ebook img

Reaction-Diffusion Automata: Phenomenology, Localisations, Computation PDF

327 Pages·2013·77.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reaction-Diffusion Automata: Phenomenology, Localisations, Computation

Emergence, Complexity and Computation 1 SeriesEditors Prof.IvanZelinka TechnicalUniversityofOstrava CzechRepublic Prof.AndrewAdamatzky UnconventionalComputingCentre UniversityoftheWestofEngland Bristol UnitedKingdom Prof.GuanrongChen CityUniversityofHongKong Forfurthervolumes: http://www.springer.com/series/10624 Andrew Adamatzky Reaction-Diffusion Automata: Phenomenology, Localisations, Computation ABC Author Prof.AndrewAdamatzky UnconventionalComputingCentre andDepartmentofComputerScience UniversityoftheWestofEngland Bristol UK ISSN2194-7287 e-ISSN2194-7295 ISBN978-3-642-31077-5 e-ISBN978-3-642-31078-2 DOI10.1007/978-3-642-31078-2 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012940855 (cid:2)c Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To thosewho mademylifegood Preface Cellularautomataareregularuniformnetworksoflocally-connectedfinite-statema- chines,orcells.Cellstakediscretestatesandupdatetheirstatessimultaneouslyin discrete time. Each cell chooses its next state depending on states of its closest neighbours.The cell-state transition rules are very simple and intuitive yet allows forcodinganon-trivialspace-timedynamics.Thusthecellularautomataisanideal toolforafast-prototypingofnon-linearmediamodels,massive-parallelcomputers andmathematicalmachines.Usingcellular-automatonmodelsofreaction-diffusion andexcitablesystemsweanalysephenomenologyspatialdynamicsandshowhow to implement computation in these automaton models of a non-linear media. We complementcellular-automatonmodelswithautomataonplanarproximitygraphs. Thebookconsistsofthreeparts.Inthefirstpartweintroducereaction-diffusion and excitable cellular automata and automata on proximity graphs, study phe- nomenology of propagating patterns, and represent a ’zoo’ of travelling and stationarylocalizations.Reaction-diffusionisrepresentedin termsofinter-species interactions in automaton models of populations in the second part. There we discuss dynamics and complexity of inter-species interactions and analyse mutu- alistic relationships. Computation in reaction-diffusion and excitable automata is overviewedinthethirdpart.Therewedescribeautomatonnetworkswhichexecute a space tessellation, we demonstrate how adders and multipliers are implemented by colliding gliders in excitable medium, we show how operate binary strings in reaction-diffusion automata and overview minimalistic models of memristive networks. The book is self-consistent and does not require any special knowledge to ap- prehend. All models are intuitive and can be implemented with minimal knowl- edge of programming.Abundantillustrations help to appreciate expressive power ofdynamicalsystemson cellularautomataandplanarautomatonnetworks.Ideas, implementationsandanalysisofferedwillattractreadersfromallwalksoflife:ev- eryoneintriguedbysophisticatedbehaviourofcellularautomata,non-linearmedia andmathematicalmachines. AndrewAdamatzky Bristol Acknowledgements Iamthankfulandgratefulto • GenaroMartinezforcontributingtoChapter2bydiscussingphenomenological classification of binary-state reaction-diffusion automata and co-authoring pa- per[16]. • EmmanuelSapinforevolvingcell-statetransitionsmatricesofreaction-diffusion automatadiscussedinChapter8andselectingtherulesrichintravellinglocali- sations[20]. • MartinGrubeforaddingbiologicalflavourtoChapters9and10. • LiangZhangforadvancingmyideasoncollision-basedbasedbinaryarithmetics andoriginalimplementationof 2+-mediumonebithalf-adder;mostdesignsof thechapterarebasedonpapersco-authoredwithLiang[281,282]. • AndyWuenschefortellingmeabouthisbeehiverule,whichpushedmetodis- coverthespiralruleautomata[17],andforcontributingtoChapter13 • Leon Chua for introducing me to memristors which inspired some automaton constructsinChapters14and15. • ThomasDitzinger,EngineeringEditorial,Springer-Verlag,forbeingsosupport- iveandhelpful. Contents 1 Introduction................................................... 1 1.1 WeirdModsofExcitableAutomata ........................... 3 1.2 ExcitationonProximityGraphs .............................. 6 1.3 AutomatedSearchforLocalisations ........................... 8 1.4 Reaction-Diffusion,AutomataandPopulations.................. 8 1.5 MinimalModelsofPopulationDynamics ...................... 9 1.6 TowardsComputinginReaction-DiffusionAutomata ............ 11 1.7 Collision-BasedComputinginExcitableAutomata .............. 13 1.8 SpiralRuleAutomata ....................................... 14 1.9 MemristorsinCellularAutomata ............................. 16 1.10 OnColors................................................. 18 PartI PhenomenologyandLocalisations 2 Reaction-DiffusionBinary-StateAutomata........................ 21 2.1 PrecipitatingAutomata...................................... 22 2.2 Diffusion-AssociationAutomaton............................. 25 2.3 FunctionalClassification .................................... 29 2.4 ExcitableAutomatawithoutRefractoryState ................... 29 2.5 Summary ................................................. 34 3 RetainedExcitation ............................................ 37 3.1 RectangularlyGrowingDomains ............................. 38 3.2 Diamond-ShapedGrowingDomains .......................... 42 3.3 OctagonallyGrowingDomains ............................... 48 3.4 AlmostDisc-ShapedGrowingDomains........................ 52 3.5 AmoeboidGrowthofMixed-StatePatterns ..................... 53 3.6 NotGrowingDomainsofExcitation........................... 56 3.7 DomainswithSmallNumberofStillLocalizations .............. 61 3.8 MobileLocalizations ....................................... 65 3.9 Summary ................................................. 65 XII Contents 4 MutualisticExcitation .......................................... 67 4.1 PhenomenologyofMutualisticExcitation ...................... 68 4.2 MobileLocalisations........................................ 70 4.3 StationaryLocalisations ..................................... 80 4.4 HugeLocalisations ......................................... 88 4.5 CharacterisingLocalisations ................................. 92 4.6 ExcitationRulesRichwithLocalisations....................... 93 4.7 Summary ................................................. 94 5 DynamicalExcitationIntervals:DiversityandLocalisations ........ 97 5.1 MorphologicalDiversity..................................... 99 5.2 GenerativeDiversityandLocalisations.........................107 5.3 Summary .................................................113 6 ExcitableDelaunayTriangulations...............................115 6.1 StructuralPropertiesofDelaunayAutomata ....................117 6.2 AbsoluteExcitability .......................................121 6.3 RelativeExcitation .........................................123 6.4 Summary .................................................133 7 Excitableβ-Skeletons...........................................135 7.1 AbsolutelyExcitableSkeletons...............................137 7.2 RelativelyExcitableSkeletons................................141 7.3 StabilityofLocalisedOscillators..............................151 7.4 Summary .................................................151 8 EvolvingLocalizationsinReaction-DiffusionAutomata ............155 8.1 BreedingGlider-SupportingRules ............................156 8.2 LikehoodofGliders ........................................156 8.3 Quasi-chemicalReaction ....................................158 8.4 ReductionsofTransitionsFunctions...........................161 8.5 Summary .................................................162 PartII PopulationDynamics 9 PopulationDynamicsinAutomata ...............................165 9.1 Mutualism ................................................166 9.2 CommensalismandAmensalism..............................168 9.3 Parasitism.................................................169 9.4 Competition...............................................177 9.5 Summary .................................................180 10 AutomatonMechanicsofMutualism .............................183 10.1 Phenomenology............................................184 10.2 LocalisationsinMutualisticSystems ..........................185 10.3 Summary .................................................193 Contents XIII PartIII ComputationwithExcitation 11 VoronoiAutomata..............................................199 11.1 VoronoiAutomata..........................................199 11.2 ConstructingVoronoiDiagramonVoronoiAutomata ............202 11.3 Arbitrary-ShapedPlanarObjectsandContours..................202 11.4 Summary .................................................207 12 AddersandMultipliersinSub-excitableAutomata.................209 12.1 Adders ...................................................210 12.2 Multipliers ................................................216 12.3 Summary .................................................228 13 ComputinginHexagonalReaction-DiffusionAutomaton ...........229 13.1 InputInterface .............................................233 13.2 MemoryDevice............................................235 13.3 RoutingandTuningSignals..................................237 13.4 BinaryOperations..........................................240 13.5 ImplementationoftheFiniteStateMachine.....................242 13.6 TransformationofTwo-andFour-BitStrings ...................244 13.7 SixBitCoding.............................................250 13.8 ScyllaandCharybdis:OutcomesofPassingbetweenTwoEaters...252 13.9 Summary .................................................255 14 Semi-memristiveAutomata:RetainedRefractoriness ..............263 14.1 Methods:ExperimentsandClassificiation ......................264 14.2 Classes ...................................................264 14.3 Hierarchies................................................270 14.4 TravellingLocalisations .....................................277 14.5 Summary .................................................283 15 StructuralDynamics:MemristiveExcitableAutomata .............287 15.1 Phenomenology............................................289 15.2 OscillatingLocalisations ....................................296 15.3 DynamicsofExcitationonInterfaces..........................300 15.4 BuildingConductivePathways ...............................302 15.5 Summary .................................................308 15.6 Appendix .................................................309 Epilogue ..........................................................311 References.........................................................313 Index .............................................................327 Chapter 1 Introduction Cellularautomataareregularuniformnetworksoflocally-connectedfinite-statema- chines, called cells. A cell takes a finite number of states. Cells are locally con- nected:everycellupdatesitsstatedependingonstatesofitsgeographicallyclosest neighbours.All cells updatetheir states simultaneouslyin discrete time steps. All cellsemployethesameruletocalculatetheirstates.Cellularautomataarediscrete systemswithnon-trivialbehaviour.Theyaremathematicalmodelsofcomputation and computer models of natural systems. The cellular automata forms theoretical backgroundand,atthesame timesimulationtoolsandimplementationsubstrates, ofmathematicalmachineswithunboundedmemory,discretetheoreticalstructures, digital physics and modelling of spatially extended non-linear systems; massive- parallel computing,languageacceptance,and computability;reversibilityof com- putation, graph-theoretic analysis and logic; chaos and undecidability; evolution, learningandcryptography.Itisalmostimpossibletofindafieldofnaturalandtech- nical sciences, where cellular automata are not used. For those not familiar with cellular automata we recommend to have a look in few classical titles. You can startwithaToffoli-Margolus’sbestseller[242]andthenspoilyourselfwithlavishly illustratedatlasbyWuensche[266]andthought-provokingcellularautomatontrea- tise by Wolfram [262]. Plenty of interesting state transition rules and useful hints and tips on can be found in Ilachinski’s compendium of cellular-automaton uni- verse [144]. Conway’s Game of Life is the most popular cellular automaton, we recommendthecollectionofchaptersasatreatise[25]oftheGame-ofLifeinves- tigations, approachesand findings. Comprehensivespecialised texts on modelling space-timedynamicsofnaturalprocessesincellularautomataareauthoredbyBoc- cara[56],ChopardandDroz[77],Weimar[258]andDeutschandDormann[95]. Since their inception in [122], cellular automaton models of excitation be- came a usual tool for studying complex phenomena of excitation wave dynamics and chemicalreaction-diffusionactivitiesin physical,chemicaland biologicalsys- tems [77, 144]. They are now essential instruments in computational analysis of non-linearsystems,andexhaustivesearchfornon-trivialfunctionsincell-statetran- sition rule spaces [9], [16]. Cellular-automaton models of reaction-diffusion and excitable systems are of particular importance because by using them we can — A.Adamatzky:Reaction-DiffusionAutomata,ECC1,pp.1–18. springerlink.com (cid:2)c Springer-VerlagBerlinHeidelberg2013

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.