REAL TIME AUTONOMOUS COLLISION AVOIDANCE FOR UNMANNED AERIAL VEHICLES By Min Prasad Adhikari, B.Eng Aeronautical Engineering Nanjing University of Aeronautics and Astronautics, 2012 A thesis presented to the Ryerson University in partial fulfillment for the degree of Master of Applied Science in the Program of Aerospace Engineering Toronto, Ontario, Canada, 2014 ©Min Prasad Adhikari 2014 AUTHOR’S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research * Signature I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public. * Signature ii ABSTRACT Real Time Autonomous Collision Avoidance for Unmanned Aerial Vehicle Min Prasad Adhikari, Master of Applied Science, Aerospace Engineering Ryerson University, Toronto, 2014 GeoSurv II is a jointly funded project of Sander Geophysics Limited (SGL) and NSERC to develop a fixed-wing Unmanned Aerial Vehicle (UAV), capable of autonomously performing high resolution geophysical surveys at low flight altitudes over poorly known terrain. This thesis is in support of achieving this objective. Inordertoachievesuchalevelofautonomy, theUAVmustbecapableofavoidingstationary, pop-up and moving obstacles while flying at low altitude. Such obstacles may include power lines, communication towers, trees, unknown flight vehicles encountered while at flight or uneven terrains which creates the situation of the pop-up obstacles. In addition to that the UAVmustbeabletoflyascloseaspossibletothereferencetrajectoryforagivengeophysical survey. The development andtestingof a methodcapable of performing suchanautonomous mission is the objective of this thesis. In this thesis, a method is developed based on a spectral method known as Legendre Pseu- dospectralOptimalControl, becauseofitscapabilitytodirectlyincorporateallofthemission objectives, while respecting the UAV constraints (which other methods in the literature are not capable of). The method accounts the aircraft and obstacle constraints there by capable of avoiding obstacles with feasible maneuvers for the aircraft. The objective to remain as close to the reference trajectory is fulfilled by setting the area between the flight trajectory and reference trajectory as the cost of optimization of the optimal control problem. Five different scenarios presented in this thesis show the developed method’s capability to avoid the stationary, pop-up and the moving obstacles successfully while remaining close to the reference trajectory. iii ACKNOWLEDGEMENTS I am grateful to my supervisor Prof. Anton de Ruiter, who gave me such an opportunity to come to Ryerson University for the master program from Nepal. His support and encour- agement on different occasion would always be appreciated. Moreover, it would have been impossible to prepare this thesis without his regular assistance and guidance. I am grateful to my parents, Shiva Prasad Adhikari and Lila Devi Adhikari, for always supporting me to pursue my dream. Ithankmysister, BishnuAhikari/Kharel, foralwayssupportingmeatthetimeofdifficulties. My sincere gratitude to Sangita Aryal, who always encourage and supports me with care all the time. Finally, it would have been difficult to adjust in Toronto without love and care from Deepak Lamichhane and Saru Deuja/Lamichhane. They will always remain in my heart. iv “While we contemplate our needs, the universe is contemplating itself” -Inspired by Carl Sagan. v Table of Contents 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 GeoSurv II Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Existing Approaches to Obstacles Avoidance . . . . . . . . . . . . . . . . . . 4 1.3.1 Cell Decomposition Method . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Road Map Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.3 Artificial Potential Fields Method . . . . . . . . . . . . . . . . . . . . 9 1.3.4 Potential Flow Method . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.5 Rapidly Exploring Random Tree . . . . . . . . . . . . . . . . . . . . 10 1.3.6 Pseudospectral Optimal Control Method . . . . . . . . . . . . . . . . 11 1.4 Approach, Objective and Thesis Structure . . . . . . . . . . . . . . . . . . . 12 2 Pseudospectral Optimal Control Theory 14 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Nonlinear Optimal Control Problem (NL OCP) . . . . . . . . . . . . 15 2.1.2 Feasibility and Optimality of the Solution . . . . . . . . . . . . . . . 18 2.2 Legendre Pseudospectral Discretization . . . . . . . . . . . . . . . . . . . . . 20 2.3 Real-time Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Problem Formulation and Vehicle Dynamics 30 3.1 Introduction to Autonomous Control Architecture . . . . . . . . . . . . . . . 30 3.2 Vehicle Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Constraints and Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Problem Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 vi 4 Results And Analysis 48 4.1 Scenario I. Without Obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Scenario II. With Stationary Obstacles . . . . . . . . . . . . . . . . . . . . . 80 4.3 Scenario III. Moving Obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4 Scenario IV. Pop-up Obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.5 Scenario V. Stationary, Pop-up and Moving Obstacles . . . . . . . . . . . . . 126 5 Conclusion 146 5.1 Research Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 References 148 vii List of Tables 4.1 Scenario I Computational Summary. . . . . . . . . . . . . . . . . . . . . . . 80 4.2 Scenario II Computational Summary . . . . . . . . . . . . . . . . . . . . . 97 viii List of Figures 1.1 GeoSurv II prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Cell Decomposition from reference [1] . . . . . . . . . . . . . . . . . . . . . . 6 1.3 The road map method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Visibility graph from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 “radar site” obstacles from [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Obstacle avoidance using potential flow . . . . . . . . . . . . . . . . . . . . 10 1.7 RRT method used for path planning from [3] . . . . . . . . . . . . . . . . . . 11 2.1 Feasibility test: pseudo-spectral solution state history, Propagated state and infeasible propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Bellman’s Principle test of optimality . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Polynomial approximation of x(t) associated with Legendre-Gauss-Lobatto node distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Control Architecture for Online Trajectory Generation . . . . . . . . . . . . 27 2.5 Online/Realtime Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1 Aerial Path Designed for UAV. . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 GeoSurv II Prototype with labeled control parts. . . . . . . . . . . . . . . . 32 3.3 Flight Angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Turning Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 UAV at it’s tightest pull-up turn possible . . . . . . . . . . . . . . . . . . . . 37 3.6 RectangleandCirclearecreatedbysettingtheexponentto10and2respectively. 40 3.7 Box representing obstacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.8 Figure showing the line x = y and h = 50 with respective flight path and area between them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.9 Obstacle Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ix 4.1 Scenario I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Isometric View of Total Maneuver . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 View in XZ Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 View in YZ Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 View in XY Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.6 States [γ,ξ,V] vs time (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.7 Control Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.8 Isometric View of Complete Maneuver . . . . . . . . . . . . . . . . . . . . . 52 4.9 Feasibility Check (x vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.10 Feasibility Check (y vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.11 Feasibility Check (z vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.12 Feasibility Check (γ vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.13 Feasibility Check (ξ vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.14 Feasibility Check (V vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.15 Hamiltonian Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.16 Bellman’s Test in 3D Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.17 Bellman’s Principle Test (γ vs t) . . . . . . . . . . . . . . . . . . . . . . . . 57 4.18 Bellman’s Principle Test (ξ vs t) . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.19 Bellman’s Principle Test (V vs t) . . . . . . . . . . . . . . . . . . . . . . . . 58 4.20 Isometric View of Total Maneuver . . . . . . . . . . . . . . . . . . . . . . . . 59 4.21 View in XZ Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.22 View in YZ Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.23 View in XY Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.24 States [γ,ξ,V] vs time (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.25 Control Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.26 Isometric View of Complete Maneuver . . . . . . . . . . . . . . . . . . . . . 62 4.27 Feasibility Check (x vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.28 Feasibility Check (y vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.29 Feasibility Check (z vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.30 Feasibility Check (γ vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.31 Feasibility Check (ξ vs t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 x
Description: