2 Puraen Adp plMiaetdh ematics: A WilSeeriesy ofTeMlotnso,g raanTpdrh asc,t s Real Analysis A HistoriAcpaplr oach SI.(()\D IDIII()\ �WILEY This page intentionally left blank ReaAln alysis PUREA NDA PPLIEMDA THEMATICS A WileSye rioefsT extMso,n ograpahnsdT, racts FoundebdyR ICHARDC OURANT EditoErmse ritMiY:R ON ALLEN IllD,A VIDA .C OX,P ETERH ILTON, B. HARRY HOCHSTADTP,E TERL AX,J OHNT OLAND A compleltieso tft het itlients h isse riaepsp eaartts h ee ndo ft hivso lume. ReaAln alysis: A HistorAipcparlo ach SeconEdd ition SauSlt ahl TheU niverosfiKt ayn sas DepartmeonftM athematics LawernceK,S �WILEY A JOHNW ILEY& SONSI,N CP.U,B LICATION Copyrigh2t0 11 byJ ohnW iley SonsI,n cA.l lr ighrtess erved. © & PublisbhyeJ do hWni ley SonsI,n c.H,o bokeNne,w J ersey. & Publisshiemdu ltaneionuC salnya da. No parotf t hipsu blicamtaiyob ner eproduscteodr,ie nda r etriseyvsatle omrt ransmiitnat endyf ormo r bya nym eanse,l ectromneicch,a nipchaolt.o copyriencgo,r discnagn,n ionrog t herwiseex,c eapst permitutnedde Sre cti1o0n7o r1 08o ft he1 976 UnitedC oSptyartieAgsch ttw, i thoeuitt htehrep rior writtpeenrm issiooftn h Pe ublisohrea ru,t horiztahtrioounpg ahy menotft hea pproprpieart-ec ofpeyet o thCeo pyriCglheta raCnecnet er, 2I2n2Rc o.s,e wooDdr ivDea,n verMsA. 0 1923, (795708-)8 4f0a0x, (9787)5 0-44o7r0o ,n t hewe ba tw ww.copyrightR.ecqoume.st tots h eP ublisfhoeprre rmisssihoonu ld bea ddrestsoet dh Pe ermissiDoenpsa rtmeJnoth,nW iley SonsI,n cI.I,I R iveSrt reHeotb,o keNnJ, & 07030(.2 017)4 8-610,1f ax( 2017)4 8-60o0r8o ,n lianteh ttp://www.wiley.com/go/permission. LimiotfL iability/DiosfcW laarirmaenWrt hyi:l teh ep ublisahnedar u thhoarv ues etdh ebiers etf foirtns prepartihnigs bookm,a ktenh oer ye presentoarwt airorna ntwiietrshe spetcott h eac curacoyr completeonfet shsce o nteonftts h ibso oka nds pecificdailslcyl aainmyi mpliweadr rantoife s merchantaboirfl iittnyfe osarsp articpuulrapro sNeo. w arranmtayy creatoered x tendbeyds ales be representaotriw vreist tseanl emsa teriTahlesa .d viacned s tratecgoinetsa ihneerde miany n ot be suitafbolyreo usri tuatYioouns .h oulcodn suwlitt ahp rofessiownhaelra ep proprNieaitteh.te hre publisnhoerar u thsohra blell iabfloera nyl ososfp rofiotra nyo thecro mmercdiaamla geisn,c luding butn otl imitteosd p eciianlc,i denctoanls,e quenotroi tahle,dr a mages. Forg enerianlf ormaotnio ounro theprr oducatnsds ervipcleesa csoen taocutrC ustomCearr e Departmweintth tihneU niteSdt ataet(s 8 007)6 2-29o7u4t,s itdheeU niteSdt ataet(s 3 175)7 2-39o9r3 fax( 3175)7 2-4002. Wileayl spou blisihtebsso okisn a v arieotfey l ectrfoonrimca Stosm.e c ontetnhtaa tp peairnps r int, howevemra,y n otb ea vailaibnel lee ctrfoonrimca Ftosr.m orei nformaatbioounWt i lepyr oducvtiss,i t ourw ebs itaetw ww.wiley.com. LibroaCfryo ngCraetsasl ogingD-aitna-:P ublication StahSla,u l. Reaaln aly:s ihasi storaipcparlo a/cS ha uSlt ah-l.2 nde d. p.cm. In cludiensd ex. ISBN9 78-0-470-87(8h9a0r-d3b ack) I.M athemataincaally s2i.Fs u.n ctioofnr se avla riabIl.eT si.t le. QA300.S8280211 515'.8-dc22 2011010976 Printientd h eU niteSdt atoefsA merica. oBooIkS BN:9 78118096864 ePDFI SBN:9 78118096840 ePuIbS BN:9 78118096857 10 9 8 7 6 5 4 3 2 I Tbhoidosek td oii csa ted tmheeom fpo aramremynybny d rot tsh er, FniMkolasaDn,eSad stn ,a hl This page intentionally left blank Contents Prefatcote h See coEnddi tion xi Acknloewdgments xv 1 Archiemsea dndt hPea rabola 1 1.1 TheA reoaf t hPea rabolSiecg ment 1 1.2*T heG eometorfty h Pea rabola 8 2 FermatD,i fferentiaantdIi notne,g ration 13 2.1F erma'tsC alculus 13 3 NewtonC'asl culus1 )( Part 19 3.1 TheF ractioBnianlo miTahle orem 19 3.2A reasa ndI nfiniSteer ies 23 3.3N ewtoPnro'osf s 30 4 NewtonC'asl cu(lPuasr t 2) 35 4·1 TheS olutoifDo inff enretiEaqlau tions 35 4·2*T heS olutoifAo lng eibcEra qautions 40 ChatpeArp pendMiaxt:h emaItimcpal ementoaft ions NewtoAnl'osgr ithm 48 vii viiCiO TNENTS 5 Euler 51 5.1 TrigonomSeetrriiecs 51 6 TheR eaNlu mbers 61 6.1A nI nforImnatlro duction 61 6.2 OrderFeiedl ds 64 6.3 CompleteannedsI srr atiNounmable rs 71 6.*4 TheE uclidPeroacens s 76 6.5F unctions 80 7 SequenacnedTs h eiLri mits 85 7.1 TheD efinitions 85 7.2L imit Theorems 92 8 TheC auchPyro perty 103 8.1L imiotfsM onotoSneeq uences 103 8.2 TheC auchPyro perty 111 9 TheC onverego efIn ncfiniSteer ies 115 9.1S tocSke ries 115 9.2S erioefPs o sitiTveer ms 120 9.3S erioefAs r bitraTreyr ms 124 9.*4 TheM osCte lebraPtroebdl em 132 10S erioefFs u nctions 139 10.P1o weSre ries 139 10.2T rigonomSeetrriiecs 145 11C ontinuity 149 11.A1n I nforImnatlro duction 149 11.2 Theo fLa iF muintc tion 150 11.3C ontinuity 155 11.4P ropertoifCe osn tinuFouunsc tions 163 12D ifferentiability 169 12.A1n I nforImnatlro ducttoDi ioffne rentiati1o6n9 12.2T heD erivative 171 12.3T heC onesquenocfeD si fferentiability1 77
Description: