ebook img

Real and Complex Analysis: Volume 2 PDF

688 Pages·2018·5.228 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Real and Complex Analysis: Volume 2

Rajnikant Sinha Real and Complex Analysis Volume 2 Real and Complex Analysis Rajnikant Sinha Real and Complex Analysis Volume 2 123 Rajnikant Sinha Varanasi, Uttar Pradesh, India ISBN978-981-13-2885-5 ISBN978-981-13-2886-2 (eBook) https://doi.org/10.1007/978-981-13-2886-2 LibraryofCongressControlNumber:2018957649 ©SpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Preface The book is an introduction to real and complex analysis that will be useful to undergraduatestudentsofmathematicsandengineering.Itisdesignedtoequipthe readerwithtoolsthatwillhelpthemtounderstandtheconceptsofrealanalysisand complex analysis. In addition, it contains the essential topics of analysis that are needed for the study offunctional analysis. Its guiding principles help develop the necessary concepts rigorously with enough detail and with the minimum prereq- uisites. Further, I have developed the necessary tools to enhance the readability. Thisbookcontainscompletesolutionstoalmostalltheproblemsdiscussedwithin. This will be beneficial to readers only if used correctly: readers are encouraged to look at the solution to a problem only after trying to solve the problem. Certainly,attimes,thereadermayfindtheproofsexcruciatinglydetailed,butit is better to be detailed than concise. Furthermore, eliding over detailed calculation can sometimes be perplexing for the beginners. I have tried to make it a readable text that caters to a broad audience. This approach should certainly benefit begin- ners who have not yet tussled with the subject in a serious way. Thisbookcontainsseveralusefultheorems andtheirproofs intherealm ofreal and complex analysis. Most of these theorems are the works of some the great mathematiciansofthe19thand20thcenturies.Inalphabeticalorder,theseinclude: Arzela, Ascoli, Baire, Banach, Carathéodory, Cauchy, Dirichlet, Egoroff, Fatou, Fourier, Fubini, Hadamard, Jordan, Lebesgue, Liouville, Minkowski, Mittag-Leffler,Morera,Nikodym,Ostrowski,Parseval,Picard,Plancherel,Poisson, Radon, Riemann, Riesz, Runge, Schwarz, Taylor, Tietze, Urysohn, Weierstrass, and Young. I have spent several years providing their proofs in unprecedented detail. There are plenty of superb texts on real and complex analysis, but there is a dearth of books that blend real analysis with complex analysis. Libraries already contain several excellent reference books on real and complex analysis, which interested students can consult for a deeper understanding. It was notmy intention to replace such books. This book is written under the assumption that students alreadyknowthefundamentalsofadvancedcalculus.Theproofsofvariousnamed v vi Preface theorems should be considered to be at the core of the book by any reader who is serious about learning the subject. This is the second volume of the two-volume book. Volume 2 contains four chapters: Holomorphic and Harmonic Functions, Conformal Mapping, Analytic Continuation, and Special Functions. In Chap. 1, we study the holomorphic func- tions and harmonic functions. Here, we have proved the fundamental theorem of algebra and global Cauchy theorem. The chapter ends with a discussion on the Schwarzreflectionprinciple.ThetopicsofdiscussioninChap.2areinfiniteproduct and the Riemann mapping theorem. In Chap. 3, we have introduced analytic continuation and proved the monodromy theorem. A branch of logarithm function is also discussed in this chapter. In Chap. 4, we prove the prime number theorem. Forthispurpose,alltheneededtoolsofanalyticnumbertheoryaredevelopedfrom scratches. Finally, we have supplied a beautiful proof of Picard’s little theorem. I am particularly indebted to Walter Rudin and Paul Richard Halmos for their letters discussing academic questions. By great good fortune, some colleagues of minewereabletojoininwiththisenterpriseafewyearsago,someofwhomhave provideda meticulous reading of themanuscript from a user’sviewpoint. Iextend my great thanks to all of them for their expert services. Whilestudyingthisbook,Ihopethatreaderswillexperiencethethrillofcreative effort and the joy of achievement. Varanasi, India Rajnikant Sinha Contents 1 Holomorphic and Harmonic Functions. . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Locally Path-Connected Function . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Representable by Power Series . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4 Cauchy’s Theorem in a Triangle . . . . . . . . . . . . . . . . . . . . . . . . 54 1.5 Cauchy’s Theorem in a Convex Set. . . . . . . . . . . . . . . . . . . . . . 59 1.6 Cauchy Integral Formula in a Convex Set . . . . . . . . . . . . . . . . . 63 1.7 Morera’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 1.8 Parseval’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 1.9 Casorati–Weierstrass Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 78 1.10 Liouville’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 1.11 Maximum Modulus Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 86 1.12 Fundamental Theorem of Algebra . . . . . . . . . . . . . . . . . . . . . . . 90 1.13 Cauchy’s Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 1.14 Open Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 1.15 Global Cauchy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 1.16 Meromorphic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 1.17 Residue Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 1.18 Rouché’s Theorem and Hurwitz’s Theorem . . . . . . . . . . . . . . . . 134 1.19 Cauchy–Riemann Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 1.20 Dual Space of a Banach Space . . . . . . . . . . . . . . . . . . . . . . . . . 145 1.21 Poisson’s Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 1.22 Mean Value Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 1.23 Schwarz Reflection Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . 181 2 Conformal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2.1 Schwarz Lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2.2 Radial Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2.3 Infinite Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 2.4 Elementary Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 vii viii Contents 2.5 Weierstrass Factorization Theorem. . . . . . . . . . . . . . . . . . . . . . . 217 2.6 Conformal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 2.7 Linear Fractional Transformations . . . . . . . . . . . . . . . . . . . . . . . 232 2.8 Arzela–Ascoli Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 2.9 Montel’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2.10 Riesz Representation Theorem for Bounded Functionals . . . . . . . 261 2.11 Rung’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 2.12 Mittag-Leffler Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 2.13 Simply Connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 2.14 Riemann Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 2.15 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 3 Analytic Continuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 3.1 Analytic Continuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 3.2 Ostrowski’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 3.3 Hadamard’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 3.4 Modular Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 3.5 Harnack’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 3.6 Nontangential and Radial Maximal Functions. . . . . . . . . . . . . . . 346 3.7 Lebesgue Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 3.8 Representation Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 3.9 Lindelöf’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 3.10 Monodromy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 3.11 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 3.12 Branch of the Logarithm Function. . . . . . . . . . . . . . . . . . . . . . . 410 3.13 Riemann Surface of the Logarithm Function . . . . . . . . . . . . . . . 419 3.14 Infinite Product Converges Absolutely . . . . . . . . . . . . . . . . . . . . 421 4 Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 4.1 Laurent Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 4.2 Laurent’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 4.3 Evaluation of Improper Riemann Integrals . . . . . . . . . . . . . . . . . 453 4.4 Meromorphic Function as a Quotient of Holomorphic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 4.5 Euler’s Gamma Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 4.6 Beta Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 4.7 Euler’s Constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 4.8 Riemann Zeta Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 4.9 Gauss’s Formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 4.10 Preparation for the Prime Number Theorem . . . . . . . . . . . . . . . . 548 4.11 Abscissa of Convergence of a Dirichlet Series . . . . . . . . . . . . . . 560 4.12 Riemann Zeta Function Has a Simple Pole at 1 . . . . . . . . . . . . . 580 Contents ix 4.13 Riemann Hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 4.14 Chebyshev’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 4.15 Prime Number Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 4.16 Picard’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 Bibliography .. .... .... .... ..... .... .... .... .... .... ..... .... 679 About the Author RajnikantSinha isFormerProfessorofMathematicsatMagadhUniversity,Bodh Gaya,India.Asapassionatemathematician,hehaspublishednumerousinteresting research findings in international journals and books, including Smooth Manifolds (Springer)andthecontributedbookSolutionstoWeatherburn’sElementaryVector Analysis. His research focuses on topological vector spaces, differential geometry and manifolds. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.