Nakamurao,ac,Y.Oyamao,K.Sakashitao,T.Sekiguchio, 1 T.Tsukamotoo,A.T.Suzukip,Y.Takeuchip,ac,C.Bronnerq,S.Hirotaq,K.Huangq,K.Iekiq, T.Kikawaq,A.Minaminoq,A.Murakamiq,T.Nakayaq,ac,K.Suzukiq,S.Takahashiq, ] E K.Tateishiq,Y.Fukudar,K.Chois,Y.Itows,G.Mitsukas,P.Mijakowskiah,J.Hignightt, H J.Imbert,C.K.Jungt,C.Yanagisawat,M.J.Wilkingt,H.Ishinou,∗,A.Kibayashiu, Y.Koshiou,ac,T.Moriu,M.Sakudau,R.Yamaguchiu,T.Yanou,Y.Kunov,R.Tacikw,ae, . h S.B.Kimx,H.Okazaway,Y.Choiz,K.Nishijimaaa,M.Koshibaab,Y.Sudaab,Y.Totsukaab,1, p M.Yokoyamaab,ac,K.Martensac,Ll.Martiac,M.R.Vaginsac,g,J.F.Martinad,P.dePerioad, - o A.Konakaae,S.Chenaf,Y.Zhangaf,K.Connollyag,R.J.Wilkesag r t (TheSuper-KamiokandeCollaboration) s a [ aKamiokaObservatory,InstituteforCosmicRayResearch,UniversityofTokyo,Kamioka,Gifu506-1205,Japan bResearchCenterforCosmicNeutrinos,InstituteforCosmicRayResearch,UniversityofTokyo,Kashiwa,Chiba 2 277-8582,Japan v cDepartmentofTheoreticalPhysics,UniversityAutonomaMadrid,28049Madrid,Spain 8 dDepartmentofPhysics,BostonUniversity,Boston,MA02215,USA 7 eDepartmentofPhysicsandAstronomy,UniversityofBritishColumbia,Vancouver,BC,V6T1Z4,Canada 7 fPhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,USA 4 gDepartmentofPhysicsandAstronomy,UniversityofCalifornia,Irvine,Irvine,CA92697-4575,USA 0 hDepartmentofPhysics,CaliforniaStateUniversity,DominguezHills,Carson,CA90747,USA . iDepartmentofPhysics,ChonnamNationalUniversity,Kwangju500-757,Korea 1 jDepartmentofPhysics,DukeUniversity,DurhamNC27708,USA 0 kJuniorCollege,FukuokaInstituteofTechnology,Fukuoka,Fukuoka811-0295,Japan 6 lDepartmentofPhysics,GifuUniversity,Gifu,Gifu501-1193,Japan 1 mGISTCollege,GwangjuInstituteofScienceandTechnology,Gwangju500-712,Korea : nDepartmentofPhysicsandAstronomy,UniversityofHawaii,Honolulu,HI96822,USA v oHighEnergyAcceleratorResearchOrganization(KEK),Tsukuba,Ibaraki305-0801,Japan Xi pDepartmentofPhysics,KobeUniversity,Kobe,Hyogo657-8501,Japan qDepartmentofPhysics,KyotoUniversity,Kyoto,Kyoto606-8502,Japan r rDepartmentofPhysics,MiyagiUniversityofEducation,Sendai,Miyagi980-0845,Japan a sSolarTerrestrialEnvironmentLaboratory,NagoyaUniversity,Nagoya,Aichi464-8602,Japan tDepartmentofPhysicsandAstronomy,StateUniversityofNewYorkatStonyBrook,NY11794-3800,USA uDepartmentofPhysics,OkayamaUniversity,Okayama,Okayama700-8530,Japan vDepartmentofPhysics,OsakaUniversity,Toyonaka,Osaka560-0043,Japan wDepartmentofPhysics,UniversityofRegina,3737WascanaParkway,Regina,SK,S4SOA2,Canada xDepartmentofPhysics,SeoulNationalUniversity,Seoul151-742,Korea yDepartmentofInformaticsinSocialWelfare,ShizuokaUniversityofWelfare,Yaizu,Shizuoka,425-8611,Japan 1 zDepartmentofPhysics,SungkyunkwanUniversity,Suwon440-746,Korea aaDepartmentofPhysics,TokaiUniversity,Hiratsuka,Kanagawa259-1292,Japan abTheUniversityofTokyo,Bunkyo,Tokyo113-0033,Japan acKavliInstituteforthePhysicsandMathematicsoftheUniverse(WPI),TheUniversityofTokyoInstitutesfor AdvancedStudy,UniversityofTokyo,Kashiwa,Chiba277-8583,Japan adDepartmentofPhysics,UniversityofTorront,60St.,Torront,Ontario,M5S1A7,Canada aeTRIUMF,4004WesbrookMall,Vancouver,BC,V6T2A3,Canada afDepartmentofEngineeringPhysics,TsinghuaUniversity,Beijing,100084,China agDepartmentofPhysics,UniversityofWashington,Seattle,WA98195-1560,USA ahNationalCentreForNuclearResearch,00-681Warsaw,Poland Abstract Wepresentareal-timesupernovaneutrinoburstmonitoratSuper-Kamiokande(SK).Detecting supernovaexplosionsbyneutrinosinrealtimeiscrucialforgivingaclearpictureoftheexplosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of thedetectionmaygiveastronomersachancetomakeelectromagneticradiationobservationsof the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrinoburstdetectiontotheworldandadeterminationofthesupernovadirection. Wepresent the online neutrino burst detection system and studies of the direction determination accuracy basedonsimulationsatSK. Keywords: Supernova,Neutrinos,Super-Kamiokande 1. Introduction ThedetectionofneutrinosfromSN1987Aopenedaneweraofneutrinoastronomy[1]. Al- thoughthenumberofthedetectedneutrinoevents[2]wassmall, significantinformationabout thesupernova(SN)explosionandneutrinopropertieswasobtained[3]. Thecurrentgeneration ofdetectorsarewaitingforthenextSNneutrinobursttoaccumulateeventstatisticsmuchlarger thanthoseofSN1987A. The SN burst neutrinos arrive at the Earth earlier than the electromagnetic radiation, since the neutrinos generated at the core of the explosion and emitted from the surface of the neu- trinospheretravelatnearlythespeedoflight,whiletheshockwavespropagatingtotheoutside with velocity much slower than the neutrino velocity result in the emission of electromagnetic radiation[4]. Thedelaymaydependonthestructureoftheenvelopeofthecoreaswellasthe surrounding stellar environment, and is expected to range between tens of minutes and tens of hours [5]. Therefore, the detection of the neutrino burst can generate a warning able to allow theastronomerstoobservetheradiationfromtheonsetoftheexplosion. Suchwarningsystems havebeendevelopedbyseveralneutrinoobservatories[6][7]aswellasbythesupernovaearly warningsystem(SNEWS)[8]. ∗CorrespondingAuthor,HirokazuIshino,DepartmentofPhysics,OkayamaUniversity,[email protected] 1Deceased. PreprintsubmittedtoAstroparticlePhysics April13,2016 It is also important to determine the SN direction using the neutrino signal: the direction information can guide optical instruments toward the SN explosion and enable observation of the onset of radiation. Among the neutrino detectors operating at present, Super-Kamiokande (SK) is the only detector able to determine the SN direction using neutrino events. We have developedaSNdirectiondeterminationmethodbyapplyingamaximumlikelihoodfit. SK is the world’s largest water Cherenkov detector located 1,000 m underground, inside a mountain in Kamioka, Gifu, Japan. The detector consists of 50,000 tons of ultra-pure water andabout13,000photomultipliertubes(PMTs). Basedontheinformationoftheyieldsandthe arrival timing of Cherenkov photons for individual PMTs as well as the PMT locations, SK is abletomeasuretheposition,directionandenergyofaneutrinoeventinrealtime. Detailsofthe SKdetectoranditsperformancearedescribedin[9]. In2008,SKupgradeditsreadoutsystem. The system has improved the data processing speed significantly, lowering the trigger energy thresholdanddeadtimefortheSNburstevents[10]. WewilldescribetheSNneutrinoburstmonitoratSK.InSection2, wewilldescribedetails ofthemonitorsystemanditsperformance. WefirstdescribeSNmodelsusedinthisreportfor performanceevaluations. AMonte-Carlo(MC)simulationwiththeSNmodelsisutilizedforthe estimationofthedetectionefficiency. WewillexplaintheselectioncriteriatodiscriminateSN bursts and the main background in SK: radioactive decays caused by cosmic ray muon spalla- tion[11]. InSection3,wewilldescribeamethodtoreconstructtheSNdirectionandstudiesof itsperformance. 2. Realtimesupernovaneutrinoburstmonitor 2.1. Supernovamodels We first describe the SN models we use in this report. We employ two models for the SN neutrino burst: the Wilson model [12] and the Nakazato model [13]. For the Nakazato model, wechoosetwoparametersets: M = 20, t = 200msecandZ = 0.02(NK1), and M = 13, revive t = 100 msec and Z = 0.004 (NK2), where M is the progenitor mass in units of the solar revive mass,t istheshockrevivaltimeandZisthemetallicity,respectively.Wechoosethefirstone revive fortheSN1987Aprogenitormass,whichisabout20timesthesolarmass. Themodelwiththe latterparametersgivesthesmallestneutrinofluxesintheNakazatomodel. Bothmodelsprovide timedependencesofneutrinoluminositiesandenergyspectraforν , ν¯ andν , for18seconds e e x (20seconds)fortheWilson(NK)model,whereν referstothemuonandtautypesofneutrinos x andanti-neutrinos. Theanti-electronneutrinofluencesofthemodelsofWilson,NK1andNK2 are16.0,9.8and9.4,respectively,inunitsof1010/cm2intheenergyrangeof7to50MeVatthe distanceof10kpcwithoutneutrinooscillation. Wealsotakeintoaccountneutrinooscillations based on [14]. We assume P = 0 in the parameterization of [14], which implies adiabatic H transitionsbetweenelectronandtau(anti-)neutrinosduetosin22θ = 0.095±0.010[15]. In 13 this report, we do not take into account collective effects. We use the cross sections [16] for theinversebetadecays,[17][18]forthechargedcurrentinteractionstooxygen,and[19]forthe electronelasticscatterings. Monte-Carlo simulation samples are generated for the three SN models and three neutrino oscillationhypothesesbymakinguseofthefullSKdetectorMCsimulatorbasedonGeant3in theSKinnerdetectorvolume(32.5-kton)intheenergyrangeof3to60MeVtakingintoaccount thetriggerthresholdcurve.Thecalibrationofthedetectoranditssimulationaredescribedin[20]. WeapplytheSKstandardreconstructionprogramtothegeneratedMCeventstoobtainthevertex 3 Table1:NumbersofexpectedeventsatSKinthe22.5-ktonfiducialvolumewiththe7MeVtotalenergythresholdfor aSNburstwithadistanceof10kpc. WeestimatedthesenumbersusingSKMC:wegenerate3,000ensemblesofthe MCsamples,reconstructedtheeventswiththeSKstandardreconstructiontool,appliedtheselectioncriteria,andthen calculatedtheaveragenumbers. Wilson NK1 NK2 noosc. NH IH noosc. NH IH noosc. NH IH ν¯ +p→e++n 4923 5667 7587 2076 2399 2745 1878 2252 2652 e ν +e− →ν +e− 74 130 114 43 56 56 39 54 54 e e ν¯ +e− →ν¯ +e− 25 29 37 10 12 14 9 11 13 e e ν +e− →ν +e− 41 33 34 17 19 18 17 17 17 x x ν¯ +e− →ν¯ +e− 34 33 29 14 14 14 13 13 14 x x ν +16O→e−+X 8 662 479 22 78 74 16 72 68 e ν¯ +16O→e++X 64 196 531 27 48 70 20 41 64 e total 5169 6750 8811 2209 2626 2991 1992 2460 2882 position,thedirectionandthetotalenergyofeachevent. IntheSNmonitor,weuseeventswith total energy greater than 7 MeV in the 22.5-kton fiducial volume, where the fiducial volume is defined as the volume whose surface is located 2 m inside from the surface of the SK inner detectorvolume. WegenerateMCsamplesforthethreeSNmodelsforthethreeneutrinooscillationhypotheses: nooscillation,normalhierarchy(NH)andinvertedhierarchy(IH).Table 1showstheexpected numbersofeventsofthethreeSNmodelsatSKinthe22.5-ktonfiducialvolumewiththetotal energy threshold of 7 MeV, obtained by averaging the 3,000 MC ensembles at the distance of 10 kpc. Figure 1 shows the reconstructed energy distributions at SK for the Wilson and NK1 models with and without neutrino oscillations to display the effect of the neutrino oscillations. Figure 1 also shows the energy spectrum of the spallation events found in the silent warnings describedinSec.2.2. 2.2. Themonitorsystem In this section, we will describe details of the SN neutrino burst monitor system. Figure 2 showsa flowdiagramofthe system. TheSKdatacollected bythedata acquisitionsystemare senttotheeventbuilder. Attheeventbuilder,theeventdataarepackedandstoredinadatafile which we call a sub-run file. Each sub-run file contains about one minute of event data. The sub-runfilesaresenttoboththeofflineprocessandtheSNburstmonitor. Intheofflineprocess, thedatafilesareconvertedtoanofflinedataformatthatisusedforvariousphysicsanalysesand detectorcalibrations.TheSNmonitorsystemisrunningonasinglecomputeronwhichacontrol processoperatingcontinuouslyhandlesalltheprocessesandthedatafiles. For each sub-run file sent to the SN monitor, two processes are automatically executed by the control process: a reformat process (the first process) and an event reconstruction process (the second process). The reformat process converts the online data format to the offline data format. Using the offline format data, the event reconstruction process reconstructs the vertex position, directionandenergyforeachevent. Ittakesabouttwominutestofinishthereformat and event reconstruction for one sub-run file.Events with total energy greater than 7 MeV and vertex position within the 22.5-kton fiducial volume in SK are selected. We remove cosmic 4 raymuonsandtheirsubsequentdecayelectronevents.Afterthereconstructionofeachselected event,a20-secondtimewindowisopenedbackwardsintimefromtheevent,andthenumberof selected events in the window (N ) is counted. If there is a sub-run file boundary, the time cluster windowextendstotheprevioussub-runfile. WealsocomputeavariableDthatcharacterizesthevertexdistribution. ThevariableDidenti- fiesthedimensionofthevertexdistributionandisanintegernumberfrom0to3,corresponding topoint-,line-,plane-andvolume-likedistributions,respectively. ThevariableDisdetermined bycomparingχ2valuesobtainedfromthelengthsofthemajorandminoraxesthatcorrespondto theeigenvaluesofacorrelationmatrixofthevertexdistribution.Thecorrelationmatrixisa3×3 matrixwhoseelementsaredefinedas(cid:104)(x −(cid:104)x(cid:105))(x −(cid:104)x (cid:105))(cid:105),wherei, j=1, 2, 3identifythever- i i j j texpositionaxesand(cid:104)x(cid:105)isthemeanvalueofavariablex.Weconstructaχ2 =(cid:80)Ncluster|d(cid:126) −d(cid:126)((cid:126)s)|2, n=1 n whered(cid:126) isthen−theventvertexpositionandd(cid:126)((cid:126)s)isapositionclosesttod(cid:126) oneitherapoint,a n n lineoraplanewithparameters(cid:126)sthatdeterminethegeometryofthethreecases. Thethreeeigen- valuesλ (i = 1, 2, 3,andλ ≤ λ ≤ λ )areusedtoconstructtheminimumχ2 valuesthatare i 1 2 3 (λ +λ +λ )/3,(λ +λ )/2andλ ,computedbyassumingthevertexdistributionispoint-,line- 1 2 3 1 2 1 andplane-like,respectively,withtheconditionof∂χ2/∂(cid:126)s = 0. Thecomparisonoftheχ2 values todetermineaDvalueistunedusingMCsimulationssothatthecalculatedDvaluereproduces theinputone. IncaseofarealSNburst,thevertexdistributionshouldbeuniforminSK,andwe wouldhaveD=3,dependingonthenumberofburstevents,whichisconfirmedbyasimulation. Incontrast,forthecaseofabackgroundburstmainlyoriginatingfromspallationevents,thever- texpositionsdistributealongtheparentmuontracks,andwewouldhave D = 2,1or0,where the spallation events are the radioactivities created by both high-energy cosmic ray muons and by constituents of the resulting hadronic showers. When the process finds N ≥ 60 events cluster and D = 3, it generates a prompt SN burst warning which initiates phone-callings and emails senttoexpertsintheSKcollaborationwithinafewminutesaftertheSNburstoccurs. Wecall suchawarninga“golden”warning. Subsequenttoagoldenwarning, theexpertsstartameet- ing in order to make a world-wide announcement within one hour. The threshold of N is cluster determinedsothatwewouldhave100%SNdetectionefficiencyattheLargeMagellanicCloud (LMC)assumingthethreeSNmodelsdescribedinSection2.1. The third process in Fig. 2 combines all the sub-run data and determines the SN direction by a fit. All the SN burst event information is summarized and sent to the experts by e-mail, whichisalsousedastheinputtothediscussions.Followingthesediscussionstheannouncement containingtheinformationaboutthenumberofobservedneutrinos,thebursttimeduration,the universaltimethebursthappensandtheestimateddirectionoftheSNintheequatorialcoordinate systemisbroadcasttotheATEL[21],GCN[22],IAU-CBAT[23]andSNEWS[8].Theuniversal timeisdeterminedusing1pps(pulsepersecond)signalsfromtheglobalpositioningsystemand a local time clock system consisting of a commercial rubidium clock [24]. No golden prompt warninghasbeensentsofar. WhentheSNbursthaslessthan60events,thegoldenwarningwillnotbegenerated. Instead we set another threshold. The threshold for generating the warning is determined so that the backgrounds are suppressed: we set the threshold of N ≥ 25 and require D = 3. The cluster warninggeneratedwiththisconditioniscalledanormalwarning. Thenormalwarningissentto theexpertsonlybye-mail, withoutphone-calls, andtoSNEWS.Convenersamongtheexperts check the event cluster found by this warning and make a decision about whether to have a meetingfortheannouncement.Thenormalwarningthresholdissetsothatwewouldhave100% SN detection efficiency at the Small Magellanic Cloud (SMC) assuming the three SN models. 5 The details of the detection efficiency will be described in Section 2.3. The reason to provide thenormalwarningistoavoidanyfakewarningscausedbyunexpectedsoftwareandhardware troubles. Wehavehadnonormalwarningsofar. Insummary,theSNmonitorreformatsthedataanddeterminesthevertexposition,direction, and energy of events within a few minutes of the data being collected. It then searches for burstsofevents-aclusteroccurringwithin20seconds-withenergiesabove7MeVandwhose verticesfallwithinSK’s22.5-ktonfiducialvolume. Withinanhourofawarningbeingissued, theexpertsgatherandholdameetingtodeterminetheappropriatepublicannouncementtomake, ifany,basedonthequalityandnatureofthedetectedburst. Wealsoprovidealowerthresholdsuchthatwerequiremorethan13eventsin10seconds. We call a warning generated with this condition a “silent” warning. The conditions were tuned so thatwewouldhaveafewwarningsperdayfromspallationevents. Thesilentwarningsaresent toonlyafewexpertsofthemonitorsystemoperationanddetectorcondition,andarenotusedas thefastalertforaSNburst. 2.3. PerformancestudyoftheSNburstmonitorwithsimulations Figure 3 shows the minimum χ2 distributions for the three geometrical assumptions and D distributionsforSNMCandspallationdatatriggeredbythesilentwarnings.Thespallationevent clusterisidentifiedfromthevertex,energyandtimedistributions,i.e.,thevertexdistributionis concentratedaroundtheparentmuontrack,theenergiesoftheeventshavethetypicalspallation energyspectrumupto20MeV,andthetimedistributionisanexponentialdecayconsistentwith thelifetimesofthespallationproducts. Inthefigure,wegenerateMCsimulationsamplesinthe rangeof60≤ N ≤100uniformly,andplotthedistributionsforthesamples.Theprobability cluster tohave D ≤ 2forSNMCwiththe N rangeis8×10−4. NoSNMCsamplehaving D ≤ 2 cluster isfoundfor930,000sampleswith100 < N < 1,000. Foranormalwarningcondition,i.e., cluster 25 ≤ N < 60,theprobabilitytohaveD ≤ 2is1.3%. ThisdemonstratesthatthevariableD cluster candiscriminatebetweentheSN-likeclustersandspallationbackgroundclusters. Figure4showstheSNdetectionefficiencyasafunctionofadistancetoaSNforthenormal and golden warnings for the three SN models without neutrino oscillation and with neutrino oscillationsfornormalandinvertedmasshierarchyhypotheses. Itisfoundthatthesystemhas 100% detection efficiency up to the LMC located at 50 kpc away for all three models for the golden warning with the three hypotheses. For the SNe at the SMC, about 64 kpc away, the efficiencydependsonthehypothesesfortheNakazatomodel,andis100%fortheWilsonmodel. Thenormalwarninghasalmost100%detectionefficiencyforthethreemodels. Theefficiency is basically determined by the number of inverse beta decay events. The difference between detection efficiencies among the three hypotheses of the neutrino oscillations is caused by the difference between the ν¯ energy spectra. The average energy of ν¯ is smaller than that of ν¯ e e x when those neutrinos are emitted from the neutrinosphere. With neutrino oscillations, ν¯ are x convertedtoν¯ andthereforetheaverageenergyofν¯ atSKincreases,resultinginahigherevent e e rate of the inverse beta decays. Due to this effect, the detection efficiency of SNe at the SMC increasesforthecaseofneutrinooscillations. 2.4. OperationoftheSNburstmonitor WehaveoperatedtheSNburstmonitorsystemforabout20years,sincethebeginningofSK data-taking in 1996. The SN burst selection criteria and operation scheme have been changed, updated,andimprovedthroughoutthisperiod. TheSNmonitorsystemschemedescribedinthis 6 reportcameintoserviceinAprilof2013.Beforethattime,earlierversionsofthemonitorsystem hadbeenrunningasoneoftheofflineprocesses. InFig. 5(a),weshowthesilentwarningratesper24hoursasafunctionoftheelapseddays fromJan.1st,2010.Theratehastrendsasaconsequenceof–andwhichtrack–variationsofthe watertransparencyinSK.TheenergyscaleusedintheenergyreconstructionprogramintheSN monitorprocesshasbeencontinuallyadjustedtocompensateforthesetransparencyfluctuations. Despitethesefluctuations,thewarningratehasbeenrelativelystableoverthelastsixyears,with anaveragerateof2.4warningsper24hours. Theexpectednumberofaccidentalbackgroundeventssatisfyingtheeventselectionis0.121 events per 10 seconds with a root mean square of 0.007 events. We estimate this by counting thenumberofeventsintheSKfiducialvolumewithatotalenergygreaterthan7MeVforone day,andscalethisnumbertoarateper10seconds. Figure5(b)showstheestimatedaveraged backgroundeventrateforarecentperiodof434days. Thebackgroundeventsareconsideredto bespallationproducts,sincethereshouldbenegligiblecontaminationfromknownradioactivities otherthanspallationproductsgiventheappliedenergythreshold. Figure 5 (c) shows the data processing time distribution for the silent warnings found. The average time to finish the processing is about 170 seconds; fluctuations are caused by the re- construction process and the condition of the network through which the data sample files are copied from the SK data acquisition system. The offline SN monitor that had run before April 2013 took about five minutes to finish the reformat and reconstruction processes, as the offline reconstruction program was tuned for physics analysis andcalibration. We have optimized the reconstructionprogramfortheonlineSNmonitortoincreasetheprocessingspeedwithoutde- gradingitsperformance. Figure5(d)showstheaveragedmonthlydutycycleoftheSNmonitorsystemoverarecent34- monthperiod;theSNmonitoroperateswithadutycycleofabout97%.Themonitorsearchesfor SNeventburstsduringnormalSKrunning,butitdoesnotoperateduringSKdetectorcalibration runs, particularly during those calibration runs employing artificial sources that intentionally generate event bursts. Most of the 3% loss of the SN monitor duty cycle comes from planned calibration. NotethatevenwhentheSNmonitorisoff,SKstillhasanon-realtimecapabilityto detect a SN burst during these calibration runs. This is achieved via dedicated offline analyses whichremovelikelysourceeventsbasedontheirvertexpositionsandeventtimings. We use the spallation events found as silent warnings to estimate the false alarm rate by as- suming constant rate Poisson processes rather than generating simulation samples of the back- grounds.Wecombinemultiplesilentwarningsrandomlyandformacombinedclustertoestimate aprobabilityofhavingagolden(normal)warning. Using2,551silentwarnings, wecombined twoofthemforallcombinationsoftwospallationbursts,toform C = 3,252,525patterns, 2551 2 and estimate the probability for the combined burst to pass the criteria for a golden (normal) warningtobe0(4.3·10−6). Forthreecombinationswith C patterns,theprobabilityises- 2551 3 timatedtobe4.1·10−5(1.9·10−4)foragolden(normal)warning. Onesilentwarninghappens every10hours. Theprobabilitytohavetwo(three)spallationclusterscoincidentwithin20sec is5.6·10−4(3.1·10−7). Thereforetheprobabilitytohaveagolden(normal)warningduetoacci- dentallycoincidentspallationburstsis3.1·10−7×4.1·10−5 =1.3·10−11(5.6·10−4×4.3·10−6 = 2.4·10−9).Thefalsealarmratesarecalculatedtobeonceper9.0·107yearsforagoldenwarning andonceper4.7·105yearsforanormalwarning. The processes in the SN burst monitor are kept under observation by a web-based monitor runningonadedicatedPC.Anyproblemsaredisplayedonthewebmonitorimmediatelyafter theyarefound,andtheSKshifttakersarenotifiedbyvisibleandaudioalerts. 7 3. DeterminationoftheSNdirection The determinationof theSN directionis crucialsince thedirection information providedby neutrinosisusefulforastronomerstoobservetheSNexplosionprocessfromtheonsetviaelec- tromagnetic waves. At present, SK is the only operating experiment with sufficient detector mass to determine the neutrino direction from elastic scattering events which preserve the SN direction. Though the inverse beta decay events also have a correlation with the SN direction, theelasticscatteringeventsmainlydominatethedirectiondeterminationpower. Astudyofthe determinationoftheSNdirectionusingneutrinoswasperformedby[25][18]. Here,wepresent amethodwehavedeveloped. WewillexplainthealgorithmtodeterminetheSNdirection,and thenwillshowitsperformanceobtainedusingSKMC. 3.1. Algorithm WedeterminetheSNdirectionbasedonamaximumlikelihoodmethod.Alikelihoodfunction L fori-theventisdefinedas: i (cid:88) L = N p (E,dˆ;dˆ ), (1) i rk r i i SN r where the index r indicates one of the four neutrino interaction channels: inverse beta decay (ν¯ p),electronelasticscatteringofanti-electronneutrino(ν¯ e),otherelasticscatterings(νe)and e e thecharged-currentinteractionsonoxygen(ν16O).Theindexkindicatestheenergybin,running from 1 to 5 for the energy ranges of 7 < E < 10, 10 < E < 15, 15 < E < 22, 22 < E < 35 and 35 < E < 50, respectively, where E is the measured total electron energy in MeV. N is rk thenumberofeventsoftheinteractionrinthek-thenergybin. E isthei-theventtotalelectron i energy, which uniquely determines the index k, dˆ is the i-th event direction and dˆ is the SN i SN direction we want to determine. The p (E,dˆ;dˆ ) function is a probability density function r i i SN (PDF)forinteractionrasafunctionoftheenergyE andaninner-productofdˆ ·dˆ =cosθ . i i SN SN ThePDFisdeterminedusingSKMC.Thenumberofν¯ elasticscatteringeventscanbeinferred e from the number of inverse beta decay events with the relation N = (cid:80) A N , where ν¯ee,k m km ν¯ep,m thematrix A iscalculatedfromaratioofthetotalcrosssectionsofthetwointeractions. We km determine PDFs for elastic scatterings with the following procedure. We divide the SN MC sampleelasticscatteringeventsgeneratedwiththeWilsonmodelintoone-MeVbinsfrom7to 35 MeV. For energies greater than 35 MeV, we combined all events into one bin. Then we fit the cosθ distribution with the known SN direction in MC using a model function that is the SN superpositionoffourexponentialfunctionsandcontainingeightparametersforeachenergybin. Foragivenenergyvalue,wecomputetheeightparametervaluesbyinterpolatingtheparameter values of neighboring two energy bins and applying those to the model function to obtain the PDFvalue. AsimilarprocedureisappliedtothePDFsforinversebetadecaysandinteractions   onoxygentodeterminethePDFvalues. WeconstructalikelihoodL=exp(cid:88)Nrk(cid:89)Li,and k,r i maximizeitsothat: ∂L ∂L = =0, (2) ∂Nrk ∂dˆSN wherefor N wevaryr = ν¯ p, νeandν16O.Forr = ν16O,weassumethecosθ issamefor rk e SN neutrino and anti-neutrino interactions. We set N = 0 for r = ν16O with k = 1, 2, 3, as the rk expectednumberofchargedcurrentinteractionsonoxygenisnegligibleinthoseenergyranges, as shown in Fig. 1.The SN direction dˆ contains two parameters: zenith and azimuth angles, SN 8 thataretranslatedtothedirectionintheequatorialcoordinatesystemwiththetimetheburstis found. Hence,wevary14parametersofN anddˆ intotal. rk SN Whenweperformafitwiththelikelihoodmethod,wefirstdeterminetheinitialvalueofthe directionbasedonagridsearch: wescanalldˆ tothe4πdirectionswithacoarsegridstepand SN count the number of events that satisfy cosθ > 0.8 at each step, and we set the initial value SN thatgivesthelargestnumberofevents. 3.2. Performance Figure 6 demonstrates cosθ distributions of a fit to a MC sample of the Wilson model at SN 10kpcforthefiveenergybinsandcombinedonewiththesuperpositionsofthefittedlikelihood functions. Figure 7 shows the corresponding direction distribution on a sky map in the equa- torial system. The red (blue) points are the reconstructed directions of each elastic scattering event (inverse beta decay or charged current reaction on oxygen), and the star mark shows the reconstructed SN direction. The elastic scattering events concentrate around the reconstructed SNdirection,whilethedistributionofinversebetadecaysandchargedcurrenteventsisalmost uniformacrosstheentiresky. Figure 8 shows ∆θ distributions of the three models (Wilson, NK1 and NK2) for 3,000 MC samples at 10 kpc without neutrino oscillation, where ∆θ is the angle between the input SN directionandthefitteddirection. ThesolidlinesarefitresultsusingthevonMises-Fisher(MF) distribution[26]: κ f(∆θ;κ)= eκcos∆θsin∆θ, (3) 2sinhκ whereκdeterminesthesharpnessofthedistributionconcentrationonasphere. WeestimatetheangularresolutionsoftheSNdirectiondeterminationusinganensemblees- timation. Inordertocopewithanypossiblecombinationsoftheelasticscatteringsandinverse betadecays,weemploythefollowingmethod.WegenerateanumberofMCsamplesforvarious combinationsoffittedyieldsoftheelasticscatteringsandinversebetadecaysintherangesupto 1,500fortheformerand60,000forthelatter. Wedivideeachrangeinto15toobtaina15×15 matrix. Eachmatrixelementcontainsabout3,000MCsamples. Foreachelement,wedetermine theangleθ thatcovers68.2%,90%and95%oftheMCsamples. Wealsoprovideprobabilities en tohavethetrueSNpositionin2,5and10degreeswithrespecttothefitteddirection. Wegen- eratethematricesfortheWilsonandNK1modelswith(NH)andwithoutneutrinooscillations. Thedependenceoftheθ onthemodelshasabouta10%variation.Weemploythelargestvalues en ofθ andthesmallestvalueoftheprobabilitiesforeachmatrixelementconservatively. When en wefindaSNneutrinoburst, weapplythefittothebursteventstoobtaintheSNdirectionand theyieldsoftheelasticscatteringsandinversebetadecays.Withthefittedyields,weidentifythe matrixelementandobtaintheangularresolutionsandtheprobabilitiesthataretobeannounced tothepublic.Forexample,wefindθ =3.1∼3.8◦(4.3∼5.9◦)at68.2%coveragefortheWilson en (NK1)modelat10kpc,wheretherangecoversvariousneutrinooscillationscenariosinTable1. TheNakazatomodelalsoprovidesaSNmodelwithablackholeformationfor M = 30solar mass [13] . The model predicts that neutrino emission suddenly stops 842 ms after the core bounce. IftheSNmonitorobserves anabruptcutoff ofthesupernova neutrinoflux, thiscould bethesignatureofthebirthofablackhole.Basedonthismodel,wegenerateMCsamplesand apply the fit. We obtain an angular resolution of 2.3 degrees at 10 kpc with 68.2% confidence level. Therefore this may help the identification of a position of a disappeared massive star as proposedby [27]. 9 In order to understand the behavior of the estimated angular resolution, we make use of the curvatureofthelikelihoodatitsmaximalposition: wedefineavalueσas: σ= (cid:118)(cid:117)(cid:117)(cid:117)(cid:117)(cid:116)− 1 , (4) ∂2lnL ∂θ2 SN where the second derivative is the curvature calculated at the point on the sphere at which the likelihoodfunctionLbecomesmaximal. Wecalculateσvaluesalongfourplanesthatinclude the maximal point and have different azimuth angles with respect to the point, and employ the maximumamongthefourσvalues. Thenweobtaintheresolutionθ (q)thatcoversanareawith σ afractionofq=1−poftheMFdistributionwitha pvalue: (cid:34) (cid:35) 1 (cid:16) (cid:17) θ (q)=arccos ln 1−q+qe−2κ +1 , (5) σ κ andκ=1/σ2. In Fig. 9 (a) and (c), we show the obtained angular resolution at the 68.2% coverage for the ensemble estimation of the fit, the likelihood curvature method and the ensemble estimation usingagridsearchasafunctionofthedistancefortheWilsonandNK1models. Wefindthat the∆θdistributionsarewellmodeledbytheMFfunctionandthelikelihoodcurvatureestimation θ (q)(q = 0.682)isconsistentwiththatoftheensembleestimationforthestatisticslargerthan σ those of SNe at 10 kpc (7 kpc) for the Wilson (NK1) model. However, θ (q) is found to be σ an underestimate for the smaller statistics. The degradation of the angular resolution for the distant SNe is likely due to failure in giving a proper initial value of the SN direction by the gridsearch,indicatedbythefactthattheθ valueapproachesthatofthegridsearchforlarger en distances (smaller statistics). The small statistics produce a large fluctuation that sometimes makes a fake peak on the grid direction search. That makes the initial value a wrong direction andthelikelihoodfitfindsalocalminimumaroundthedirection. Figure9(b)and(d)showthe ensembleestimationoftheangularresolutionasafunctionoftheSNdistanceforthreeneutrino oscillationhypotheses. Theangularresolutionswiththetwoneutrinooscillationhypothesesare smaller than those without neutrino oscillation. This is due to an increase in elastic scattering eventsasshowninTable1. WeestimatetheprecisionoftheangularuncertaintyusingEq.(5)undertheassumptionsofthe (cid:112) SNmodelsused;theprecisionof∆θ isdeterminedusing∆θ =dθ /dq·∆q=dθ /dq· q/N, σ σ σ σ where N = 3,000isthenumberofsamplesintheensemble. Wefind∆θ = 0.09degreeswith σ q = 0.682fortheNK1modelwiththeNHneutrinooscillationatadistanceof10kpc,whichis muchsmallerthantheangularresolutionvariationofvariousneutrinooscillationscenarios. 4. Summary Wedescribeareal-timemonitorofaSNneutrinoburstatSK.Themonitorisabletoprovide a fast warning to the world within one hour. The system is operating on a dedicated computer independentoftheofflineprocesses. TheSNneutrinoburstselectioncriteriaaredeterminedso that fake event bursts mainly caused by spallation events are rejected. Using MC simulations, we find that the system has 100% detection efficiency up to the LMA for the three SN models withthegoldenwarningcriteria.Theexpectedtotalnumberofneutrinoeventswiththeselection 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.