ebook img

Real Hypersurfaces Equipped with $xi$-parallel Structure Jacobi Operator in CP^2 or CH^2 PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Real Hypersurfaces Equipped with $xi$-parallel Structure Jacobi Operator in CP^2 or CH^2

REAL HYPERSURFACESEQUIPPEDWITH ξ-PARALLELSTRUCTURE JACOBIOPERATOR INCP2 ORCH2 KonstantinaPanagiotidouandPhilipposJ.Xenos MathematicsDivision-SchoolofTechnology,AristotleUniversityofThessaloniki,Greece E-mail:[email protected],[email protected] 2 1 0 2 ABSTRACT. Theξ-parallelnessconditionofthestructureJacobioperatorofrealhypersurfaceshas n beenstudiedincombinationwithadditionalconditions.Inthepresentpaperwestudythree a dimensionalrealhypersurfacesinCP2orCH2equippedwithξ-parallelstructureJacobioperator. J 3 WeprovethattheyareHopfhypersurfacesandifadditionalη(Aξ)6=0,wegivetheclassification 1 ofthem. ] G Keywords:Realhypersurface,ξ-parallelstructureJacobioperator,Complexprojectivespace, D Complexhyperbolicspace. . h t MathematicsSubjectClassification(2000):Primary53B25;Secondary53C15,53D15. a m [ 1 Introduction 1 v A complex n-dimensional Kaehler manifold of constant holomorphic sectional curvature 0 1 c is called a complex space form, which is denoted by M (c). A complete and simply n 9 connected complex space form is complex analytically isometric to a complex projective 2 . space CPn, a complex Euclidean space Cn or a complex hyperbolic space CHn if c > 1 0 0,c = 0orc< 0respectively. 2 1 Thestudy ofreal hypersurfaces in anonflat complex space form isaclassical problem : v in Differential Geometry. Let M be a real hypersurface in M (c). Then M has an almost n i X contact metricstructure (ϕ,ξ,η,g). Thestructure vector fieldξ iscalled principal ifAξ = r a αξ holds onM,whereAistheshape operator ofM inMn(c)andαisasmoothfunction. Arealhypersurface iscalledHopfhypersurface ifξ isprincipal. Takagi in [14] classified homogeneous real hypersurfaces in CPn and Berndt in [1] classified Hopf hypersurfaces with constant principal curvatures in CHn. Let M be a real hypersurface inM (c), c 6= 0. Thenwestatethefollowing theorems duetoOkumura[11] n forCPn andMontielandRomero[9]forCHn respectively. Theorem1.1 Let M be a real hypersurface of M (c) , n ≥ 2, c 6= 0. If it satisfies Aϕ− n ϕA = 0,thenMislocallycongruent tooneofthefollowinghypersurfaces: • IncaseCPn (A )ageodesic hypersphere ofradiusr,where0 < r < π, 1 2 1 (A )atubeofradiusroveratotallygeodesicCPk,(1 ≤ k ≤ n−2),where0< r < 2 π. 2 • IncaseCHn (A )ahorosphere inCHn,i.eaMontieltube, 0 (A )ageodesic hypersphere oratubeoverahyperplane CHn−1, 1 (A )atubeoveratotallygeodesic CHk (1 ≤ k ≤ n−2). 2 Since 2006 many authors have studied real hypersurfaces whose structure Jacobi op- erator is parallel (∇l = 0). Ortega, Perez and Santos [12] proved the nonexistence of real hypersurfaces in non-flat complex space form with parallel structure Jacobi operator ∇l = 0. Perez, Santos andSuh[13]continuing theworkof[12]considered aweakercon- dition(D-parallelness), thatis∇ l = 0foranyvectorfieldX orthogonaltoξ. Theyproved X thenon-existence ofsuchrealhypersurfaces inCPm,m ≥ 3. KimandKiin[7]classifiedrealhypersurfacesif∇ l = 0andSϕ =ϕS. KiandLiu[5] ξ provedthatrealhypersurfaces satisfying∇ l = 0andlS = SlareHopfhypersurfacespro- ξ videdthatthescalarcurvature isnon-negative. Ki,et.al. in[6]classifiedrealhypersurfaces satisfying∇ l = 0and∇ S = 0. Kimet.al. in[8]studiedtherealhypersurfacessatisfying ξ ξ g(∇ ξ,∇ ξ) = µ2 =const, 6µ2 + c 6= 0 and classified those whose l is ξ−parallel. Cho ξ ξ 4 andKi[3]classifiedrealhypersurfaces satisfying Al = lAand∇ l = 0. ξ RecentlyIveyandRyan,in[4]studiedrealhypersurfaces inM (c). 2 Motivated by all the above conclusions we study real hypersurfacs in CP2 or CH2 equipped with ξ-parallel structure Jacobi operator, i.e. ∇ l = 0. More precisely, the fol- ξ lowingrelationholds: (∇ l)X = 0. (1.1) ξ Weprovethefollowingtheorem Main Theorem: Let M be a connected real hypersurface in CP2 or CH2 with ξ- parallel structure Jacobi operator. ThenM isaHopfhypersurface. Further, ifη(Aξ) 6= 0, then: • inthecaseofCP2,M islocallycongruent to ageodesic sphere, where0 < r < π andr 6= π, 2 4 • inthecaseofCH2,M islocallycongruent toahorosphere, ortoageodesic sphere ortoatubeoverthehyperplane CH1. 2 2 Preliminaries ∞ Throughout this paper all manifolds, vector fields e.t.c. are assumed to be of class C and all manifolds are assumed to be connected. Furthermore, the real hypersurfaces are supposed tobeorientedandwithoutboundary. Let M be a real hypersurface immersed in a nonflat complex space form (M (c),G) n withalmostcomplexstructure Jofconstant holomorphic sectional curvature c. LetN bea unit normal vector field on M and ξ = −JN. For a vector field X tangent to M we can write JX = ϕ(X) + η(X)N, where ϕX and η(X)N are the tangential and the normal component of JX respectively. The Riemannian connection ∇ in M (c) and ∇ in M are n relatedforanyvectorfieldsX,Y onM: ∇ X = ∇ X +g(AY,X)N Y Y ∇ N = −AX X where g is the Riemannian metric on M induced from G of M (c) and A is the shape n operatorofM inM (c). M hasanalmostcontactmetricstructure(ϕ,ξ,η)inducedfromJ n onM (c)whereϕisa(1,1)tensorfieldandη a1-formonM suchthat(see[2] n g(ϕX,Y)= G(JX,Y), η(X) = g(X,ξ) = G(JX,N). Thenwehave ϕ2X = −X +η(X)ξ, η◦ϕ = 0, ϕξ = 0, η(ξ) = 1 (2.1) g(ϕX,ϕY) = g(X,Y)−η(X)η(Y), g(X,ϕY) = −g(ϕX,Y) (2.2) ∇ ξ = ϕAX, (∇ ϕ)Y = η(Y)AX −g(AX,Y)ξ (2.3) X X Since the ambient space is of constant holomorphic sectional curvature c, the equations of GaussandCodazziforanyvectorfieldsX,Y,Z onM arerespectively givenby c R(X,Y)Z = [g(Y,Z)X −g(X,Z)Y +g(ϕY,Z)ϕX (2.4) 4 −g(ϕX,Z)ϕY −2g(ϕX,Y)ϕZ]+g(AY,Z)AX −g(AX,Z)AY c (∇ A)Y −(∇ A)X = [η(X)ϕY −η(Y)ϕX −2g(ϕX,Y)ξ] (2.5) X Y 4 whereRdenotestheRiemanniancurvature tensoronM. 3 ForeverypointPǫM,thetangent spaceT M canbedecomposed asfollowing: P T M = span{ξ}⊕kerη P where ker(η) = {X ǫ T M : η(X) = 0}. Due to the above decomposition,the vector P fieldAξ isdecomposed asfollows: Aξ = αξ +βU (2.6) whereβ = |ϕ∇ ξ|andU = −1ϕ∇ ξ ǫ ker(η),provided thatβ 6= 0. ξ β ξ 3 Auxiliaryrelations Let M be a real hypersurfaces in CP2 or CH2, i.e. M (c), c 6= 0. We consider the open 2 subsetNofM suchthat: N = {P ǫ M : β 6= 0, inaneighborhood ofP}. Furthermore, weconsider V,ΩopensubsetsofNsuchthat: V= {P ǫ N : α = 0, inaneighborhood ofP}, Ω = {P ǫ N : α6= 0, inaneighborhood ofP}, whereV∪ΩisopenanddenseintheclosureofN. Lemma3.1 Let M be a real hypersurface in M (c), equipped with ξ-parallel structure 2 Jacobioperator. ThenVisempty. Proof: Let{U,ϕU,ξ}bealocalorthonormal basisonV. Therelation (2.6)takes theform Aξ = βU. Thefirstrelation of(2.3)forX = ξ,takingintoaccount thelatterimplies ∇ ξ = βϕU. ξ Relation(1.1)forX = ξ,because oftheaboverelation yields: ∇ (lξ)= l∇ ξ ⇒ βϕU = 0, ξ ξ whichleadstoacontradiction andthiscompletes theproofofLemma3.1. (cid:3) InwhatfollowsweworkonΩ,whereα 6= 0andβ 6= 0. Lemma3.2 Let M be a real hypersurface in M (c), equipped with ξ-parallel structure 2 Jacobioperator. Thenthefollowingrelations holdinΩ: β2 c κ c AU = ( − + )U +βξ, AϕU = − ϕU (3.1) α 4α α 4α 4 β2 c κ c ∇ ξ = βϕU, ∇ ξ = ( − + )ϕU, ∇ ξ = U (3.2) ξ U ϕU α 4α α 4α c ∇ U = κ ϕU, ∇ U = κ ϕU, ∇ U = κ ϕU − ξ (3.3) ξ 1 U 2 ϕU 3 4α β2 c κ ∇ ϕU = −κ U−βξ, ∇ ϕU = −κ U−( − + )ξ, ∇ ϕU = −κ U (3.4) ξ 1 U 2 ϕU 3 α 4α α κκ = 0, (ξκ) = 0, (3.5) 1 whereκ,κ ,κ ,κ aresmoothfunctions onM. 1 2 3 Proof: Let{U,ϕU,ξ}bealocalorthonormal basisofΩ. The first relation of (2.3) for X = ξ implies: ∇ ξ = βϕU and so relation (1.1) for ξ X = ξ,takingintoaccountthelatter, gives: lϕU = 0. (3.6) Relation (2.4)forX = ϕU andY = Z = ξ gives: lϕU = cϕU +αAϕU, whichbecause 4 of(3.6)impliesthesecond of(3.1). Relation(2.4)forX = U andY = Z = ξ,wehave: c lU = U +αAU −βAξ (3.7) 4 Thescalarproducts of(3.7)withϕU andU,becauseof(2.6)andthesecondof(3.1)imply thefirstof(3.1),whereκ= g(lU,U). Thefirstrelation of(2.3), forX = U andX = ϕU. taking intoconsideration relations (3.1),givestherestofrelation(3.2). From the well known relation: Xg(Y,Z) = g(∇ Y,Z)+g(Y,∇ Z) for X,Y,Z ǫ X X {ξ,U,ϕU}weobtain(3.3)and(3.4),whereκ ,κ ,κ aresmoothfunctions inΩ. 1 2 3 Ontheotherhand ξκ = ξg(lU,U) ⇒ ξκ= g(∇ (lU),U)+g(lU,∇ U) ξ ξ ⇒ ξκ= g((∇ l)U +l(∇ U),U)+g(lU,∇ U) ξ ξ ξ ⇒ ξκ= g(l(∇ U),U)+g(lU,∇ U) ξ ξ Theaboverelationbecause of(3.3),(3.6)and(3.7)yields: ξκ= g(κ lϕU,U)+g(lU,κ ϕU) ⇒ ξκ = 0 1 1 5 Ontheotherhand: ξg(lϕU,U) = 0 ⇒ g(∇ (lϕU),U)+g(lϕU,∇ U) = 0 ξ ξ ⇒ g((∇ l)ϕU +l(∇ ϕU),U)+g(lϕU,∇ U)= 0 ξ ξ ξ Fromtheaboveequation because of(1.1),(2.6),(3.4),(3.6)andκ = g(lU,U)weobtain: g(l(−κ U −βξ),U) = 0 ⇒ κκ = 0 1 1 (cid:3) Relation(2.5)forX ǫ{U,ϕU}andY = ξ,because ofLemma3.2yields: β2 c κ Uβ = ξ( − + ) (3.8) α 4α α Uα = ξβ (3.9) β2κ c κ c β2 1 = κ+βκ + ( − + ) (3.10) 2 α 4α α 4α α κ β2 c β2 c κ (ϕU)β = 1 +β2+ ( − + ) (3.11) α 4α α 4α α 4α2κ β 3 ξα = (3.12) c 3c (ϕU)α = β(κ +α+ ) (3.13) 1 4α Furthermore,relation(2.5),forX = U andY = ϕU,duetoLemma3.2and(3.10),implies: cβκ 1 (ϕU)κ = − +κβ +κκ −cβ (3.14) 2 4α 4κ α Uα = 3 (β2+κ) (3.15) c Usingtherelations (3.9)-(3.15) andLemma3.2weobtain: c c [U,ξ]( )= (∇ ξ−∇ U) U ξ 4α 4α c cβ β2 c κ 3c ⇒ [U,ξ]( )= − ( − + −κ )(κ +α+ ) (3.16) 4α 4α2 α 4α α 1 1 4α c c c [U,ξ]( ) = (U(ξ ))−(ξ(U )) 4α 4α 4α c β2 κ ⇒ [U,ξ]( ) = −βκ2−β(Uκ )+( + )(ξκ ) (3.17) 4α 3 3 α α 3 6 Similarly: c β2 κ κ c β2 [U,ϕU]( ) = κ κ ( + )+βκ ( − + ) 2 3 3 4α α α α 2α α cβκ 3c 3 + (κ +α+ ) (3.18) 4α2 1 4α c 2κ β3κ κ β3 5cκ β cβκ κ [U,ϕU]( ) = 3 1 + 3 + 3 (β2+κ)− 1 3 4α α2 α 4α3 4α2 cβκ 5c2βκ cβ βκκ κ 3 3 3 3 − − − (Uκ )− + ((ϕU)κ) 4α 16α3 4α2 1 α α β2 κ +( + )((ϕU)κ ) (3.19) 3 α α c c β2 κ [ϕU,ξ]( )= −κ (κ + )( + )−β2κ (3.20) 3 1 3 4α 4α α α c 2κ κ β2 7cβ2κ c2κ cκκ [ϕU,ξ]( ) =− 1 3 −κ β2− 3 + 3 + 3 4α α 3 4α2 16α2 2α2 cβ −β(ϕU)κ +κκ + (ξκ ). (3.21) 3 3 4α2 1 Duetothefirstrelationof(3.5),weconsider Ω theopensubsetofΩsuchthat: 1 Ω = {P ǫ Ω : κ 6= 0, in a neighborhood of P}. 1 1 SoinΩ ,wehave: κ = 0. 1 InΩ relation (3.14),sinceκ = 0,yields: 1 κ =−4α (3.22) 1 andfromrelation (3.10),takingintoaccount(3.22),weget: cβ c2 κ = −4β − + (3.23) 2 4α2 16α2β From(3.20)and(3.21),using(3.12),(3.22)and(3.23)weobtain: 3cβ2κ c2κ 3 3 β(ϕU)κ = − + (3.24) 3 2α2 16α2 From(3.18), (3.19),using(3.15),(3.22), (3.23)and(3.24),weobtain: κ (4α2 −c) = 0. (3.25) 3 7 ′ Becauseof(3.25),letΩ betheopensubsetofΩ suchthat: 1 1 ′ Ω = {P ǫ Ω : κ 6= 0, in a neighborhood of P}. 1 1 3 SoinΩ′ weobtain: c = 4α2. Differentiation ofthelatterwithrespecttoξ,impliesξα= 0 1 ′ whichbecause of(3.12) leads toκ = 0, whichisimpossible. SoΩ isempty and κ = 0 3 1 3 inΩ . 1 Lemma3.3 Let M be a real hypersurface in M (c), equipped with ξ-parallel structure 2 Jacobioperator. ThenΩ isempty. 1 Proof: WeresumethatinΩ wehave: 1 κ = κ = 0 (3.26) 3 andrelations (3.22),(3.23)and(3.24)hold. Relations(3.8),(3.9),(3.12)and(3.15),becauseof(3.5)and(3.26),yield: Uα = Uβ = ξα= ξβ = 0 (3.27) InΩ ,combining(3.16)and(3.17)andtakingintoaccount (3.22)and(3.26),weobtain: 1 c β2 c ( −α)( − +4α) = 0 (3.28) 4α α 4α Owingto(3.28),letΩ betheopensubsetofΩ ,suchthat: 11 1 Ω = {P ǫ Ω :c 6= 4α2, inaneighborhood ofP}. 11 1 From(3.28) in Ω , wehave: 4α = −β2 + c . Differentiation ofthe latter along ϕU, be- 11 α 4α causeof(3.11),(3.13),(3.22),(3.26)andthelastrelationyieldsc = 0,whichisimpossible. Hence,Ω isempty. 11 So in Ω the relation c = 4α2 holds. Due to the last relation and (3.22), the relation 1 (3.11)becomes: (ϕU)β = −(α2+2β2). (3.29) From (3.27) we have [U,ξ]β = U(ξβ)−ξ(Uβ) ⇒ [U,ξ]β = 0. On the other hand, from (3.2) and (3.3) we obtain [U,ξ]β = (∇ ξ −∇ U)β ⇒ [U,ξ]β = 1(3α2 + β2)(ϕU)β. U ξ α Thelasttworelations imply(ϕU)β = 0. Therefore, from (3.29)weobtain α2 +2β2 = 0, whichisacontradiction. Hence,Ω isempty. (cid:3) 1 SinceΩ isempty,inΩwehaveκ = 0. Sofromrelations(3.20)and(3.21)weobtain: 1 1 κ β(ϕU)κ = 3 [c2−24cβ2 +12cκ+16α2κ]. 3 16α2 8 Furthermore, the combination of relations (3.18) and (3.19), using (3.10) and (3.14), im- plies: cβκ (β2+κ)(ϕU)κ = 3[16α2 −24(β2 +κ)+9c]. 3 16α2 Fromthelasttworelations weobtain: κ [c2κ+12cκ2 +12cβ2κ+16α2β2κ−16cα2β2+16α2κ2−8c2β2] = 0 3 Duetotheaboverelation, weconsider Ω theopensubsetofΩ,suchthat: 2 Ω = {P ǫ Ω : κ 6= 0, inaneighborhood ofP}, 2 3 soinΩ thefollowingrelation holds: 2 c2κ+12cκ2 +12cβ2κ+16α2β2κ−16cα2β2+16α2κ2−8c2β2 = 0. (3.30) Differentiating (3.30)withrespecttoξ andusing(3.5),(3.9),(3.12)and(3.15)weobtain: 8α2β2κ−8cα2β2+8α2κ2+3cβ2κ−2c2β2+3cκ2−4cα2κ −2c2κ = 0 (3.31) From(3.30)and(3.31)weobtain: 5cκ+6κ2 +6β2κ−4cβ2 +8α2κ = 0. (3.32) Differentiating (3.32) with respect to ξ and using (3.5), (3.9), (3.12) and (3.15) we have: 4κα2 = (2c−3κ)(β2 +κ). The last relation with (3.32) imply: κ = 0. Substituting the latter in (3.30) gives c = −2α2. Differentiation ofthe last relation with respect toϕU and takingintoaccount(3.13),c = −2α2 andκ = 0resultsinα= 0,whichisimpossible. 1 SoΩ isemptyandinΩweget: κ = 0. 2 3 Lemma3.4 Let M be a real hypersurface in M (c), equipped with ξ-parallel structure 2 Jacobioperator. ThenΩisempty. Proof: WeresumethatinΩthefollowingrelation holds: κ = κ = 0. (3.33) 1 3 Relations(3.8),(3.9),(3.12),(3.15),because of(3.5)and(3.33)yield: Uα = Uβ = ξα= ξβ = 0 (3.34) InΩthecombination of(3.16),(3.17)andtakingintoaccount(3.33),implies: c (4α2 +3c)(β2 +κ− )= 0 (3.35) 4 9 Dueto(3.35),weconsider Ω theopensubsetofΩsuchthat: 3 c Ω = {P ǫ Ω :β2+κ6= , inaneighborhood ofP}. 3 4 SoinΩ thefollowingrelationholds: 3 4α2 c = − . (3.36) 3 Differentiation of(3.36)withrespecttoϕU implies: (ϕU)α = 0. (3.37) Because of (3.34) we have [U,ξ]β = U(ξβ)−ξ(Uβ) ⇒ [U,ξ]β = 0. On the other hand due to (3.2), (3.3) and (3.33) weget [U,ξ]β = (∇ ξ −∇ U)β ⇒ [U,ξ]β = (β2 − c + U ξ α 4α κ)(ϕU)β. Combinationofthelastrelations imply: α (ϕU)β = 0 (3.38) From(3.11),owingto(3.33),(3.36)and(3.38)yields2β2 = κ+ α2. Differentiation ofthe 3 lastrelationwithrespecttoϕU andtakingintoaccount(3.37)and(3.38)imply(ϕU)κ = 0. Sofrom(3.14),becauseofthelatterand(3.33),weobtainκ(β+κ )= cβ. Thecombination 2 ofthelatterwith(3.10)andtakingintoaccount (3.33),(3.36)and2β2 = κ+ a2 imply: 3 α2 =18β2 κ = 5β κ= −4β2 (3.39) 2 Therelations ofLemma3.2inΩ ,becauseof(3.36)and(3.39)become: 3 α α AU = U +βξ, AϕU = ϕU (3.40) 6 3 α α ∇ ξ = βϕU, ∇ ξ = ϕU, ∇ ξ = − U, (3.41) ξ U ϕU 6 3 α ∇ U = 0, ∇ U = 5βϕU, ∇ U = ξ, (3.42) ξ U ϕU 3 α ∇ ϕU = −βξ, ∇ ϕU = −5βU − ξ, ∇ ϕU = 0. (3.43) ξ U ϕU 6 Therelation(2.4),becauseof(3.36),(3.39)and(3.40)implies: R(U,ϕU)U = 23β2ϕU. OntheotherhandR(X,Y)Z = ∇ ∇ Z−∇ ∇ Z−∇ Z,becauseof(3.34),(3.36), X Y Y X [X,Y] (3.39) and(3.41)-(3.43) yields: R(U,ϕU)U = 26β2ϕU. The combination the last two re- lationsimpliesβ = 0,whichisimpossible inΩ . 3 SoΩ isemptyandinΩthefollowingrelation holds 3 c β2+κ= . (3.44) 4 InΩ(3.10)becomes: κ+βκ = 0. (3.45) 2 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.