Real Analysis with Real Applications Real Analysis with Real Applications Kenneth R. Davidson UniversityofWaterloo Allan P. Donsig UniversityofNebraska PrenticeHall UpperSaddleRiver,NJ07458 LibraryofCongressCataloging–in–PublicationData Davidson,KennethR. Realanalysiswithrealapplications/KennethR.Davidson,AllanP.Donsig. p.cm. Includesbibliographicalreferencesandindex. ISBN0-13-041647-9 1.Mathematicalanalysis.I.Donsig,AllanP.II.Title. QA300.D3422002 515–dc21 2001052318 AcquisitionsEditor:GeorgeLobell Editor-in-Chief:SallyYagan VicePresident/DirectorProductionandManufacturing:DavidW.Riccardi ExecutiveManagingEditor:KathleenSchiaparelli SeniorManagingEditor:LindaMihatovBehrens AssistantManagingEditor:BayaniMendozadeLeon ProductionEditor:StevenS.Pawlowski ManufacturingBuyer:AlanFischer ManufacturingManager:TrudyPisciotti DirectorofMarketing:JohnTweeddale MarketingManager:AngelaBattle MarketingAssistant:RachelBeckman EditorialAssistant:MelanieVanBenthuysen ArtDirector:JayneConte CoverDesigner:BruceKenselaar CoverImage:A.Y.Jackson,“LabradorCoast”(1928).Oiloncanvas50”x61”. HartHousePermanentCollection,UniversityofToronto. (cid:176)c2002byPrenticeHall,Inc. UpperSaddleRiver,NJ07458 Allrightsreserved.Nopartofthisbookmaybereproduced,inanyformorbyanymeans, withoutpermissioninwritingfromthepublisher. PrintedintheUnitedStatesofAmerica. 10 9 8 7 6 5 4 3 2 1 ISBN 0-13-041647-9 PearsonEducationLTD. PearsonEducationAustraliaPTY,Limited PearsonEducationSingapose,Pte.Ltd PearsonEducationNorthAsia,Ltd PearsonEducationCanadaLtd. PearsonEducationdeMexico,S.A.deC.V. PearsonEducation–Japan PearsonEducationMalaysia,Pte.Ltd ToVirginiaandStephanie C ONTENTS Preface xi DependenceonEarlierSections xiv PossibleCourseOutlines xvi 1 Background 1 1.1 TheLanguageofMathematics 1 1.2 SetsandFunctions 5 1.3 Calculus 10 1.4 LinearAlgebra 11 1.5 TheRoleofProofs 19 1.6 Appendix: EquivalenceRelations 25 † Part A Abstract Analysis 29 2 The Real Numbers 31 2.1 AnOverviewoftheRealNumbers 31 2.2 InfiniteDecimals 34 2.3 Limits 37 2.4 BasicPropertiesofLimits 42 2.5 UpperandLowerBounds 46 2.6 Subsequences 51 2.7 CauchySequences 55 2.8 Appendix: Cardinality 60 † 3 Series 66 3.1 ConvergentSeries 66 3.2 ConvergenceTestsforSeries 70 3.3 TheNumbere 77 † 3.4 AbsoluteandConditionalConvergence 80 † 4 The Topology of Rn 88 4.1 n-dimensionalSpace 88 4.2 ConvergenceandCompletenessinRn 92 4.3 ClosedandOpenSubsetsofRn 96 4.4 CompactSetsandtheHeine–Borel Theorem 101 vii viii Contents 5 Functions 108 5.1 LimitsandContinuity 108 5.2 DiscontinuousFunctions 114 5.3 PropertiesofContinuousFunctions 120 5.4 CompactnessandExtremeValues 124 5.5 UniformContinuity 127 5.6 TheIntermediateValueTheorem 133 5.7 MonotoneFunctions 135 † 6 Differentiation and Integration 141 6.1 DifferentiableFunctions 141 6.2 TheMeanValueTheorem 148 6.3 RiemannIntegration 153 6.4 TheFundamentalTheoremofCalculus 164 6.5 Wallis’sProductandStirling’sFormula 169 † ?6.6 MeasureZeroandLebesgue’sTheorem 175 7 Normed Vector Spaces 179 7.1 DefinitionandExamples 179 7.2 TopologyinNormedSpaces 184 7.3 InnerProductSpaces 187 7.4 OrthonormalSets 191 7.5 OrthogonalExpansionsinInnerProductSpaces 196 † 7.6 Finite-DimensionalNormedSpaces 204 †?7.7 TheLp norms 208 8 Limits of Functions 213 8.1 LimitsofFunctions 213 8.2 UniformConvergenceandContinuity 218 8.3 UniformConvergenceandIntegration 220 8.4 SeriesofFunctions 225 8.5 PowerSeries 232 † ?8.6 CompactnessandSubsetsofC(K) 239 9 Metric Spaces 246 9.1 DefinitionsandExamples 246 9.2 CompactMetricSpaces 250 † 9.3 CompleteMetricSpaces 254 † 9.4 Connectedness 257 † ?9.5 MetricCompletion 261 ?9.6 TheLp spacesandAbstractIntegration 266 Contents ix Part B Applications 273 10 Approximation by Polynomials 275 10.1 TaylorSeries 275 10.2 HowNottoApproximateaFunction 285 10.3 Bernstein’sProofoftheWeierstrassTheorem 290 10.4 AccuracyofApproximation 294 10.5 ExistenceofBestApproximations 297 † 10.6 CharacterizingBestApproximations 300 † ?10.7 ExpansionsUsingChebychevPolynomials 306 ?10.8 Splines 314 ?10.9 UniformApproximationbySplines 322 ?10.10 Appendix: TheStone–WeierstrassTheorem 326 11 Discrete Dynamical Systems 331 11.1 FixedPointsandtheContractionPrinciple 332 11.2 Newton’sMethod 344 11.3 OrbitsofaDynamicalSystem 349 † 11.4 PeriodicPoints 355 † 11.5 ChaoticSystems 362 † ?11.6 TopologicalConjugacy 370 ?11.7 IteratedFunctionSystemsandFractals 378 12 Differential Equations 386 12.1 IntegralEquationsandContractions 386 12.2 CalculusofVector-ValuedFunctions 390 12.3 DifferentialEquationsandFixedPoints 395 12.4 SolutionsofDifferentialEquations 399 12.5 LocalSolutions 405 12.6 LinearDifferentialEquations 411 † 12.7 PerturbationandStabilityofDEs 416 † ?12.8 ExistencewithoutUniqueness 420 13 Fourier Series and Physics 423 13.1 TheSteady-StateHeatEquation 423 † 13.2 FormalSolution 427 13.3 OrthogonalityRelations 429 13.4 ConvergenceintheOpenDisk 432 13.5 ThePoissonFormula 435 13.6 Poisson’sTheorem 439 13.7 TheMaximumPrinciple 443 13.8 TheVibratingString(FormalSolution) 446 † 13.9 TheVibratingString(RigorousSolution) 450 † 13.10 Appendix: TheComplexExponential 454 † x Contents 14 Fourier Series and Approximation 463 14.1 LeastSquaresApproximations 463 14.2 TheIsoperimetricProblem 468 † 14.3 TheRiemann–Lebesgue Lemma 471 14.4 PointwiseConvergenceofFourierSeries 476 14.5 Gibbs’sPhenomenon 485 † 14.6 Cesa`roSummationofFourierSeries 488 ?14.7 BestApproximationbyTrigPolynomials 495 ?14.8 ConnectionswithPolynomialApproximation 498 ?14.9 Jackson’sTheoremandBernstein’sTheorem 503 15 Wavelets 513 15.1 Introduction 513 15.2 TheHaarWavelet 515 15.3 MultiresolutionAnalysis 520 15.4 RecoveringtheWavelet 524 15.5 DaubechiesWavelets 528 † 15.6 ExistenceoftheDaubechiesWavelets 534 † 15.7 ApproximationsUsingWavelets 537 † ?15.8 TheFranklinWavelet 541 ?15.9 RieszMultiresolutionAnalysis 548 16 Convexity and Optimization 557 16.1 ConvexSets 557 16.2 RelativeInterior 564 16.3 SeparationTheorems 568 16.4 ExtremePoints 573 16.5 ConvexFunctionsinOneDimension 576 16.6 ConvexFunctionsinHigherDimensions 583 † 16.7 SubdifferentialsandDirectionalDerivatives 587 † 16.8 TangentandNormalCones 596 † 16.9 ConstrainedMinimization 601 † 16.10 TheMinimaxTheorem 608 † References 615 Index 617
Description: