ebook img

Real Analysis: Measure and Integration PDF

358 Pages·2019·4.494 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Real Analysis: Measure and Integration

MaratV.Markin RealAnalysis Also of Interest ElementaryFunctionalAnalysis MaratV.Markin,2018 ISBN978-3-11-061391-9,e-ISBN(PDF)978-3-11-061403-9, e-ISBN(EPUB)978-3-11-061409-1 ElementaryOperatorTheory MaratV.Markin,2019 ISBN978-3-11-060096-4,e-ISBN(PDF)978-3-11-060098-8, e-ISBN(EPUB)978-3-11-059888-9 FunctionalAnalysis.ATerseIntroduction GerardoChacón,HumbertoRafeiro,JuanCamiloVallejo,2016 ISBN978-3-11-044191-8,e-ISBN(PDF)978-3-11-044192-5, e-ISBN(EPUB)978-3-11-043364-7 ComplexAnalysis.AFunctionalAnalyticApproach FriedrichHaslinger,2017 ISBN978-3-11-041723-4,e-ISBN(PDF)978-3-11-041724-1, e-ISBN(EPUB)978-3-11-042615-1 SingleVariableCalculus.AFirstStep YunzhiZou,2018 ISBN978-3-11-052462-8,e-ISBN(PDF)978-3-11-052778-0, e-ISBN(EPUB)978-3-11-052785-8 Marat V. Markin Real Analysis | Measure and Integration MathematicsSubjectClassification2010 28-01,28A10,28A12,28A15,28A20,28A25 Author Prof.Dr.MaratV.Markin CaliforniaStateUniversity,Fresno DepartmentofMathematics 5245NorthBackerAvenue Fresno,CA93740 USA [email protected] ISBN978-3-11-060097-1 e-ISBN(PDF)978-3-11-060099-5 e-ISBN(EPUB)978-3-11-059882-7 LibraryofCongressControlNumber:2019931612 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Coverimage:Merrymoonmary/GettyImages Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | Withutmostappreciationtoallmyteachers. Preface Theauthordiscussesvaluelessmeasuresinpointlessspaces. PaulHalmos ThePurposeoftheBookandTargetedAudience Thebookisintendedasatextforaone-semester Master’slevelgraduatecoursein realanalysiswithemphasisonthemeasureandintegrationtheorytobetaughtwithin theexistingconstraintsofthestandardfortheUnitedStatesgraduatecurriculum(fif- teenweekswithtwoseventy-five-minutelecturesperweek).Realanalysis,being,as arule,acorecourseineverygraduateprograminmathematics,isalsoofsignificant interesttoawideraudienceofSTEM(science,technology,engineering,andmathe- matics) graduate students or advanced undergraduates with a solid background in proof-basedintermediateanalysis. Book’sPhilosophy,Scope,andSpecifics Thephilosophyofthebook,whichmakesitquitedistinctfrommanyexistingtextson thesubject,isbasedontreatingtheconceptsofmeasureandintegrationstartingwith the most general abstract setting and then introducing and studying the Lebesgue measureandintegrationonthereallineasanimportantparticularcase. Thebookconsistsofninechaptersandanappendixtakingthereaderfromtheba- sicsetclasses,throughmeasures,outermeasuresandthegeneralprocedureofmea- sureextensiondescribedinthecelebratedCarathéodory’sExtensionTheoremandap- pliedtotheconstructoftheLebesgue–Stieltjesmeasuresasacentralparticularcase. Itfurthertreatsmeasurablefunctionsandvarioustypesofconvergenceofsequencesof suchbasedontheideaofmeasure,thetreatmentincludingtheclassicalLuzin’sand Egorov’sTheoremaswellastheLebesgueandRieszTheorems.Thenthefundamen- talsoftheabstractLebesgueintegrationandthebasiclimittheorems,suchasFatou’s LemmaandLebesgue’sDominatedConvergenceTheorem,arefurnished,thediscourse culminatingintothecomparisonoftheLebesgueandRiemannintegralsandcharac- terizationoftheRiemannintegrablefunctions. Chapter1outlinescertainnecessarypreliminaries,includingthefundamentalsof metricspaces.ThecourseisdesignedtobetaughtstartingwithChapter2,Chapter1 beingreferredtowhenevertheneedarises,forinstancewhendealingwiththecon- ceptsofupperandlowerlimitsofnumericorsetsequences,usingthepropertiesof theinverseimageoperation,ordefiningtheBorelsets. Chapter7isdedicatedtostudyingconvergenceinp-norm,L spaces,andtheba- p sicsofnormedvectorspaces.ItfurtherdemonstratesthedeficienciesoftheRiemann https://doi.org/10.1515/9783110600995-201 VIII | Preface integralrelativetoitsLebesguecounterpartandpreparesthestudentsformoread- vancedcoursesinfunctionalanalysisandoperatortheory. Chapter8isdedicatedtousingthenovelapproachbasedontheLebesguemea- sure and integration theory machinery to develop a better understanding of differ- entiation and extend the classical total change formula linking differentiation with integrationtoasubstantiallywiderclassoffunctions. Chapter9onsignedmeasurescanbeconsideredasa“bonus”chaptertobetaught shouldthetimeconstraintsofaone-semestercoursepermit. TheAppendixgivesaconcisetreatiseoftheAxiomofChoice,itsequivalents(the HausdorffMaximalPrinciple,Zorn’sLemma,andZermello’sWell-OrderingPrinciple), andorderedsets,whichisfundamentalforprovingthefamedVitaliTheoremonthe existenceofanon-Lebesguemeasurablesetinℝ. Beingdesignedasatexttobeusedinaclassroom,thebookconstantlycallsforthe student’sactivelymasteringtheknowledgeofthesubjectmatter.Thereareproblems attheendofeachchapter,startingwithChapter2andtotalingat125.Theseproblems areindispensableforunderstandingthematerialandmovingforward.Manyimpor- tantstatements,suchastheApproximationofBorelSetsProposition(Proposition4.6) (Section4.8,Problem13),aregivenasproblemsandfrequentlyreferredtointhemain body.Therearealso358exercisesthroughoutthetext,includingChapter1andthe Appendix,whichrequireofthestudenttoproveorverifyastatementoranexample, fillincertaindetailsinaproof,orprovideanintermediatesteporacounterexample. Theyarealsoaninherentpartofthematerial.Moredifficultproblems,suchasSec- tion8.6,Problem11,aremarkedwithanasterisk,manyproblemsandexercisesare suppliedwith“existential”hints. Thebookisgenerousonexamplesandcontainsnumerousremarksaccompany- ingdefinitions,examples,andstatementstodiscusscertainsubtleties,raisequestions onwhethertheconverseassertionsaretrue,wheneverappropriate,orwhetherthe conditionsareessential. Asamplydemonstratedbyexperience,studentstendtobetterrememberstate- mentsbytheirnamesratherthanbynumbers.Thus,adistinctivefeatureofthebook isthateverytheorem,proposition,corollary,andlemma,unlessalreadypossessinga name,isendowedwithadescriptiveone,makingiteasiertoremember,which,inthis author’shumbleopinion,isquiteabargainwhenthepriceforbetterunderstanding andretentionofthematerialisalittleclumsinesswhilemakingalongerreference. Eachstatementisreferredtobyitsnameandnotjustthenumber,e.g.,theCharacter- izationofRiemannIntegrability(Theorem6.10),asopposedtomerelyTheorem6.10. Withnopretenseonfurnishingthehistoryofthesubject,thetextprovidescertain datesandlistseveryrelatednameasafootnote.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.