ebook img

Reading in Robotics Engineering PDF

124 Pages·26.957 MB·Russian
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reading in Robotics Engineering

Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Инженерно-технологическая академия Д. О. БЕРЕЗУЦКАЯ О. Г. МЕЛЬНИК READINGS IN ROBOTICS ENGINEERING Учебное пособие Ростов-на-Дону − Таганрог Издательство Южного федерального университета 2021 1 Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» УДК 811.11 ББК 81.2Англ-92 Б484 Печатается по решению кафедры лингвистического образования Института управления в экономических, экологических и социальных системах Южного федерального университета (протокол № 9 от 21 апреля 2021 г.) Рецензенты: доктор педагогических наук, профессор Южного федерального университета С. Р. Балуян кандидат филологических наук, доцент Ростовского государственного экономического университета (РИНХ) М. Г. Аханова Березуцкая, Д. О. Б484 Readings in Robotics Engineering : учебное пособие / Д. О. Бе- резуцкая, О. Г. Мельник ; Южный федеральный университет. − Ро- стов-на-Дону ; Таганрог : Издательство Южного федерального уни- верситета, 2021. − 122 с. ISBN 978-5-9275-3921-5 Данное пособие предназначено для студентов специальности 15.03.04 «Робототехника и мехатроника» и содержит дидактические материалы для формирования коммуникативной компетенции. Пособие может быть исполь- зовано как для аудиторной, так и для внеаудиторной работы. УДК 811.11 ББК 81.2Англ-92 ISBN 978-5-9275-3921-5 © Южный федеральный университет, 2021 © Березуцкая Д. О., Мельник О. Г., 2021 © Оформление. Макет. Издательство Южного федерального университета, 2021 2 Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» 1.2. Building robots for the future ПРЕДИСЛОВИЕ Учебно-методическое пособие составлено в соответствии с програм- мой курса «Иностранный язык для профессиональных целей». Пособие содержит тексты научно-технического характера по автоматизации и ком- плекс заданий с учетом профессиональных интересов обучаемых и соблю- дением принципа междисциплинарности обучения. Предназначено для раз- вития профессионально-коммуникативных умений и навыков у студентов высших учебных заведений направления подготовки 15.03.04 «Автоматиза- ция технологических процессов и производств» очной и заочной форм обу- чения, при изучении английского языка. Рекомендуется как для аудитор- ной, так и для самостоятельной подготовки студентов 3‒4 курсов к профес- сионально-ориентированному иноязычному общению. Учебное пособие состоит из трех тематических разделов (Parts): Sensing the world Learning from nature Working in teams Каждый раздел представлен заданиями к видео, оригинальными текстами, предназначенными для обучения чтению, критическому анали- зу прочитанного, а также дискуссий на основе прочитанного. Наряду с текстами в каждом разделе предлагается комплекс упражнений, способ- ствующих активному усвоению лексики, правильному употреблению терминов. 3 Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Part I. Sensing the World PART I. SENSING THE WORLD Robots and autonomous systems are set to change our lives in the not- too-distant future; from travel (self-driving cars), to work (job automation), to medicine (biomedical robots), and even domestic life (household robots). On this course, we’ll look at current and future developments in the field of robotics. You’ll learn how robots sense the world around them, how robotics takes inspiration from nature, and how robots will work with humans. You’ll build up a picture of the principles and the fundamental challenges of robotic design, and demonstrate how research is working to overcome these. What will you achieve? By the end of the course, you‘ll be able to... • Describe the main challenges of working with autonomous systems and the ways in which we might meet these challenges. • Explore some basic principles of robotic design. • Apply knowledge of where developments in robotics are heading and their potential effect on our future. • Explain existing and potential real-life robotic applications. 1.1. Where is my flying car? Robots and automated systems have long occupied a special place in our cultural imagination, with films and books often making grand predictions about technologies of the future. But many of the robotic technologies that science fiction writers predicted haven’t yet surfaced, at least, not in the mainstream. Why do you think this is? In this first discussion, we’d like you to reflect on where you thought the field of robotics would be when you were growing up and whether your expec- tations have been met. Is there a particular robotic technology that you imagined you would have access to? Why do you think you don’t? For instance: Why don’t we all have flying cars? When I was growing up in the 1960s I watched ‘The Jetsons’ and they had a flying car which folded up into a briefcase. 4 Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» 1.2. Building robots for the future 1.2. Building robots for the future Robots have been around now for many years, especially in factories. But we have yet to see robots integrate into wider society, such as homes, hos- pitals and schools. This raises some key questions: Are the robots coming? When will they get here? What will they be like? In this step, we examine what the near future holds for robotics. Robots already shape society Almost every product we see and use in modern day society is built by automated systems incorporating robots. From our smartphones to our cars, products of automated manufacturing systems and robots are all around us. But many of the current generation of robots reside in factories, hidden away from society. The primary type of robot used in factories is the manipulator, or robot arm, which can pick and place objects, and use tools for tasks like welding. Manipulators are the most successful robot the world has yet seen, in terms of usefulness to society and widespread adoption across global industry. A vision for the future Our vision, and the vision of robotics engineers worldwide, is that future robots will transform society, becoming an integral part of future smart cities, smart homes and smart industries. Robots will also impact a number of industry sectors, providing care for an ageing population, safer transport, efficient healthcare, increased productivi- ty in manufacturing, offshore exploration of the seas and oceans, space explora- tion and secure energy. Where are robots set to have a future impact? Aerospace: Collision detect and avoid systems for use on unmanned air systems (UAS) of all sizes is a top priority, and these will translate across to manned systems, making flight safer for all. Marine robots: Autonomous marine robots have great potential for in- spection and survey of subsea infrastructure, deep sea exploration and aircraft black box recovery. Bionic devices: The ageing population motivates the development of bi- onic technologies, such as exoskeletons and brain-computer interfaces, which can help ensure longer independent lives. 5 Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Part I. Sensing the World Nuclear decommissioning robots: Nuclear power is set to increase and the high levels of radiation associated with the technology will require the use of advanced robotic tools for decommissioning. Intelligent vehicles: Increased levels of autonomy in cars are set to make road travel safer and more efficient, reducing congestion and making journey times shorter. Farms of the future: Robots on farms will lead to more efficient energy use, reduced use of fertiliser and pesticide, more effective use of land, reduced environmental impact and enhanced cropping systems. Space exploration: Robots, not humans, are key to future exploration of deep space whilst in near space robots will be needed to construct platforms to assist astronauts with tasks. Surgical robots: Lightweight robotic tools will be able to amplify the surgeon’s skill, remove tremors and operate with micro-scale forces on delicate tissue, well beyond the capabilities of human precision. Smart cities: Robots will become the ‘actors’ in future smart cities, making them integrated and smooth running; maintaining services and utilities and providing transport and logistics. Robotic systems are a ubiquitous and underpinning technology that can fuel the global industrial strategy for the 21st century, positively transforming our lives. Discussion What new robot would you like to see in the future and why? How would this new robot impact on your life, or wider society? 1.3. What makes a robot a robot? Most people are familiar with the idea of a robot. But what makes a ro- bot a robot, and not just another machine? In this step, we define some of the key characteristics of a robotic system. What is a robot? A key feature of robots is that they interact with the world, making changes to the world through their actions and responding to events in the 6 Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» 1.3. What makes a robot a robot? world. Robots perform useful tasks, extend the capabilities of humans and re- duce our risks when operating in hazardous environments. Robotic systems can be defined as interconnected, interactive, cognitive and physical tools that are able to: • perceive the environment using sensors • reason about events • make plans using algorithms implemented in computer programs • perform actions enabled by actuators This ‘feedback loop’ of autonomous sensing, perception, cognition and action is what distinguishes the robot from other machines (see figure 1). A robot or autonomous system consists of the entity itself and its inter- action with the world including other RAS and humans. The key elements of any RAS are the ability to sense and perceive the world, make intelligent deci- sions and take appropriate actions. Example: a driverless car The driverless car is an example of a typical robotic system: • Sensors: the car has a number of sensors that allow it to perform au- tonomously, including LIDAR (light detection and ranging), video cameras, RADAR (radio detection and ranging), wheel encoders (which measure wheel 7 Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Part I. Sensing the World rotation to estimate distance travelled) and GPS (global positioning system) which is used to measure the car’s location in the world. • Perception: perception algorithms transform the raw data into labelled objects e.g. other cars, pedestrians and road signs. • Cognition: cognition algorithms allow the car to plan actions based on current perceptions and goals (i.e. desired destination and route, avoiding ob- stacles). • Action: the actions are implemented by low-level control algorithms that manipulate the steering wheel, accelerometer and brake to move the car, and which take account of the vehicle dynamics, road surface and environmen- tal conditions. Key challenges to solve for the future For robots to make an impact on human society in future, they need to be able to operate safely and effectively amongst humans. Most conventional robots operate successfully in structured environments such as factories. These are controlled spaces where the general public are not allowed to venture, or only under supervision. 8 Copyright ООО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» 1.3. What makes a robot a robot? A key challenge for future robots therefore, to bring them out of the fac- tories, is to make them more robust to unstructured environments, where the environment is unknown and unexpected events can occur. The challenges for robots in unstructured environments extend across all the robotic elements of sensing, perception, cognition and action. In each step of this course, we’ll focus on a particular area related to cur- rent research challenges that underpin the future of robotics. • The focus of Step 1 is on sensing and perception, with an introduction to cognition and action using planning techniques such as primitive actions. • The focus of Step 2 is on bioinspired robotics, which links to cogni- tion and aims to use design principles from the natural world to improve adapt- ability, versatility and robustness. • The focus of Step 3 is on cooperative robotics, where robots combine in teams to solve problems collectively, and expands into ethical issues in ro- botics, as well as skills a robotics engineer will need in the future, such as com- puter programming. Discussion Why is an automated dishwashing machine not a robot? (Or is it?) 1. Draw a robot, based upon your experiences. 2. Take two minutes to do a “think, pair, share and explain” about what you drew and why you drew your robot in that particular manner. 3. Have a group discussion with an outcome of creating a definition of robots. Pose questions such as: • Have you ever seen a robot before? What did it look like? • What type of task was the robot trying to accomplish? • Does a robot move? Or have arms that move? Are robots important? Why? What is a robot? Robots use different kinds of sensors to collect the in- formation they need. Software processes this information so the robot can plan a response. Then they act to complete the task. Reading: SOCIAL ROBOTS Scientists have been studying human facial expressions for many years. With the dozens of muscles found in our faces we are able to communicate emotional cues such as joy, anger, or shock. Social robots like EMYS have the 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.