ebook img

Reactive Extrusion: Principles and Applications PDF

416 Pages·2017·23.694 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reactive Extrusion: Principles and Applications

ReactiveExtrusion Reactive Extrusion PrinciplesandApplications EditedbyGünterBeyerandChristianHopmann Editors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Dr.GünterBeyer editors,andpublisherdonotwarrantthe HeadofDepartment informationcontainedinthesebooks, Chem.-phys.Laboratories includingthisbook,tobefreeoferrors. KabelwerkEupenAG Readersareadvisedtokeepinmindthat MalmedyerStraße9 statements,data,illustrations,procedural 4700Eupen detailsorotheritemsmayinadvertently Belgium beinaccurate. LibraryofCongressCardNo.:appliedfor Prof.Dr.ChristianHopmann RWTHAachenUniversity InstituteofPlasticsProcessing(IKV) BritishLibraryCataloguing-in-Publication 52056Aachen Data Germany Acataloguerecordforthisbookis availablefromtheBritishLibrary. Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2018Wiley-VCHVerlagGmbH&Co. KGaA,Boschstr.12,69469 Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoamachine languagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw. PrintISBN:978-3-527-34098-9 ePDFISBN:978-3-527-80153-4 ePubISBN:978-3-527-80155-8 MobiISBN:978-3-527-80156-5 oBookISBN:978-3-527-80154-1 CoverDesignSchulzGrafik-Design, Fußgönheim,Germany Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper v Contents Preface xiii ListofContributors xv PartI Introduction 1 1 IntroductiontoReactiveExtrusion 3 ChristianHopmann,MaximilianAdamy,andAndreasCohnen References 9 PartII IntroductiontoTwin-ScrewExtruderforReactive Extrusion 11 2 TheCo-rotatingTwin-ScrewExtruderforReactive Extrusion 13 FrankLechner 2.1 Introduction 13 2.2 DevelopmentandKeyFiguresoftheCo-rotatingTwin-Screw Extruder 14 2.3 ScrewElements 16 2.4 Co-rotatingTwin-ScrewExtruder–UnitOperations 22 2.4.1 Feeding 23 2.4.2 UpstreamFeeding 23 2.4.3 DownstreamFeeding 24 2.4.4 MeltingMechanisms 24 2.4.5 ThermalEnergyTransfer 24 2.4.6 MechanicalEnergyTransfer 25 2.4.7 MixingMechanisms 25 2.4.8 Devolatilization/Degassing 25 2.4.9 Discharge 26 2.5 SuitabilityofTwin-ScrewExtrudersforChemicalReactions 26 2.6 ProcessingofTPE-V 27 2.7 PolymerizationofThermoplasticPolyurethane(TPU) 29 vi Contents 2.8 GraftingofMaleicAnhydrideonPolyolefines 31 2.9 PartialGlycolysisofPET 32 2.10 PeroxideBreak-DownofPolypropylene 33 2.11 Summary 35 References 35 PartIII SimulationandModeling 37 3 ModelingofTwinScrewReactiveExtrusion:Challengesand Applications 39 FrançoiseBerzinandBrunoVergnes 3.1 Introduction 39 3.1.1 PresentationoftheReactiveExtrusionProcess 39 3.1.2 ExamplesofIndustrialApplications 40 3.1.3 InterestofReactiveExtrusionProcessModeling 41 3.2 PrinciplesandChallengesoftheModeling 41 3.2.1 TwinScrewFlowModule 42 3.2.2 KineticEquations 44 3.2.3 RheokineticModel 44 3.2.4 Coupling 45 3.2.5 OpenProblemsandRemainingChallenges 45 3.3 ExamplesofModeling 46 3.3.1 EsterificationofEVACopolymer 46 3.3.2 ControlledDegradationofPolypropylene 50 3.3.3 Polymerizationof𝜀-Caprolactone 55 3.3.4 StarchCationization 59 3.3.5 OptimizationandScale-up 61 3.4 Conclusion 65 References 66 4 MeasurementandModelingofLocalResidenceTime DistributionsinaTwin-ScrewExtruder 71 Xian-MingZhang,Lian-FangFeng,andGuo-HuaHu 4.1 Introduction 71 4.2 MeasurementoftheGlobalandLocalRTD 72 4.2.1 TheoryofRTD 72 4.2.2 In-lineRTDMeasuringSystem 73 4.2.3 ExtruderandScrewConfigurations 75 4.2.4 PerformanceoftheIn-lineRTDMeasuringSystem 76 4.2.5 EffectsofScrewSpeedandFeedRateonRTD 77 4.2.6 AssessmentoftheLocalRTDintheKneadingDiskZone 79 4.3 ResidenceTime,ResidenceRevolution,andResidenceVolume Distributions 81 4.3.1 PartialRTD,RRD,andRVD 82 4.3.2 LocalRTD,RRD,andRVD 86 Contents vii 4.4 ModelingofLocalResidenceTimeDistributions 88 4.4.1 KinematicModelingofDistributiveMixing 88 4.4.2 NumericalSimulation 89 4.4.3 ExperimentalValidation 92 4.4.4 DistributiveMixingPerformanceandEfficiency 93 4.5 Summary 97 References 98 5 In-processMeasurementsforReactiveExtrusionMonitoring andControl 101 JoséA.Covas 5.1 Introduction 101 5.2 RequirementsofIn-processMonitoringofReactiveExtrusion 103 5.3 In-processOpticalSpectroscopy 111 5.4 In-processRheometry 116 5.5 Conclusions 125 Acknowledgment 126 References 126 PartIV SynthesisConcepts 133 6 ExchangeReactionMechanismsintheReactiveExtrusionof CondensationPolymers 135 ConcettoPuglisiandFilippoSamperi 6.1 Introduction 135 6.2 InterchangeReactioninPolyester/PolyesterBlends 138 6.3 InterchangeReactioninPolycarbonate/PolyesterBlends 143 6.4 InterchangeReactioninPolyester/PolyamideBlends 148 6.5 InterchangeReactioninPolycarbonate/PolyamideBlends 155 6.6 InterchangeReactioninPolyamide/PolyamideBlends 159 6.7 Conclusions 166 References 167 7 InsituSynthesisofInorganicand/orOrganicPhasesin ThermoplasticPolymersbyReactiveExtrusion 179 VéroniqueBounor-Legaré,FrançoiseFenouillot,andPhilippeCassagnau 7.1 Introduction 179 7.2 Nanocomposites 179 7.2.1 SynthesisofinsituNanocomposites 181 7.2.2 SomeSpecificApplications 183 7.2.2.1 AntibacterialPropertiesofPP/TiO Nanocomposites 183 2 7.2.2.2 Flame-RetardantProperties 184 7.2.2.3 ProtonicConductivity 186 7.3 PolymerizationofaThermoplasticMinorPhase:TowardBlend Nanostructuration 188 viii Contents 7.4 PolymerizationofaThermosetMinorPhaseUnderShear 196 7.4.1 ThermoplasticPolymer/Epoxy-AmineMiscibleBlends 197 7.4.2 ExamplesofStabilizationofThermoplasticPolymer/Epoxy-Amine Blends 202 7.4.3 BlendsofThermoplasticPolymerwithMonomersCrosslinkingvia RadicalPolymerization 202 7.5 Conclusion 203 References 204 8 Conceptof(Reactive)Compatibilizer-TracerforEmulsification CurveBuild-up,CompatibilizerSelection,andProcess OptimizationofImmisciblePolymerBlends 209 Cai-LiangZhang,Wei-YunJi,Lian-FangFeng,andGuo-HuaHu 8.1 Introduction 209 8.2 EmulsificationCurvesofImmisciblePolymerBlendsinaBatch Mixer 210 8.3 EmulsificationCurvesofImmisciblePolymerBlendsinaTwin-Screw ExtruderUsingtheConceptof(Reactive)Compatibilizer 213 8.3.1 Synthesisof(Reactive)Compatibilizer-Tracers 213 8.3.2 DevelopmentofanIn-lineFluorescenceMeasuringDevice 214 8.3.3 ExperimentalProcedureforEmulsificationCurveBuild-up 216 8.3.4 CompatibilizerSelectionUsingtheConceptof Compatibilizer-Tracer 219 8.3.5 ProcessOptimizationUsingtheConceptof Compatibilizer-Tracer 220 8.3.5.1 EffectofScrewSpeed 220 8.3.5.2 EffectsoftheTypeofMixer 221 8.3.6 SectionSummary 221 8.4 EmulsificationCurvesofReactiveImmisciblePolymerBlendsina Twin-ScrewExturder 222 8.4.1 ReactionKineticsbetweenReactiveFunctionalGroups 222 8.4.2 (Non-reactive)CompatibilizersVersusReactiveCompatibilizers 223 8.4.3 AnExampleofReactiveCompatibilizer-Tracer 224 8.4.4 AssessmentoftheMorphologyDevelopmentofReactiveImmiscible PolymerBlendsUsingtheConceptofReactiveCompatibilizer 225 8.4.5 EmulsificationCurveBuild-upinaTwin-ScrewExtruderUsingthe ConceptofReactiveCompatibilizer-Tracer 229 8.4.6 AssessmentoftheEffectsofProcessingParametersUsingtheConcept ofReactiveCompatibilizer-Tracer 233 8.4.6.1 EffectoftheReactiveCompatibilizer-TracerInjectionLocation 233 8.4.6.2 EffectoftheBlendComposition 235 8.4.6.3 EffectoftheGeometryofScrewElements 238 8.5 Conclusion 241 References 241 Contents ix PartV SelectedExamplesofSynthesis 245 9 Nano-structuringofPolymerBlendsbyinsituPolymerization andinsituCompatibilizationProcesses 247 Cai-LiangZhang,Lian-FangFeng,andGuo-HuaHu 9.1 Introduction 247 9.2 MorphologyDevelopmentofClassicalImmisciblePolymerBlending Processes 248 9.2.1 Solid–LiquidTransitionStage 249 9.2.2 MeltFlowStage 251 9.2.3 EffectofCompatibilizer 253 9.3 InsituPolymerizationandinsituCompatibilizationofPolymer Blends 255 9.3.1 Principles 255 9.3.2 ClassicalPolymerBlendingVersusinsituPolymerization andinsituCompatibilization 255 9.3.3 ExamplesofNano-structuredPolymerBlendsbyinsitu PolymerizationandinsituCompatibilization 257 9.3.3.1 PP/PA6Nano-blends 257 9.3.3.2 PPO/PA6Nano-blends 264 9.3.3.3 PA6/Core–ShellBlends 264 9.4 Summary 267 References 268 10 ReactiveCombCompatibilizersforImmisciblePolymer Blends 271 YongjinLi,WenyongDong,andHengtiWang 10.1 Introduction 271 10.2 SynthesisofReactiveCombPolymers 272 10.3 ReactiveCompatibilizationofImmisciblePolymerBlendsbyReactive CombPolymers 274 10.3.1 PLLA/PVDFBlendsCompatibilizedbyReactiveComb Polymers 274 10.3.1.1 ComparisonoftheCompatibilizationEfficiencyofReactiveLinear andReactiveCombPolymers 274 10.3.1.2 EffectsoftheMolecularStructuresontheCompatibilization EfficiencyofReactiveCombPolymers 278 10.3.2 PLLA/ABSBlendsCompatibilizedbyReactiveComb Polymers 282 10.4 ImmisciblePolymerBlendsCompatiblizedbyJanus Nanomicelles 289 10.5 ConclusionsandFurtherRemarks 293 References 293 x Contents 11 ReactiveCompoundingofHighlyFilledFlameRetardantWire andCableCompounds 299 MarioNeuenhausandAndreasNiklaus 11.1 Introduction 299 11.2 FormulationsandIngredients 300 11.2.1 TypicalFormulationandVariationsfortheEvaluation 300 11.2.2 PrincipleofSilaneCrosslinkingbyReactiveExtrusion 301 11.2.3 ProductionofAluminumTrihydroxide(ATH) 301 11.2.4 ModeofActionofAluminumTrihydroxide 302 11.2.5 SelectionofSuitableATHGrades 303 11.3 Processing 306 11.3.1 CompoundingLine 306 11.3.2 CompoundingProcessforCrossLinkableHFFR Products 308 11.3.2.1 Two-StepCompoundingProcess 308 11.3.2.2 One-StepCompoundingProcess 309 11.3.2.3 AdvantagesandDisadvantagesoftheTwoProcessConcepts (Two-StepvsOne-Step) 313 11.4 EvaluationandResultsontheCompound 314 11.4.1 CrosslinkingDensity 314 11.4.2 MechanicalProperties 315 11.4.3 AgingPerformance 315 11.4.4 FirePerformanceonLaboratoryScale 317 11.4.5 ResultsoftheNon-PolarCompounds 318 11.5 CableTrials 322 11.5.1 FirePerformanceofElectricalCablesAccording toEN50399 322 11.5.2 BurningTestonExperimentalCablesAccording toEN50399 323 11.6 Conclusions 328 References 329 12 ThermoplasticVulcanizates(TPVs)bytheDynamic VulcanizationofMiscibleorHighlyCompatiblePlastic/Rubber Blends 331 YongjinLiandYanchunTang 12.1 Introduction 331 12.2 MorphologicalDevelopmentofTPVsfromImmisciblePolymer Blends 333 12.3 TPVsfromMisciblePVDF/ACMBlends 334 12.4 TPVsfromHighlyCompatibleEVA/EVMBlends 338 12.5 ConclusionsandFutureRemarks 342 References 342 Contents xi PartVI SelectedExamplesofProcessing 345 13 ReactiveExtrusionofPolyamide6withIntegratedMultiple MeltDegassing 347 ChristianHopmann,EikeKlünker,AndreasCohnen,andMaximilianAdamy 13.1 Introduction 347 13.2 SynthesisofPolyamide6 347 13.2.1 HydrolyticPolymerizationofPolyamide6 347 13.2.2 AnionicPolymerizationofPolyamide6 348 13.3 ReviewofReactiveExtrusionofPolyamide6inTwin-Screw Extruders 352 13.4 RecentDevelopmentsinReactiveExtrusionofPolyamide6in Twin-ScrewExtruders 354 13.4.1 ReactionSystemandExperimentalSetup 354 13.4.2 InfluenceofNumberofDegassingStepsandActivatorContenton ResidualMonomerContentandMolecularWeight 356 13.4.3 InfluenceofAmountandTypeofEntraineronResidualMonomer ContentandMolecularWeight 365 13.4.4 InfluenceofPolymerThroughputonResidualMonomerContent 367 13.5 Conclusion 368 References 369 14 IndustrialProductionandUseofGraftedPolyolefins 375 InnoRapthel,JochenWilms,andFrederikPiestert 14.1 GraftedPolymers 375 14.2 IndustrialSynthesisofGraftedPolymers 376 14.2.1 MeltGraftingTechnology 377 14.2.2 SolidStateGraftingTechnology 378 14.3 MainApplications 380 14.3.1 UseasCouplingAgents 380 14.3.2 GraftedPolyolefinsforPolymerBlending 392 14.3.2.1 ReactiveBlendingofPolyamides 392 14.3.3 GraftedTPE’sforOvermoldingApplications 400 14.4 ConclusionandOutlook 403 References 404 Index 407

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.