SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY COMPUTATIONAL INTELLIGENCE Swagata Das Devashree Tripathy Jagdish Lal Raheja Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG SpringerBriefs in Applied Sciences and Technology Computational Intelligence Series editor Janusz Kacprzyk, Polish Academy of Sciences, Systems Research Institute, Warsaw, Poland The series “Studies in Computational Intelligence” (SCI) publishes new develop- mentsandadvancesinthevariousareasofcomputationalintelligence—quicklyand with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/10618 Swagata Das Devashree Tripathy (cid:129) Jagdish Lal Raheja Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG 123 Swagata Das Jagdish LalRaheja MachineVision Laboratory MachineVision Laboratory CSIR-Central Electronics Engineering CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI) Research Institute (CSIR-CEERI) Pilani,Rajasthan, India Pilani,Rajasthan, India Devashree Tripathy MachineVision Laboratory CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI) Pilani,Rajasthan, India ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied SciencesandTechnology ISSN 2625-3704 ISSN 2625-3712 (electronic) SpringerBriefs inComputational Intelligence ISBN978-981-13-3097-1 ISBN978-981-13-3098-8 (eBook) https://doi.org/10.1007/978-981-13-3098-8 LibraryofCongressControlNumber:2018960739 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Preface Brain–computer interface (BCI) systems have always been of great use to needy paralyzed patients having the ability to provide control over any desired device. The present world calls for the need of a strong assistance system to help physically impaired people perform any anticipated task without human aid. This book proposes such a system which has the ability to perform desired actions in real time and give the impaired person a facility to move a robot in any specified direction. The system acquires the neurally impaired patient’s brain signals using a SIMULINK-based model and uses their thoughts and expressions to interact with an Arduino-based speed controllable robot. It has future prospects of being implemented as a complete moving apparatus along with the patient without the involvement of any physical activity. The system is based on a graphical user interface (GUI) that will determine the direction of movement of the robot, a self-developed algorithm which preprocesses the obtained data from EMOTIV EPOC neuroheadset and then classifies the data using artificial neural network, and finally an algorithm to process the gyroscope signals using Kalman filtering to develop a mouse emulator, thereby giving the user ability to interact with the developed GUI as mentioned. Thedesignofmouseemulatorwhichimitatestheoperationsofamouse usesthe data obtained from the gyroscope embedded in the neuroheadset. The information obtainedbythegyroscopeinrealtimeisusedtocontroltherelativepositionofthe pointer which points to various operations to move the robot in the designed GUI. Hence, the proposed BCI system will perform the following primary functions: i. ThefirstalgorithmextractsDWTcoefficientsfromrawEEGsignalsandthen reducesredundancyusingprincipalcomponentanalysis(PCA).Theextracted dataisthenusedtotrainaneuralnetworkwhichhastheabilitytoclassifyany preprocessedinputEEGdata.Thedominantfrequencybandisgenerallytaken under consideration for further processing. ii. The second algorithm acquires velocity data from an embedded gyroscope. This data is then Kalman-filtered to remove unwanted jitter and noise. After conversionintodisplacementbyintegration,thefinaldataisusedtomovethe v vi Preface pointeraspertheuser’sheadmovement.Thus,theusercancontrolthemouse movementaswellasclickthescreenwheneverhe/shewantsto,withthehelp of classified data obtained from neural networks. iii. The third part includes programming the Arduino board in order to make it capable of receiving and interpreting data successfully. The board then receives control commands from the computer to move the robot in various directions. TheaboveapplicationsareintegratedtocontrolaGUI,developedinMATLAB which displays all possible movements of an Arduino-based robot. Hence, the movementsoftherobotcanbecontrolledbytheuserbyconcentratingonGUIand clicking on whichever motion he/she wants. The computer communicates with the Arduino board by serial communication. Coverage and Organization Inthissection,theoverviewofthismanuscript,whichismainlystructuredintofive chapters, has been presented. Chapter 1 presents a brief layout of BCI covering BCI’s history, some infor- mation, BCI applications of the present and future, core concepts on BCI, and finallytheobjective.Chapter2depictsanoutlineofthehumanbrainalsoincluding the fundamentals of EEG recording. Chapter 3 is a detailed portrayal of the algo- rithms used and to be used probably in the field of BCI. Chapter 4 is a represen- tation of the work done in detail. Starting with the acquisition, this chapter also focuses on EEG data classification module, gyroscope signal processing, and then the final implementation of control of the robots depicting the processes of inter- facing and execution. ThefinalChap.5isacomparative overview ofthecomplete bookandthefinal conclusions drawn from various annotations. Pilani, India Swagata Das Devashree Tripathy Jagdish Lal Raheja Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Brain–Computer Interface (BCI)—A Pictorial Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 History of BCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 More on BCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 BCI Applications—Present and Future. . . . . . . . . . . . . . . . . . . . . 5 1.4.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.2 Environment Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.3 Movement Control with Neural Prosthesis. . . . . . . . . . . . . 6 1.4.4 Locomotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.5 Future Expectations from BCI . . . . . . . . . . . . . . . . . . . . . 7 1.5 BCI—Core Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Objective of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 An Insight to the Human Brain and EEG . . . . . . . . . . . . . . . . . . . . 13 2.1 Neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Electrical Events in Neurons . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 Disturbance in Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 The Human Brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 The Cerebral Cortex in More Detail . . . . . . . . . . . . . . . . . 18 2.2.2 The Cortical Homunculus. . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 EEG Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Current Flow in Pyramidal Cell . . . . . . . . . . . . . . . . . . . . 20 2.3.3 Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.4 Electrode Placement—The 10-20 System . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 vii viii Contents 3 A Review on Algorithms for EEG-Based BCIs. . . . . . . . . . . . . . . . . 25 3.1 Sensorimotor Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Slow Cortical Potentials (SCPs) . . . . . . . . . . . . . . . . . . . . 26 3.1.2 P300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.3 Visual Evoked Potentials (VEPs) . . . . . . . . . . . . . . . . . . . 26 3.1.4 Response to Mental Tasks . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.5 Activity of Neural Cells (ANC) . . . . . . . . . . . . . . . . . . . . 27 3.1.6 Multiple Neuromechanisms (MNs) . . . . . . . . . . . . . . . . . . 27 3.2 BCI-Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Classification Based on the Mode of Signal Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Classification Based on Timing . . . . . . . . . . . . . . . . . . . . 28 3.2.3 Classification Based on the Placement of the Sensors . . . . 28 3.3 BCI Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2 Common Average Referencing (CAR) . . . . . . . . . . . . . . . 31 3.3.3 Surface Laplacian (SL) . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.4 Independent Component Analysis (ICA). . . . . . . . . . . . . . 31 3.3.5 Common Spatial Patterns (CSP) . . . . . . . . . . . . . . . . . . . . 32 3.3.6 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . 32 3.3.7 Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.8 Problems During Classification in BCI Research . . . . . . . . 35 3.4 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 Linear Classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . 36 3.4.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.5 Nearest Neighbor Classifiers. . . . . . . . . . . . . . . . . . . . . . . 39 3.4.6 Combinations of Classifiers . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 Choosing a Perfect Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.1 Synchronous BCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.2 Asynchronous BCIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5.3 Noise and Outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5.4 High Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5.5 Time Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.6 Non-stationarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.7 Small Training Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6 BCI Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.1 Selection of the Acquisition Device . . . . . . . . . . . . . . . . . 45 3.6.2 EMOTIV EPOC Neuroheadset. . . . . . . . . . . . . . . . . . . . . 46 3.7 Prior Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Contents ix 4 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1 Specifications Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Signal Quality Check. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.2 SIMULINK EEG Importer Interfacing for Online Acquisition of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 EEG Data Classification Module . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.1 Signal Processing and Classification Algorithm . . . . . . . . . 68 4.3.2 Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.4 DWT Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.5 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3.6 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4 Gyroscope Signal Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Implementation of BCI Controlling Robot (Robot 1 and 2). . . . . . 88 4.5.1 Robot 1 (Fire Bird V ATMEGA2560) Specifications and Implementation of “Control Using BCI”. . . . . . . . . . . 88 4.5.2 Robot 2 (Arduino-Based Free-Wheeling Robot) Specifications and Implementation of “Robot Control Using BCI”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5 Results and Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1 Classification Results—1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2 Classification Results—2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Description: