ebook img

Reaction energetics and crystal structure of Li4BN3H10 from first principles PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reaction energetics and crystal structure of Li4BN3H10 from first principles

Firstprinciples study ofthecrystal structure and dehydrogenation pathways ofLi BN H 4 3 10 Donald J. Siegel and C. Wolverton PhysicalandEnvironmentalSciencesDepartment, FordMotorCompany,MD3083/RIC,Dearborn, MI48121 V. Ozolin¸sˇ Department ofMaterialsScienceandEngineering, UniversityofCalifornia, LosAngeles, CA90095 7 (Dated:February6,2008) 0 0 Usingdensityfunctionaltheoryweexaminethecrystalstructureandthefinite-temperaturethermodynamics 2 of formation and dehydrogenation for the new quaternary hydride Li4BN3H10. Two recent studies based on X-rayandneutrondiffractionhavereportedthreebcccrystalstructuresforthisphase. Whilethesestructures n possessidenticalspacegroupsandsimilarlatticeconstants,internalcoordinatedifferencesresultinbondlength a J discrepanciesaslargeas0.2A˚.Geometryoptimizationcalculationsontheexperimentalstructuresrevealthat theapparentdiscrepanciesareanartifactofX-rayinteractionswithstrongbondpolarization;therelaxedstruc- 3 turesareessentiallyidentical.Regardingreactionenergetics,thepresentcalculationspredictthattheformation reaction3LiNH +LiBH →Li BN H isexothermicwithenthalpy∆HT=300K = −11.8kJ/(molf.u.),con- ] 2 4 4 3 10 ci sistentwithreportsofspontaneousLi4BN3H10 formationintheliterature. Calorimetryexperimentshavebeen reportedforthedehydrogenationreaction,buthaveprovendifficulttointerpret. Tohelpclarifythethermody- s - namicsweevaluatethefreeenergiesof seventeen candidate dehydrogenation pathways over thetemperature rl rangeT =0–1000K.AttemperatureswhereH2-releasehasbeenexperimentallyobserved(T ≈520–630K), t thefavoreddehydrogenationreactionisLi BN H →Li BN +LiNH +4H ,whichisweaklyendothermic m 4 3 10 3 2 2 2 [∆HT=550K = 12.8kJ/(molH )]. Thesmallcalculated∆H isconsistentwiththeunsuccessfulattemptsatre- 2 . hydridingreportedintheliterature,andsuggeststhatthemoderatelyhightemperaturesneededforH-desorption t a resultfromslowkinetics. m PACSnumbers:64.70.Hz,65.40.-b,71.15.Nc,81.05.Zx - d n o I. INTRODUCTION possible (and has been partially demonstrated6) through the c additionofcatalyticdopants6,9orvianovelsyntheticroutes,10 [ suggestingthatfurtherstudyofthissystemiswarranted. Recenteffortstoimprovetheefficiencyandreducetheen- 2 vironmentalimpactof automobiletransporthave focusedon ThecompositionofthenewLi-B-N-Hphasewasprelimi- v hydrogen-based fuel cells (FC) and internal combustion en- narilyidentified4as“Li3BN2H8,”butsubsequentexperiments 7 gines(H ICE)aspossiblereplacementsforcurrenttechnolo- based on single crystal X-ray diffraction,11 and, synchrotron 2 8 giespoweredbyfossil-fuels.1Asignificantobstacletorealiz- X-rayandneutronpowderdiffraction,12identifieditstruestoi- 6 7 ingthistransitionistheon-boardstorageofhydrogenathigh chiometryasLi4BN3H10.Combined,thesediffractionexperi- gravimetricandvolumetricdensities.2 Toachievethestorage mentsidentifiedthreesimilarcrystalstructures,allsharingthe 0 6 densities necessary for mobile applications, novelmeans for bccspacegroupI213withlatticeconstanta=10.66–10.68A˚, 0 H-storagearenecessary,andasetoftargetshavebeenestab- but with somewhat different internal coordinates. The dis- / lishedtoguidethesearchfornewstoragesystems.3Atpresent crepancyinatomicpositionsresultsinN-Hbondlengthsthat t a noknownstoragematerialormechanismmeetsthesetargets. differ between structures by as much as 0.2 A˚, with smaller m One promisingavenuefor efficientstorage of hydrogenis N-H lengths reported for the X-ray structures. It has been - via solid state storage, such as in the form of complex- or suggestedthatthediscrepancymaybeanartifactofX-rayin- d metal-hydrides. Solid storage has the advantage of provid- teractions with strongly polarized electron clouds along the n ing volumetric densities beyond what can be achieved with N-Hbonddirection.11 o c compressedH2 gasorcryogenicliquidstorage. However,all A careful characterization of a hydride’s crystal struc- : knownhydridessufferfromoneormoreofthefollowinglim- ture is desirable because it enables an independent, ab ini- v itations:lowgravimetricdensities,highH-desorptiontemper- tio assessment of the thermodynamics of hydrogen desorp- i X atures, or an inability to be easily re-hydrided. The search tion/absorption reactions. Such an assessment is of value r fornewhydridesthatovercometheselimitationshasattracted because it can clarify the thermodynamicswhen calorimetry a intenseinterestduringthepast5years. measurementsyield ambiguousresults, such as in situations Towards these ends, recent experiments by Pinkerton and wheremultiplereactionsoccursimultaneously(seebelow).A co-workers4,5,6 andAokietal.7,8 ontheH-storageproperties key thermodynamic property which determines the suitabil- ofthequaternaryLi-B-N-Hsystemarenoteworthy. By mix- ity of a hydride for H-storage applications is the strength of inglithiumborohydride(LiBH )andlithiumamide(LiNH ), the hydrogen-hostbond. The bondstrengthis quantifiedvia 4 2 both groups have reported the formation of a new hydride thechangeinenthalpy(∆H)occurringduringhydrogenup- phase, which when heated above ∼520 K released approx- take/release. InmobileFCapplications,forexample,itisde- imately 10 wt.% hydrogen. While the reported desorption sirablethatthedesorptionreactionbeendothermic(∆H >0) temperature is somewhat too high, and reversibility has not with ∆H ≈ 20–50kJ/(molH ). Neglectingkinetics, an en- 2 yet been demonstrated, improvement in these areas may be thalpyinthisrangewouldallowforH-desorptionattemper- 2 aturescompatiblewiththewaste heatfromaFC,andpermit II. METHODOLOGY on-boardrechargingunderreasonableH pressure. 2 First-principles calculations were performed using a planewave method based on the PW91 generalized gradient approximation15 to density functional theory13,14 (VASP).16 Unfortunately,calorimetricmeasurementsofH-desorption The core-valence electron interaction was treated using inLi BN H havebeendifficulttointerpret.(SeeRefs.6and 4 3 10 Blo¨chl’sprojectoraugmentedwave(PAW)method,17,18andk- 8,andthesupplementaryinformationaccompanyingRef.4.) pointsamplingwasperformedonadenseMonkhorst-Pack19 Because Li BN H melts at ∼460K, approximately60 de- 4 3 10 gridwithanenergyconvergenceofbetterthan1meVpersu- greesbelowtheonsetofH-desorption,hydrogengasevolves percell. (In the case of Li BN H , a 2 × 2 × 2 grid was fromthe liquidstate.4 Concurrentwith H release is the for- 4 3 10 2 sufficienttoacheivethislevelofprecision.) Electronicoccu- mation of a solid reaction product, generally involving one pancies were determined via a gaussian smearing algorithm ormorepolymorphsofLi BN alongwithotherunidentified 3 2 with a 0.1 eV smearing width. For high-precision calcula- phases,4,7,8anddesorptionof2-3mol%ammonia.4Measure- tionof static zeroKelvin (omittingzeropointvibrationalef- mentsbasedondifferentialscanningcalorimetry(DSC)4,6and fects) electronic energies and crystal structures we used the differentialthermalanalysis(DTA)8 suggestthatthenetheat so-called“hard”VASPPAWpotentials51withaplanewavecut- flowduringdehydridingisexothermic(∆H < 0). However, off of 875 eV, and a geometry relaxation tolerance of better it is unclear what fraction of the total thermal profile arises than 0.02 eV/A˚. Internal atomic positions and external cell fromtheexothermiclatentheatofLi BN solidification,8and 3 2 shape/volumewereoptimizedsimultaneously. furthermore how H and NH release impacts the calorime- 2 3 Finite-temperaturethermodynamicswere evaluatedwithin ter response.4 Consequently, it has not been possible to un- ambiguously assess the endo- or exothermic nature of H- theharmonicapproximation.20,21Vibrationalfrequencies(ωi) wereextractedbydiagonalizingadynamicalmatrixwhoseel- desorption alone. Neglecting kinetic effects, the fact that it ementsweredeterminedviatheso-calleddirectmethod:22the has proven very difficult4 to re-hydrideLi BN H suggests 4 3 10 forces generated by series of symmetry inequivalent atomic desorption is weakly endothermic, or exothermic. Regard- ing Li BN H formation, several studies4,8,12 have reported displacements about the equilibrium geometry (±0.02 A˚, 4 3 10 ±0.04 A˚) were fit to cubic splines in order to extract the thespontaneousformationofLi BN H aftermixingLiBH 4 3 10 4 forceconstants.Becauselargesupercellsaredesirabletomin- withLiNH ,evenattemperaturesaslowasroomtemperature, 2 suggestingthattheformationreactionisexothermic.4 imizefinite-sizeeffects,andwiththeexceptionofthemolec- ular species (H , N , NH ) where the number of atoms per 2 2 3 supercell is small, the dynamical matrix calculations on the solid-state phases were preformedusing a softer set of PAW Inlightofthediscrepancynotedaboveregardingthecrys- potentials52andplanewavecutoffenergiesrangingfrom400– talstructureofLi BN H ,andtheadditionalambiguitysur- 500 eV.53 A comparison of calculated structural parameters 4 3 10 rounding its dehydrogenation thermodynamics, we employ and formationenergieswith existing experimentaland theo- densityfunctionaltheory(DFT)13,14calculationsinanattempt reticaldataispresentedinthefollowingsection. to clarify these issues. First, we determine the ground state Oncethenormal-modefrequencieshavebeendetermined, crystal structure by performing separate geometry optimiza- finite-temperature energetics can be obtained by enthalpic tioncalculationsoneachoftheexperimentallyproposedcrys- (Hvib)andentropic(Svib)additionstothestaticelectronicen- tal structures. We find that the relaxed structures are essen- ergies. Within the harmonic approximation these contribu- tiallyidentical,andhaveN-Hbondlengthsthatareconsistent tionsaregivenby:20 with the structure based on neutron diffraction,12 thus con- lfiernmgitnhgsothbesecrovnejdecitnurRee11f.th1a1tatrheeaannoamrtiaflaocutsolyfXsh-orartyNm-Heabsuorned- Hvib(T) = 1~ωi+~ωi exp( ~ωi )−1 −1 (1) ments. Second, we evaluate the finite-temperature reaction Xi 2 (cid:20) kBT (cid:21) enthalpies and free energies for the formation and dehydro- ~ωi/kBT Svib(T) = kB tgoenLaitNioHn2ofanLdi4LBiNB3HH41)0.isLfio4uBnNd3tHo10befoerxmoatthieornm(iwc,itihnraegspreeec-t Xi exp(cid:16)k~BωTi (cid:17)−1 ment with experimental reports of spontaneous Li4BN3H10 −ln 1−exp(−~ωi) , (2) formation in the literature.4,7,12 For H2-desorption we ex- (cid:20) kBT (cid:21) plore the thermodynamics of seventeen candidate reactions over the temperaturerange T = 0–1000K, as there appears wherethesumsrunovervibrationalfrequencies(3N −3fre- to be some uncertainty in determining the reaction products quencies for solids and non-linear molecules, 3N − 5 fre- experimentally.4,7Attemperatureswheredesorptionhasbeen quencies for linear molecules), kB is the Boltzmann factor, reported4(T ≈520-630K),thefavoredreactionispredicted andT istheabsolutetemperature. Forthelinear(non-linear) tobeLi4BN3H10→Li3BN2+LiNH2+4H2,whichisweakly moleculesanadditional 27kBT (4kBT)termisaddedtoEq.1 endothermic. Moreover,the calculated free energiessuggest toaccountfortranslational,rotational,andpV degreesoffree- Li BN H is a metastable phase thatshoulddecomposevia dom. The zero point energy (ZPE) can be recovered from 4 3 10 oneofthreetemperature-dependentpathways. Eq.1inthelimitH (T = 0). Theenthalpyandfreeenergy vib 3 ofaphasecanthereforebeexpressedas: TABLE I: Calculated structural parameters compared with experi- H(T) = E+H (T) (3) mentaldata. Bondlengths(d)andcrystallatticeconstants(a,b,c) vib aregiven inA˚,bondangles (∡)andanglesbetween latticevectors G(T) = H(T)−S(T)T, (4) (α, β) arelistedindegrees. Spacegroup information for thesolid whereEisthestaticelectronicenergyofthecrystal/molecule phasesislistedinparentheses. initsground-stategeometryandS representseitherthestan- System Parameter Calculated Experiment dard tabulated23 entropy of a given molecular species in the H d(H-H) 0.749 0.74124 2 (gNas2)p,haansde1a9t2p.99=5J1Kb−a1rm[So0Tl−=3100(KNH=3)1],3o0r.8t5h8ev(Hib2r)a,ti1o9n1al.7e8n9- NN2H3 dd((NN--HN)) 11..012011 11..0019282244 tropySvibofasolidstatephase. ∡(H-N-H) 106.4 106.724 α-B(R¯3m) a 5.05 5.0625 α 58.1 58.125 III. CRYSTALSTRUCTURE BN(F¯43m) a 3.62 3.6226 Li(Im¯3m) a 3.44 3.5127 ThecrystalstructureofLi BN H hasbeenstudiedbytwo LiH(Fm¯3m) a 4.01 4.0728 groups.11,12Filinchukandco4-wor3ke1r0s11usedsingle-crystalX- Li3N(P¯3m1) a 3.64 3.61a c 3.88 3.85a raydiffractiontoidentifythestructuresofthetwolargestcrys- LiNH (I¯4) a 5.02 5.0429 taldomainsobtainedafterremeltinga 2:1mixtureofLiNH 2 2 c 10.28 10.2829 and LiBH . Both domains exhibited a bcc structure (space groupI2134)withlatticeconstantsof10.67-10.68A˚.Chateret Li2NH(Pnma) ab 37..6715 37..6703bb al.12usedacombinationofhigh-resolutionsynchrotronX-ray c 4.88 4.87b andneutrondiffractiontoexaminepowdersamplesprepared froma wide rangeofLiNH :LiBH compositions. Theyde- α-Li3BN2(P42/mnm) a 4.67 4.6430,31 2 4 c 5.22 5.2630,31 terminedthatalthoughthemostlikelystoichiometriccompo- β-Li3BN2(P21/c) a 5.15 5.1532 sition was 3:1, the Li4BN3H10 structure was able to accom- b 7.08 7.0832 modateawiderangeofstoichiometries. Theirbest-fitcrystal c 6.77 6.7932 structurehadexternalcellparameterssimilartothosereported β 112.7 113.032 inRef.11:bcc(spacegroupI213)witha=10.66A˚.Despite Li3BN2(I41/amd) a 6.63 6.6033 thegoodagreementinexternalgeometries,thestructuresob- c 10.35 10.3533 tained by these two studies differ markedly in their internal LiBH (Pnma) a 7.25 7.1834 4 coordinates. Most notably, the single-crystal X-ray diffrac- b 4.38 4.4434 tion study11 found anomalously short N-H bond lengths of c 6.63 6.8034 0.83-0.86A˚,whileneutronscattering12 gavelengthsof0.98- Li4BN3H10(I213) a 10.60 10.67-10.6811 1.04A˚. 10.6612 The external cell parameters obtained upon relaxing each ofthethreeLi BN H experimentalstructures(aswellasthe aTheoreticallypredictedstructurefromRef.35.InagreementwithRef.35, 4 3 10 wefindtheroom-temperatureexperimentalP6/mmmstructuretobeunsta- structuresofthe otherphasesusedinoursubsequentdiscus- bleatlowtemperature,withaweaksoftmodeof66icm−1. sionofreactionthermodynamics)aresummarizedinTableI. bTheoreticallypredictedstructurefromRef.36. Theresultingstructuresarebccandsharethesamelatticecon- stant, a = 10.60A˚, in goodagreementwith bothdiffraction studies. For each of the three relaxed structures, Table II com- paresthecalculatedinternalatomiccoordinateswiththecor- respondingexperimentalvalues. We note first that the aver- Acomparisonofcalculatedbondlengths,bondangles,and age absolutedeviation(δ) betweentheoryandexperimentis intermolecular distances is given in Table III. Overall, the smallestfortheneutronstructure,12δ =3.6×10−3,whereas relaxedstructuresagreebest with the intramolecularlengths fortheX-raystructure11δ =4.4×10−3andδ =4.2×10−3 (i.e.,withinanNH2 orBH4 fragment)determinedusingneu- for domains 1 and 2, respectively. The largest discrepancy trondiffraction;conversely,theintermoleculardistancesfrom between theory and experiment is in the positions of the N- X-rayareclosesttothoseintherelaxedtheoreticalstructures. bonded hydrogen atoms, H1 & H2, in the X-ray structure. Asfortheintramolecularstructure,asnotedabove,themajor (Note that the labeling conventionfor hydrogensis different discrepancy between the experimental structures lies in the intheneutronstructure:thereH1&H2refertoB-bondedhy- two N-H bond lengths, d(N-H), in the NH2 fragment. The drogens.)Secondly,whilethereappeartobelargedifferences calculated length of 1.027 A˚ is in better agreementwith the intheinternalcoordinatesmeasuredbyRefs.11and12(Ta- longerbondlengthspredictedbyneutrondiffractionof0.983 bleII),afterrelaxationthesethreestructuresmaybemapped and 1.042 A˚. Similarly, the X-ray data also underestimates ontooneanotherviaaseriesofrigidbodyrotationsandtrans- B-HbondlengthsintheBH unitsrelativetoourDFTcalcu- 4 lations. Weconcludethatallthreeexperimentalstructuresre- lations and neutron data. Calculated bond angles agree best laxtoessentiallythesamestructure. withthosefromtheneutronstructure. 4 TABLEII:CalculatedrelaxedinternalatomicpositionsofLi BN H comparedwithexperimentalmeasurementsfromRefs.11,12. 4 3 10 Calculated Experiment Atom x y z x y z N 0.117 0.362 0.402 0.115 0.359 0.405 B 0.113 0.113 0.113 0.114 0.114 0.114 Li1 0.281 0.000 0.250 0.287 0.000 0.250 Li2 0.519 0.000 0.250 0.524 0.000 0.250 Domain1, Li3 0.484 0.484 0.484 0.483 0.483 0.483 H1 0.195 0.306 0.393 0.175 0.310 0.397 Ref.11 H2 0.118 0.415 0.321 0.115 0.405 0.339 H3 0.003 0.118 0.147 0.012 0.119 0.146 H4 0.180 0.180 0.180 0.172 0.172 0.172 N 0.117 0.361 0.402 0.115 0.359 0.405 B 0.113 0.113 0.113 0.114 0.114 0.114 Li1 0.281 0.000 0.250 0.286 0.000 0.250 Li2 0.519 0.000 0.250 0.523 0.000 0.250 Domain2, Li3 0.484 0.484 0.484 0.484 0.484 0.484 H1 0.195 0.305 0.394 0.176 0.310 0.399 Ref.11 H2 0.118 0.415 0.321 0.114 0.402 0.338 H3 0.003 0.117 0.148 0.015 0.116 0.149 H4 0.180 0.180 0.180 0.174 0.174 0.174 N -0.152 0.112 0.367 -0.156 0.110 0.367 B 0.137 0.137 0.137 0.135 0.135 0.135 Li1 0.250 -0.030 0.000 0.250 -0.043 0.000 Li2 -0.268 0.000 0.250 -0.262 0.000 0.250 Li3 0.266 0.266 0.266 0.272 0.272 0.272 Ref.12 H1 0.071 0.071 0.071 0.072 0.072 0.072 H2 0.103 0.133 0.247 0.097 0.136 0.248 H3 -0.143 0.055 0.445 -0.153 0.053 0.439 H4 -0.071 0.165 0.368 -0.077 0.167 0.377 TABLEIII:Comparisonofcalculatedatomicdistancesandangleswithvaluesdeterminedfromsingle-crystalX-raydiffraction(Ref.11)and synchrotronX-rayandneutronpowderdiffraction(Ref.12).Lengths(d)aregiveninA˚,angles(∡)areindegrees. Ref.11,domain1 Ref.11,domain2 Ref.12 Parameter Calculated Experiment Calculated Experiment Calculated Experiment IntramolecularValues d(N-H)(i) 1.027 0.83(2) 1.027 0.84(2) 1.027 0.983 d(N-H)(ii) 1.027 0.859 1.026 0.852 1.027 1.042 d(B-H)(i) 1.223 1.08(3) 1.225 1.11(3) 1.224 1.169 d(B-H)(ii)×3 1.225 1.137 1.225 1.121 1.223 1.270 ∡(H-N-H) 103.5 106.2 103.5 105.9 103.5 104.9 ∡(H-B-H)×3(i) 108.0 108.9 107.9 109.2 107.9 107.6 ∡(H-B-H)×3(ii) 110.9 110.1 111.0 109.8 111.0 111.3 IntermolecularValues d(N-Li)(i) 2.071 2.069 2.069 2.068 2.070 2.033 d(N-Li)(ii) 2.116 2.115 2.111 2.113 2.110 2.053 d(N-Li)(iii) 2.138 2.117 2.138 2.119 2.142 2.094 d(N-Li)(iv) 2.164 2.157 2.164 2.157 2.169 2.209 d(B-Li)(i) 2.371 2.410 2.375 2.406 2.368 2.527 d(B-Li)(ii)×3 2.595 2.651 2.592 2.642 2.589 2.681 IV. REACTIONENERGETICS crystal structures, and a comparison of the calculated struc- turesto experimentaldatais presentedinTable I. Ingeneral theagreementbetweenexperimentandtheoryisverygood. Inordertoexaminethefinite-temperaturethermodynamics Some of the compounds listed in Table I are known ofreactionsinvolvingLi BN H ,itwasfirstnecessarytocal- to have several polymorphs. For example, at least three 4 3 10 culatetheground-statestructuresofthephasesthatparticipate polymorphshave been reported for Li BN ,31,32,37,38 includ- 3 2 inthosereactions. Asummaryofthecompoundsused,their inglow-temperaturetetragonal(α),31 high-temperaturemon- 5 0 TABLEIV:Calculatedvibrationalcontributions(atT = 300K)to Monoclinic BCT thefreeenergiesofphasesusedinthisstudy. ZPEreferstothezero -20 point energy, given by H (T = 0) (Eq. 1); E = H − ZPE vib vib vib ol f. u.) -40 (Eoqm.i2tt.inUgntihtseakrBeTkJmmoolel−cu1laforrteZrmPEs);anSdvibEivsibt,haenvdibJrmatiooln−a1lKen−tr1opfoyr, m S . kJ/ -60 vib Energy ( -80 SHy2stem Z25P.E7 25.7Z40P,E26o.t1h4e1r, EvibT=≈300K0 SvibT=≈300K0 ee 26.342 Fr-100 N 14.0 14.442 ≈0 ≈0 2 NH 87.8 89.743 0.1 0.4 3 -120 Li 3.9 3.941 4.3 27.7 B 12.5 12.241 1.1 5.3 -1400 200 400 600 800 1000 BN 29.9 30.944 Temperature (K) LiH 21.7 21.4,4121.836 3.5 17.7 FIG. 1: Calculated Gibbs free energies (in kJ/mol f.u.) of mono- Li3N 28.0 28.635 LiNH 69.0 69.1,3569.5,36 8.9 51.6 clinic(β)andbody-centeredtetragonal(BCT)Li BN asafunction 2 of temperature. The energy zero is set to the sta3tic 02 K energy of 69.842 β-Li3BN2. Li2NH 46.7 46.742,47.136 9.6 52.9 LiBH 107.1 103.0,41106.5,40 10.8 63.6 4 108.145 oclinic (β),32 and high-pressure body-centered tetragonal Li3BN2 52.2 15.3 83.8 Li BN H 314.4 37.0 213.4 (bct)33,37,38 phases. All three of these phases have been ob- 4 3 10 servedasdehydrogenationproductsforLi BN H ,4,8andwe 4 3 10 have performed calculations on each phase to determine its relativestabilityasafunctionoftemperature. Theβ-Li BN contributions (Table IV), the free energies of the β and bct 3 2 phase was found to have the lowest zero-Kelvin static en- phasesexhibitnearlyidenticaltemperaturedependence.Con- ergy, ≈ 2 kJ/(mol f.u.) lower than that of either the bct or sequently,thesmall∼2kJ/(molf.u.)differenceinstaticener- α phases. The latter two phases are degenerate in energy to giesnotedaboveissufficienttofavorthemonoclinicβ phase within0.1kJ/(molf.u.).Ourzero-Kelvinenergeticsandstruc- asthegroundstatestructure,andthebct-β energydifference turesagreewellwithrecentcalculationsreportedbyPinkerton remainsroughlyconstantfor T < 1000K. Based on the vi- andHerbst.33 brationalinstabilityobservedinα-Li BN ,andthehigherfree 3 2 Vibrational contributions to the energies of each Li BN energyofbctLi BN (relativetoβ-Li BN ),oursubsequent 3 2 3 2 3 2 polymorph were evaluated within the harmonic approxi- thermodynamicanalysesareperformedassumingLi BN re- 3 2 mation. For α-Li BN a careful evaluation of the vibra- sidesinthethelow-energyβ structure. 3 2 tionalspectrayieldeddoubly-degenerateimaginarymodesat Thezero-point,enthalpic,andentropiccontributionstothe 81icm−1,indicatingthatthisphaseisunstableatlowtemper- freeenergyofthevariousphasesaresummarizedinTableIV. atures. A search for alternative low-energyα-Li BN struc- Asafurthertestofourcomputationalmethodology,therewe 3 2 tureswasperformedusingmoleculardynamics(md)onanen- also compare our calculated ZPE to other values reported in larged(2×2×2)α-Li BN supercellatT =423Kfor10ps. theliterature,andfindgoodagreement.Withtheexceptionof 3 2 At1psintervalsthecurrentmdconfigurationwasstored,re- Li,vibrationaleffectsarefoundtocontributesubstantiallyto laxed, and the symmetryof the resultingoptimizedstructure thefreeenergiesofthesesystems.Forexample,inLi BN H 4 3 10 was determined. Four unique crystal structures were identi- theZPEexceeds300kJ/mol. fied,withspacegroups(numbers):P212121(19),Pccn(56), A comparison of formation energies for the compounds Pmmn (59), and Pnma (62). These structures were then used in this study (relative to the elements in their standard relaxed within their symmetry constraints, and were found states)ispresentedinTableV. Threereports33,41,42 basedon to have energies ∼1 kJ/(mol f.u.) lower than the original DFT calculationshave also recently evaluated formationen- α-Li3BN2 structure [which is still 1 kJ/(mol f.u.) higher in ergies for some of these compounds, and the present calcu- energy than β-Li3BN2]. In light of these results we suggest lations are in good agreement with their findings. Further- that the crystal structure of α-Li3BN2 be experimentally re- more, the agreementwith experimentalenthalpiesis reason- assessed, and we exclude this phase from our evaluation of able (generally on the order of 10%), which is representa- Li4BN3H10 dehydrogenation reactions. Further information tive of the accuracyobtainedvia density functionalmethods regarding our proposed structure of α-Li3BN2 can be found forreactionsinvolvingmolecularspecies.47 Asexpected,the elsewhere.39 largestpercentagediscrepancyisfortheammoniamolecule.54 Unlike α-Li BN , no imaginary modes were observed in Twogeneraltrendsinthedataareevident:(i)Withtheexcep- 3 2 the vibrational spectra of β or bct Li BN . Using Eqs. 1-2, tion of ammonia, the DFT enthalpies (∆HT=300K) are more 3 2 Fig. 1 plots the Gibbs free energies (Eq. 4) of these phases positivethantheexperimentalvalues,and(ii)theinclusionof asafunctionoftemperature. Duetotheirsimilarvibrational dynamicalcontributions(∆E → ∆HT=300K) resultsin more 6 ofthestructurespresentinLiNH andLiBH . 2 4 TABLE V: Comparison of calculated formation energies (with re- Turning now to the dehydrogenation of Li BN H , we specttotheelements,inkJ/molf.u.) withexistingexperimentaland 4 3 10 theoreticaldata.∆Ereferstodifferencesinstatic0Kenergies,for- notefirstthatalthoughseveraldehydrogenationproductshave mationenthalpies(∆H)andfreeenergies(∆G)arebasedonEqns.3 beenobservedinexperimentalstudies,4,5,7,8 thepreciseiden- and4,respectively.ExperimentaldataisfromRefs.23and46,theo- tity and respective proportions of these phases have not yet reticaldataisfromasetofrecentDFTcalculations(Refs.33,41,42). beendefinitivelydetermined.4,7 For example, Aokietal. re- portedunidentifieddiffractionpeaksafterdehydrogenationat System ∆E ∆HT=300K ∆GT=300K 2θ = 25◦ and 35◦. A technique for predicting possible de- NH −98.0 −63.2 −33.6 3 compositionpathwayswouldbe of significantvaluein help- −45.923 −16.223 BN −233.8 −227.4 −198.9 ing to understand these reactions. However, decomposition −250.923 −224.923 pathways and products are difficult to predict a priori. To LiH −83.6 −83.8 −61.2 this end, we have scanned throughthe thermodynamicsof a −8141 −90.623 −68.323 large number of candidate dehydrogenationreactions over a −83.942 −84.642 wide temperaturerangein orderto identifythe energetically Li3N −148.7 −145.9 −109.8 favoredproducts.55 −164.623 −128.423 Calculated thermodynamics for seventeen candidate LiNH2 −196.6 −172.6 −111.7 Li4BN3H10dehydrogenationreactionsarelistedinTableVII. −196.542 −17646 Inadditiontotheroom-temperatureenergetics,therewealso −173.142 present data for T = 460 K, which is slightly below the Li NH −196.0 −184.5 −135.3 2 melting point of pure Li BN H . Unlike the Li BN H −194.042 −22246 formationreaction,which4can3pro10ceedatroomtemp4eratu3re1,04 −184.142 dehydrogenation of Li BN H has been reported only at LiBH −205.9 −178.6 −109.2 4 3 10 4 elevatedtemperatures. InthecaseofpureLi BN H ,dehy- −19441 −190.523 −124.323 4 3 10 Li BN −497.4 −490.6 −433.6 drogenation occurs above ∼520 K, about 60 degrees above 3 2 −49733 themeltingtemperature.4However,asignificantreductionin dehydrogenationtemperaturewasobservedupontheaddition of a small amount of a Pt/Vulcan carbon catalyst.6 In this lattercasehydrogenreleaseoccurredfromthesolid phaseat positiveformationenergies. T > 390K.Tomorecompletelyassessthedehydrogenation Using the energetic contributions from Table IV, in Ta- thermodynamics over a range of relevant temperatures, in ble VI we evaluate the thermodynamicsfor two Li BN H Fig.2weplottheenthalpiesandfreeenergiesofthecandidate 4 3 10 formation reactions. Reaction (a) considers formation from reactionsforT =0–1000K. the elemental phases in their standard states, and reac- Out of the seventeen reactions considered, three tion (b) corresponds to the synthesis route employed in the reactions—(i), (c), and (f)—emerge as the most-favorable literature4,7,12 involvingamixtureofLiNH andLiBH . (We reactions in distinct temperature regimes (see Fig. 2, 2 4 consider only the stoichiometric12 3:1 ratio of LiNH to bottom panel). For low temperatures reaction (i) is pre- 2 LiBH .55)Theenergeticsofeachreactionarearedecomposed ferred, followed at increasing temperatures by reaction (c) 4 into a sequence having increasingly more physical contribu- and reaction (f). More specifically, the favored products tions to the reaction thermodynamics, ∆E → ∆HT=0K → and their respective temperature ranges of stability are: ∆HT=300K → ∆GT=300K, which allows us to gauge the im- 0K≤T≤300K: 2LiNH2+2LiH+BN+2H2 portanceofthesecontributionsincomparisontothecommon 300K≤T≤700K: Li3BN2 +LiNH2+4H2 practiceofevaluatingonlystaticzero-Kelvinenergetics.[∆E 700K≤T: Li3BN2+LiH+ 21N2+ 29H2 refers to differences in the static zero-Kelvin energies (E in Therelativelylargeentropyofthegasphaseproductsplays Eq. 3), and ∆HT=0K adds ZPE contributionsto ∆E.] Both animportantroleindeterminingwhichreactionisfavoredat formation reactions in Table VI are predicted to be exother- agiventemperature. Reactionsyieldinggreaterquantitiesof mic (∆H < 0), in agreement with reports of spontaneous gaseous products should be favored with increasing T, and Li BN H formation from the literature.4,7,12 As expected, thisisconsistentwiththeobservedtrend: reaction(i),2mols 4 3 10 formationfromtheelementsvs.fromthehydridemixtureisa →reaction(c), 4 mols→reaction(f), 5 mols. (Itshouldbe substantiallymoreexothermicprocess. notedthatathightemperatures—andcertainlyabovethemelt- Itisnoteworthythatdynamicalcontributionstothereaction ingpointofLi4BN3H10—theharmonicapproximationwillno energiesaresignificantinreaction(a)(∆E 6= ∆H), butap- longerbevalid,soweexpectsomedecreaseinaccuracywith peartoplayaminorroleinreaction(b)(∆E ≈∆H). Byex- increasingT.) aminingthevaluespresentedinTableIVforthephasespartic- Of thethreefavorabledehydrogenationreactions, onlyre- ipatinginreaction(b)(Li BN H ,LiNH ,&LiBH )wesee action(c),Li BN H →Li BN +LiNH +4H ,takesplace 4 3 10 2 4 4 3 10 3 2 2 2 that these terms are sizable, but that they largely cancel out. withinthetemperaturerangewhereH -desorption(fromun- 2 Thiscancellationeffectcanbeunderstoodbythesimilarities doped Li BN H ) has been experimentally observed (T ∼ 4 3 10 ininternalbondingsharedbythesethreephases: Li BN H , 520–630 K). While our prediction of Li BN as a dehy- 4 3 10 3 2 with itsLi+, BH−, andNH− ionsis essentiallyanamalgam drogenationproductisconsistentwithexperimentalobserva- 4 2 7 TABLEVI:FormationenergiesofLi BN H [inkJ/(molLi BN H )]. ∆E correspondstothestaticzeroKelvinDFTenergies;∆HT=0K 4 3 10 4 3 10 addsthezeropointenergiesto∆E; ∆HT=300K (Eq.3)addsfinite-temperaturevibrational(andmolecularrotational+translational+pV)en- ergies to ∆HT=0K; ∆GT=300K (Eq. 4) includes all of the contributions to ∆HT=300K and adds vibrational (solids) or tabulated (molecular) entropies. Rxn.No. Reaction ∆E ∆HT=0K ∆HT=300K ∆GT=300K (a) 4Li+B+ 3N +5H → Li BN H −806.9 −670.2 −708.1 −454.6 2 2 2 4 3 10 (b) 3LiNH +LiBH → Li BN H −11.3 −11.2 −11.8 −10.2 2 4 4 3 10 TABLEVII:Calculatedreactionenergies[∆EinkJ/(molH )],enthalpies[∆H inkJ/(molH )],andfreeenergies[∆GinkJ/molproducts] 2 2 forcandidateLi BN H dehydrogenationreactions. 4 3 10 Rxn.No. Reaction ∆E ∆HT=0K ∆HT=300K ∆HT=460K ∆GT=300K ∆GT=460K (c) Li BN H → Li BN +LiNH +4H 28.2 5.7 11.2 12.5 −88.8 −161.3 4 3 10 3 2 2 2 (d) Li BN H → Li BN + 1Li NH+ 1NH +4H 40.6 17.7 23.4 24.3 −61.4 −145.2 4 3 10 3 2 2 2 2 3 2 (e) Li BN H → Li BN +LiH+NH +3H 42.6 17.5 23.5 24.0 −71.6 −148.0 4 3 10 3 2 3 2 (f) Li BN H → Li BN +LiH+ 1N + 9H 50.2 24.1 29.7 30.8 −38.2 −131.0 4 3 10 3 2 2 2 2 2 (g) Li BN H → Li BN +Li+ 1N +5H 61.9 37.4 43.5 44.6 23.0 −82.2 4 3 10 3 2 2 2 2 (h) Li BN H → Li BN +Li+NH + 7H 60.4 37.5 44.1 44.7 −10.5 −99.2 4 3 10 3 2 3 2 2 (i) Li BN H → 2LiNH +2LiH+BN+2H 6.4 −19.4 −16.1 −15.4 −90.1 −121.2 4 3 10 2 2 (j) Li BN H → LiNH +Li N+BN+4H 56.9 35.8 40.5 41.3 34.1 −34.9 4 3 10 2 3 2 (k) Li BN H → 4LiH+BN+N +3H 79.6 44.1 48.5 48.8 11.1 −60.7 4 3 10 2 2 (l) Li BN H → 2Li NH+BN+4H 45.3 23.3 27.9 28.8 −14.9 −83.3 4 3 10 2 2 (m) Li BN H → 2LiNH +BN+2Li+3H 60.0 39.5 45.1 46.2 32.3 −23.6 4 3 10 2 2 (n) Li BN H → LiNH +Li NH+LiH+BN+3H 32.3 9.1 13.2 14.1 −52.5 −102.3 4 3 10 2 2 2 (o) Li BN H → Li NH+2LiH+BN+NH +2H 55.9 28.5 32.7 32.1 −35.4 −88.9 4 3 10 2 3 2 (p) Li BN H → LiNH +3LiH+BN+NH +H 27.7 −9.1 −6.6 −8.8 −73.0 −107.9 4 3 10 2 3 2 (q) Li BN H → Li N+LiH+BN+NH +3H 80.9 57.7 62.6 62.4 51.3 −21.6 4 3 10 3 3 2 (r) Li BN H → 1Li NH+Li N+BN+ 1NH +4H 69.3 47.8 52.7 53.2 61.5 −18.8 4 3 10 2 2 3 2 3 2 (s) Li BN H → Li BN + 1Li N+ 2NH +4H 48.7 26.0 31.7 32.5 −35.9 −123.6 4 3 10 3 2 3 3 3 3 2 tions, we are not aware of any reports indicating the pres- 60 ol H)2 40 emnocsetoefxpLeiNrimHe2.ntTshhiasvdeisbcereenpapnecryfoirsmliekdeloyndoufef-tsototihcehifoamctetthraict m Li BN H formed from 2:1 LiNH :LiBH mixtures. Mix- J/ 20 4 3 10 2 4 ∆H (k 0 tsuurmesabwlyithnetheidsecdotmopyoiesiltdiotnhearaedddeitfiiocnieanltaimnitdheepLriesaenndtNinporuer- calculations. -20 200 b i The calculated enthalpy for reaction (c) ranges from 11.2 c j 100 de kl to 12.8 kJ/(mol H2) for T = 300–500 K, indicating that H2 ucts) 0 fgh mno rteemleapseeraitsurae wreeaacktiloyne(nfd),otdheehrmydicropgreoncaetsios.n iFsolriktehweisheigphreer-- d p ol pro-100 qrs d∼i3ct1edkJto/(mbeoleHnd2o).theOrmnilcywthitehlaowslitgehmtlpyerlaatrugreer erenathctailopny(oi)f m J/-200 with ∆H ≈ −(16–19) kJ/(mol H2) is found to be exother- k G ( mic. It would be interesting to test whether the predicted ∆ -300 temperature-dependentdecompositionsequence[(i)→(c)→ i c (f)]couldbeobservedexperimentallybyholdingLi BN H -400 4 3 10 f at temperatureswithin each of the reaction regimesfor long -500 times. 0 200 400 600 800 1000 Temperature (K) BasedonthedatapresentedinFig.2andTableVII,H des- 2 FIG. 2: (Color online) Calculated enthalpies (∆H, top panel) and orption from Li4BN3H10 is thermodynamically favorable at freeenergies(∆G,bottompanel)ofcandidateLi BN H dehydro- essentially allnon-zerotemperatures: thenegativefreeener- 4 3 10 genation reactions as afunction of temperature at p = 1 bar. The giesofdehydrogenationsuggestthatLi4BN3H10ismetastable reactionsarelabeledasinTableVII. withrespecttodecompositionviaoneofthereactions(i),(c), or (f). On the other hand, experiments4 on pure Li BN H 4 3 10 indicatethatdesorptiondoesnottakeplaceuntilthetempera- 8 tureisraisedabove520K.Takentogether,thesefactorssug- crystalstructuresrelaxtoessentiallythesamestructure. gest that the relatively high temperatures needed in practice For reaction energetics, our calculations indicate that for H2-release are a consequence of poor kinetics, not unfa- Li4BN3H10 formation is exothermic, and that the dehydro- vorablethermodynamics. genation enthalpy of solid-state Li BN H is temperature- 4 3 10 An importantdistinctionbetweenourcalculationsand the dependent:H releaseisexothermicatlowtemperatures,and 2 experimental dehydrogenation of undoped Li4BN3H10 con- weaklyendothermicatthehighertemperaturesprobedbyre- cerns the phase of Li4BN3H10 present during the dehydro- centexperiments.Anon-zerolatentheatforLi4BN3H10melt- genationreaction. As mentionedabove,pureLi4BN3H10 re- ingwillreducethedehydrogenationenthalpyfromtheliquid leaseshydrogenfromthemoltenstate.4 Similarly,H2 release state (relative to the solid state), but the size of this effect from otherhydridephases, such as LiBH4, also occursfrom is still to be determined. To help clarify the identity of the themoltenstate.48 Dueto thecomputationalexpenseassoci- phases produced via dehydrogenation we have performed a atedwith obtainingpreciseenergeticsforliquidsusingDFT, computationalsearch over 17 candidate dehydrogenationre- thisstudy,andpreviousstudiesonLiBH4,41,48 havemodeled actions, and identified three reactions having favorable ther- the dehydrogenationreactionas a solid-state reaction. Since modynamicsspanningthetemperaturerangeT =0–1000K. the enthalpy of the liquid phase will be more positive than Allthreeofthesereactionsexhibitadecreaseinfreeenergy, that of the corresponding solid phase, the calculated solid- suggesting that Li BN H is a metastable phase. For tem- 4 3 10 state enthalpy of reaction (c) evaluated at the melting point peratures where H -desorption has been experimentally ob- 2 (Tmp),∆HTmp =12.5kJ/(molH2),representsanupperbound served,thethermodynamically-favoredreactionisLi4BN3H10 on the enthalpy for desorption from liquid Li4BN3H10. It → Li3BN2 + LiNH2 + 4H2, with an enthalpy of 11.2–12.8 willbepossibletomorepreciselyestimatethemagnitudeby kJ/(molH ). Therelativelysmalldehydridingenthalpiesare 2 which ∆H is overestimated once the latent heat of melting consistentwiththefailedre-hydridingattemptsreportedinthe for Li4BN3H10 has been measured. Until such data become literature,andsuggestthathydrogenreleasefromLi4BN3H10 available, it nevertheless seems reasonable to conclude that is a kinetically—rather than thermodynamically—hindered thedehydrogenationofLi4BN3H10iseitherweaklyendother- process. mic, or exothermic. This conclusion is consistent with the Noteaddedinproof—Duringthereviewofthismanuscript failed attempts at re-hydriding Li4BN3H10 reported thus far two new studies of Li4BN3H10 were brought to our in the literature,4 as a small (positive) enthalpy of dehydro- attention.49,50InthefirststudyNoritakeandco-workers50per- genationwillresultinasimilarlysmallthermodynamicdriv- formed a crystal structure analysis of Li BN H using syn- 4 3 10 ingforceforre-hydriding.Ontheotherhand,forLi4BN3H10 chrotronX-ray diffraction. While they foundexternalstruc- dopedwithPt/Vulcancarbon,6dehydrogenationbeginsbelow turalparameters(bcc, spacegroupI213, a = 10.67A˚) con- Tmp. In this case our approach of modeling solid state re- sistentwiththetworeportscitedpreviously,11,12 thereported actions more accurately captures the true phase behavior of N–Hbondlengthsweremoreconsistentwiththeneutrondata Li4BN3H10, neglecting the possible formation of C- or Pt- of Ref. 12 (and with our calculated N–H distances) than the containingcompounds. X-ray data of Ref. 11. In the other recent study, Herbst and Hector49 examined the electronic structure and energeticsof ofLi BN H usingDFT.Ourresultsappeartobeconsistent 4 3 10 V. CONCLUSION withtheirfindings. Densityfunctionaltheorycalculationshavebeenemployed to study the crystal structure and the finite-temperature for- Acknowledgments mationanddehydrogenationthermodynamicsofLi BN H . 4 3 10 Thecalculationshaveresolvedthediscrepanciesinhydrogen bond lengths between the separate structuresdetermined via The authors thank D. Halliday, A. Sudik, and J. Yang for X-ray and neutron diffraction experiments, and suggest that reviewingapreliminaryversionofthismanuscript.V.Ozolin¸sˇ theneutrondatayieldsaslightlymoreaccuratedescriptionof thanks the U.S. Department of Energy for financial support the crystal structure. All three of the reported experimental undergrantDE-FG02-05ER46253. 1 U. S. National Academy of Sciences, The Hydrogen economy: 5 G.P.Meisner, M.L.Scullin,M.P.Balogh, F.E.Pinkerton, and Opportunties, Cost, Barriers and R&D Needs (The National M.S.Meyer,J.Phys.Chem.B110,4186(2006). AcademiesPress,Washington,D.C.,2004). 6 F.E.Pinkerton,M.S.Meyer,G.P.Meisner,andM.P.Balogh,J. 2 L.SchlapbachandA.Zu¨ttel,Nature414,353(2001). Phys.Chem.B110,7967(2006). 3 Targets for on-board hydrogen storage stystems, URL 7 M. Aoki, K. Miwa, T. Noritake, G. Kitahara, Y. Nakamori, http://www.eere.energy.gov/hydrogenandfuelcells/sSt.oOrraimgeo,/apnddfSs./Ttowaratgae,Atsppol.nPbhoyas.rAd8h0y,d1r40o9s(2t0o0r5a).ge.pdf. 4 F. E.Pinkerton, G. P.Meisner, M. S.Meyer, M. P.Balogh, and 8 Y. Nakamori, A. Ninomiya, G. Kitahara, M. Aoki, T. Noritake, M. D. Kundrat, J. Phys. Chem. B Lett. 109, 6 (2005), see also K. Miwa, Y. Kojima, and S.Orimo, J. Power Sources 155, 447 supplementaryinformationaccompanyingthisarticle. (2006). 9 9 B.Bogdanovic´andM.Schwickardi,J.AlloysCompd.253-254,1 44 G.Kern,G.Kresse,andJ.Hafner,Phys.Rev.B59,8551(1999). (1997). 45 Z.ŁodzianaandT.Vegge,Phys.Rev.Lett.93,145501(2004). 10 A.Gutowska,L.Li,Y.Shin,C.M.Wang,X.S.Li,J.C.Linehan, 46 P.Chen,Z.Xiong,J.Luo,J.Lin,andK.L.Tan,Nature(London) R.S.Smith,B.D.Kay,B.Schmid,W.Shaw,etal.,Angew.Chem. 420,302(2002). Int.Ed.44,3578(2005). 47 L.A.Curtiss,K.Raghavachari,P.C.Redfern.,andJ.A.Pople,J. 11 Y.E.Filinchuk,K.Yvon,G.P.Meisner,F.E.Pinkerton,andM.P. Chem.Phys.106,1063(1997). Balogh,Inorg.Chem.45,1433(2006). 48 T.J.Frankcombe, G.-J.Kroes, andA.Zu¨ttel,Chem.Phys.Lett. 12 P. A. Chater, W. I. F. David, S. R. Johnson, P. P. Edwards, and 405,73(2005). P.A.Anderson,Chem.Commun.23,2439(2006). 49 J. F. Herbst and L. G. Hector, Jr., Appl. Phys. Lett. 88, 231904 13 P.HohenbergandW.Kohn,Phys.Rev.136,B864(1964). (2006). 14 W.KohnandL.J.Sham,Phys.Rev.140,A1133(1965). 50 T.Noritake,M.Aoki,S.Towata,A.Ninomiya,Y.Nakamori,and 15 J.P.Perdew,J.A.Chevary, S.H.Vosko, etal.,Phys.Rev.B46, S.Orimo,Appl.Phys.A83,277(2006). 6671(1992). 51 More specifically, the potentials employed for evaluating zero- 16 G.KresseandJ.Furthmu¨ller,Phys.Rev.B54,11169(1996). Kelvinenergiesandgeometrieswere(intheparlanceoftheVASP 17 P.E.Blo¨chl,Phys.Rev.B50,17953(1994). database):Li sv,B h,N h,andH h,withrespectivevalenceelec- 18 G.KresseandD.Joubert,Phys.Rev.B59,1758(1999). tronconfigurationsof1s22s1,2s22p1,2s22p3,and1s1. 19 H.J.MonkhorstandJ.D.Pack,Phys.Rev.B13,5188(1976). 52 Thegeometryofeachstructurewasre-optimizedusingthesofter 20 D.C.Wallace,ThermodynamicsofCrystals(JohnWiley&Sons, PAW set before the dynamical matrix calculations were per- 1972). formed. 21 J. M. Rickman and R. LeSar, Annu. Rev. Mater. Res. 32, 195 53 Our somewhat non-standard approach of using softer potentials (2002). todeterminethevibrationalspectraofthesolidphases, buthard 22 S.WeiandM.Y.Chou,Phys.Rev.Lett.69,2799(1992). (semi-core) potentials for the remaining properties (zero-Kelvin 23 M.W.Chase,Jr.,NIST-JANAFThermochemicalTables,4thEdi- energetics, ground state geometries, and molecular vibrational tion(AmericanChemicalSociety,1998). spectra,)isbasedonthreeconsiderations:First,thesofterPAWset 24 D.R.Lide,ed.,CRCHandbookofChemistryandPhysics(Taylor allows for more efficient calculations witha reduced planewave andFrancis,2005),86thed. cutoffenergy,thuspermittinglargersupercellsand,consequently, 25 A.C.SwitendickandB.Morosin,AmericanInstituteofPhysics: smaller finite-size effects in the phonon spectrum. Second, our Conf.Proc.231,205(1991). calculated formation energies for LiH, LiNH , and Li NH at 2 2 26 R.H.Wentorf,Jr.,J.Chem.Phys.26,956(1957). T = 300 K agree with the hard PAW results in Ref. 42 to 27 P.VillarsandL.D.Calvert,eds.,Pearson’sHandbookofCrystal- within1kJ/molf.u.Third,testingrevealedthatthehardpotentials lographicDataforIntermetallicPhases,vol.2,4(ASMInterna- yieldedmolecularvibrationalfrequencieswhichwereinslightly tional,MaterialsPark,OH,1991),2nded. betteragreementwithexperimentaldatathanthoseobtainedwith 28 J.P.VidalandG.Vidal-Valat,ActaCrystallographicaB42,131 thesofterPAWset.Forexample,forN ,wherethedifferencesbe- 2 (1986). tweencalculatedvibrationalfrequenciesarelargest,wefind2338 29 H. Jacobs and R. Juza, Zeitchrift fuer Anorganische und Allge- (2452) cm−1 from the hard (soft) PAW sets, compared with an meineChemie391,271(1972). experimentalvalueof2359cm−1.24However,thisslightdiscrep- 30 K.Cenzual,L.M.Gelato,M.Penzo,andE.Parthe,ActaCrystal- ancyinfrequencies hasonlyasmall impactonvibrational ther- lographicaB47,433(1991). modynamicproperties—forexample, ZPEscalculatedwithboth 31 H. Yamane, S.Kikkawa, and M. Koizumi, J.SolidStateChem. PAW sets differ by 0.7 kJ/mol f.u. at most. It therefore seems 71,1(1987). likelythatanapproachwhereallvibrationalproperties(solidsand 32 H.Yamane, S.Kikkawa, H.Horiuchi, andM.Koizumi, J.Solid molecules)wereevaluatedusingthesofterpotentialswouldalso StateChem.65,6(1986). yield reasonably precise results. We thus conclude that our ap- 33 F.E.PinkertonandJ.F.Herbst,J.Appl.Phys.99,113523(2006). proachofmixingpotentialsgivesresultscomparableinprecision 34 J.-P. Soulie, G. Renaudin, R. Cerny, and K. Yvon, J. Alloys to those obtained with the hard PAW set alone, but without the Compd.346,200(2002). associatedcomputationalexpense. 35 K.Miwa,N.Ohba,S.Towata,Y.Nakamori,andS.Orimo,Phys. 54 The discrepancy in calculated vs. experimental enthalpy for Rev.B71,195109(2005). Li NHhasbeennotedinRef.42,andithasbeensuggestedthat 2 36 B.Magyari-Ko¨pe,V.Ozolin¸sˇ,andC.Wolverton,Phys.Rev.B73, the experimental measurement be revisited in light of the good 220101(2006). agreement for theother Li-containingcompounds: LiH,LiNH , 2 37 R.H.Jr.,Wentorf,J.Phys.Chem.34,809(1961). andLiBH .Toour knowledge theformationenthalpy of Li NH 4 2 38 R.C.DeVriesandJ.F.Fleischer,Mat.Res.Bull.4,433(1969). reportedinRef.46hasnotbeenindependentlyconfirmed. 39 D.J.Siegel,tobepublished. 55 Due to the computational difficulty associated with treating a 40 T. J. Frankcombe and G.-J. Kroes, Phys. Rev. B 73, 174302 non-stoichiometric phase, our calculations are restricted to the (2006). stoichiometric composition “Li BN H ,” whereas most exper- 4 3 10 41 K. Miwa, N. Ohba, and S. Towata, Phys. Rev. B 69, 245120 iments have focused on 2:1 LiNH :LiBH off-stoichiometric 2 4 (2004). “Li3BN2H8”mixtures,whichhavebeenfoundtominimize5NH3 42 J.F.HerbstandL.G.Hector,Jr.,Phys.Rev.B72,125120(2005). release. 43 J.E.Northrup,R.D.Flice,andJ.Neugebauer,Phys.Rev.B56, R4325(1997).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.