ebook img

Re-Aeration on Stepped Spillways with Special Consideration of Entrained and Entrapped Air PDF

15 Pages·2017·3.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Re-Aeration on Stepped Spillways with Special Consideration of Entrained and Entrapped Air

geosciences Article Re-Aeration on Stepped Spillways with Special Consideration of Entrained and Entrapped Air DanielB.Bung1,* ID andDanielValero1,2 ID 1 HydraulicEngineeringSection(HES),FHAachenUniversityofAppliedSciences,Bayernallee9, 52066Aachen,Germany;[email protected] 2 DepartmentofArGEnCo,ResearchGroupofHydraulicsinEnvironmentalandCivilEngineering(HECE), UniversityofLiege(ULg),4000Liège,Belgium * Correspondence:[email protected];Tel.:+49-241-6009-51117 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:4August2018;Accepted:3September2018;Published:5September2018 Abstract: Aswithmosthigh-velocityfree-surfaceflows,steppedspillwayflowsbecomeself-aerated whenthedropheightexceedsacriticalvalue. Duetothestep-inducedmacro-roughness,theflow field becomes more turbulent than on a similar smooth-invert chute. For this reason, cascades are oftentimes used as re-aeration structures in wastewater treatment. However, for stepped spillwaysasfloodreleasestructuresdownstreamofdeoxygenatedreservoirs,gastransferisalsoof crucialsignificancetomeetecologicalrequirements. Predictionofmasstransfervelocitiesbecomes challenging,astheflowregimediffersfromtypicalpreviouslystudiedflowconditions. Inthispaper, detailed air-water flow measurements are conducted on stepped spillway models with different geometry, withtheaimtoestimatethespecificair-waterinterface. Re-aerationperformancesare determinedbyapplyingtheabsorptionmethod. Incontrasttoearlierstudies,theaeratedwaterbody is considered a continuous mixture up to a level where 75% air concentration is reached. Above this level, a homogenous surface wave field is considered, which is found to significantly affect thetotalair-waterinterfaceavailableformasstransfer. Geometricalcharacteristicsofthesesurface wavesareobtainedfromhigh-speedcamerainvestigations. Theresultsshowthatboththemeanair concentrationandthemeanflowvelocityhaveinfluenceonthemasstransfer. Finally,anempirical relationshipforthemasstransferonsteppedspillwaymodelsisproposed. Keywords: gastransfer;steppedspillways;skimmingflows;self-aeration;air-waterinterface 1. Introduction Stepped spillways and cascades are known to be effective energy dissipaters downstream of reservoirsduetotheincreasedflowresistancecreatedbythesteps[1]. Inaddition,thestep-induced macro-roughness leads to higher turbulence compared to smooth-invert chutes, which in turn significantlyaffectstheflowstructure. Similartosmooth-invertspillways,steppedspillwayflows become self-aerated depending on the discharge, slope and spillway extension [1–3]. Once the self-aerationhasbeentriggered,thewatersurfacebecomesmoreandmoredisturbed,andbubbles, entrainedinwater,aswellasdroplets,ejectedtotheair,aretransportedalongthechute. Thisinvolves asignificantspecificair-waterinterfaceacrosswhichgastransfercantakeplace. Inparticular,oxygen transferisofhighinterestaswaterinreservoirsoftensufferfromdeoxygenation,therebeingalevel ofdissolvedoxygen(DO)contentrequiredtokeepgoodecologicalconditionsindownstreamrivers andstreams. Chanson[4]statedthatthere-aerationpotentialofsteppedspillwaysishigherthanforsmooth-invert chuteswithanidenticalslope.Moreover,there-aerationinaskimmingflowregime(i.e.aflowregime wherewaterflowsdownthechuteasacoherentstreamoverthepseudo-bottomformedbythestepedges) Geosciences2018,8,333;doi:10.3390/geosciences8090333 www.mdpi.com/journal/geosciences Geosciences2018,8,333 2of15 becomeshigherforlowerdischarges. Severalstudieshavebeenconductedinthepasttodescribethis re-aerationpotentialE,whichrelatestheoxygendeficitupstreamofthestructuretotheremainingdeficit atthedownstreamend,asfunctionsofthestructure’sgeometry[5–12]. However,allofthesestudiesonlyfocusontheglobalaerationperformanceanddonotinvestigate thegastransfermechanismitself. Inordertophysicallydescribethegastransferprocess,knowledge ofthespecificair-waterinterfaceandafeasiblegastransfermodelareessential. Thelattertypically dependsonflowconditions,forexample,meanairconcentration,velocityandturbulence,andneeds tobeestimatedbymeansofexperiments. Inthispaper,thegastransfervelocityisdeterminedforsteppedspillwayflowsbyconducting detailedmeasurementsoftheair-waterflowpropertiesandtimeseriesofdissolvedoxygencontent. In contrary to earlier studies, the air-water mixture is assumed to consist of a bubbly flow region (entrainedair)belowawavysurface(entrappedair),followinginsightsof[13–15]. 2. Background 2.1. GasDiffusion Gastransferbetweenwaterandairisdrivenbyanexistingconcentrationgradientgrad(C ) gas andmaybedescribedbyFick’s1stlaw,accordingtowhichthediffusivefluxI (inmg/(m2s))is gas proportionaltothisgradientanddirectedfromhighconcentrationstolowconcentrations: (cid:0) (cid:1) I = −D ×grad C , (1) gas gas gas withD thediffusioncoefficient(inm2/s). D dependsonthetemperatureandisameasureforgas gas gas transfervelocity. Consideringmassconservationandassuminganisotropicdiffusivity,adiffusion equationisfoundas ∂C gas = D ×∇2C . (2) gas gas ∂t Fortheone-dimensionaldiffusionperpendiculartotheair-waterinterface,Equation(2)becomes ∂C ∂2C gas gas = D × . (3) ∂t gas ∂n2 TosolveEquation(3),thediffusionlengthnneedstobeknown,which,however,dependsonthe viscosityandthediffusivityitself[16]. Thefollowingempiricalgastransfermodelbecomesthusbetter suitedforpracticalapplications: dC A L = k× ×(C −C ), (4) S L dt V with C the gas concentration in the liquid phase, C the saturation concentration, A the interface L S available for gas transfer in the water volume V and k the mass transfer coefficient (in m/s). Thereciprocalvalueofkcanbeconsideredastheresistanceinvolvedfrombothphases(index“L”for liquidand“G”forgas)[17]: 1 1 1 = + , (5) k k H ×k L G G withH =C /C thedimensionlessHenrycoefficient,dependingonsalinity,temperatureandpressure. G G L It is worth noting that k is about 40 to 1000 larger than k , according to [18], for water and air G L (dependingonturbulence),andH isapproximately32foroxygen. Themasstransfercoefficientkin G Equation(4)canthusbereplacedbyk ofthewaterphaseonly: L dC L = k ×a×(C −C ), (6) L S L dt witha=A/Vthespecificair-waterinterface. Geosciences2018,8,333 3of15 2.2. MassTransferCoefficient Besides some classical, conceptional approaches, such as the two-film model of Lewis & Whitman[17],thepenetrationmodelofHigbie[19]andthesurface-renewalmodelofDanckwerts[20], morecomplex,hydrodynamicmodelsweredevelopedlater,suchastheLarge-EddymodelofFortescue &Pearson[21],theSmall-EddymodelbyLamont&Scott[22]andtheModified-Small-Eddymodelby Moog&Jirka[23],ortheturbulence-basedmodelbyGualtieri&Gualtieri[24]. The experimental studies of other researchers show a significant influence on the mean flow velocity,Reynoldsnumberandmeanairconcentration[25],whileotherspinpointedtheinfluenceof bubblesizes[26]. Itmustbenotedthatallofthesemasstransfermodelshavebeendevelopedforspecificflow conditionsthathardlycomparetosteppedspillwayflows. Thechaoticflowregimeinskimmingflows onasteppedspillwayinvolvessignificantlyhigherturbulenceandamoreintensegasexchangethan, forinstance,risingbubblesinverticalpipes(caseforsomeofthesemodels). AspointedoutbyDemars &Manson[27],estimationoftheair-waterinterfaceinself-aeratedflowsbecomesnon-trivialdueto bubblesandspray. Amoredetailedexperimentalinvestigationofthere-aerationonsteppedspillways andderivationofasuitablemasstransferequationisnecessary. 2.3. SpecificAir-WaterInterface With consideration of a simple continuity concept and assumption of spherical bubbles, Chanson[28]proposedtoestimatethespecificair-waterinterfaceby: F (z) a(z) =4× B . (7) u(z) DerivationofEquation(7)isbasedonastatisticalrelationbetweentheSauterdiameter,typically measuredbyanairconcentrationprobe,andthediameterofasphericalbubble. F isthenumber B ofdetectedbubbles(ordroplets)perunitoftime(inHz),whichcanbedirectlyextractedfromthe phasedetectionprobesignals,andu(z)isthestreamwiseflowvelocity. Toombes[29]andToombes& Chanson[30]suggestedapplyingthisapproachforlargerbubblesaswell,despitethefactthatthe shapecandifferfromanidealsphere. However,itisknownthattheair-watermixtureinasteppedspillwayflowmayberegardedin differentways. Whileclassicalapproachesassumeahomogenouscontinuumbetweenthebottom andh ,thatis,theflowdepthwherethetime-averagedairconcentrationis90%[31,32],somerecent 90 studies distinguish a lower region with entrained air bubbles from an upper region where the air contentmainlycomesfromairpocketsbeingentrappedbetweensurfacewaves[13,33–35]. Similar flowstructureswerereportedforsmooth-invertchutes[14,15]. Indifferentstudies, withdifferent geometricalconfigurations,somecharacteristicelevationsofthemaximumwavetroughextensions onsteppedspillwaysareproposed. Forthesetupanalyzedinthispaper,Bung[13]suggestedh , 75 thatis,theflowdepthwith75%meanairconcentration,asthelowerextensionofthesurfacewaves. Figure1ashowsanexemplaryframetakenfromahigh-speedvideointhequasi-uniformflowregion ofamodeltestwith1:2slope(ϕ=26.6◦),s=6cmstepheightandaspecificdischargeofq=0.07m2/s (compare[36]). Thelevelofh ,detectedwithanairconcentrationprobe,isalsoindicated. Itcanbe 75 seenthatforhigherelevations,theflowstructurechangesandtheapplicationofEquation(7)becomes questionableforhigherlevels. Figure1bshowsthedistributionofthedimensionlessspecificair-water interfacea/max(a)assumingEquation(7)alongthefullz-coordinateuptothelevelcorrespondingto 99%airconcentration. Thechangeoftheair-waterflowstructureforthesurfacewaveregionbecomes obviousagain. Geosciences2018,8,333 4of15 Geosciences 2018, 8, x FOR PEER REVIEW 4 of 15 (a) (b) Figure 1. Flow structure in stepped spillway flows: (a) High-speed video frame taken for slope 1:2, s Figure1. Flowstructureinsteppedspillwayflows: (a)High-speedvideoframetakenforslope1:2, s = 6=c m6 ,cmq,= q0 .=0 70.0m7 2m/s2/,s,a nadndh h75 ddeetteerrmmiinneedd wwitihth ththe ecocnodnudcuticvtiitvyi tpyropbreo; b(eb;) (dbi)stdriibsutrtiiobnu toiof nthoef the 75 dimensionless air-water interface a/max(a) according to Equation (7). Shading of the markers from dimensionlessair-waterinterfacea/max(a)accordingtoEquation(7). Shadingofthemarkersfrom black (at the inception point of self-aeration) to white (at the onset of quasi-uniform flow). black(attheinceptionpointofself-aeration)towhite(attheonsetofquasi-uniformflow). 3. Methodology 3. Methodology 3.1. General Comments (Data Base) 3.1. GeneralComments(DataBase) The current paper presents a re-analysis of air-water flow data and oxygenation data published Tinh e[3c7u–4r0re],n rtesppaepcetirveplrye. sWenhtislea threes-ea nstauldyiseiss coofnasiidr-ewreadt ear cfloontwinudoautas aainr-dwoaxteyrg menixatutiroen udpa ttoa hp90u, tbhleis hed in [37c–u4r0re],ntr esstupdeyc taicvceoluyn.tsW fohri lhe75 tahse tshee sutpupdeire esxcteonnt soifd tehries dbuabbcloyn ltaiyneur.o Iuns oardire-rw toa taecrcomunixt tfuorr ethue pairt-o h , 90 water surface roughness due to the surface waves [13], an idealized, simple sinusoidal surface is thecurrentstudyaccountsforh astheupperextentofthisbubblylayer. Inordertoaccountforthe 75 considered. Air bubbles being entrained within these surface waves are not regarded. An analytical air-watersurfaceroughnessduetothesurfacewaves[13],anidealized,simplesinusoidalsurfaceis derivation of relevant equations and necessary approximations to describe the surface geometry and considered. Airbubblesbeingentrainedwithinthesesurfacewavesarenotregarded. Ananalytical its volume beneath the waves is given in Appendix A. derivationofrelevantequationsandnecessaryapproximationstodescribethesurfacegeometryand All data has been gathered on a physical model with slopes 1:3 and 1:2, step heights s of 3 cm itsvoalunmd e6 bcmen aenadth dtihscehwaragvese sofi sq g=i v0e.0n7,i n0.0A9p apnedn 0d.i1x1 Am.2/s in the Hydraulics laboratory of Wuppertal AUlnlidveartsaithy a[3s7b].e Tehneg cahtuhtee rwedidtohn waasp 3h0y csmic aalnmd iotsd teoltawl ditrhops lhoepigehst1 w:3asa 2n.d341 m:2., Ssktiempmhienigg fhlotsws woafs3 cm and6focumnda nfdor dailslc hmaordgeel stoesftsq =(co0m.0p7a,r0e. 0[941a–n43d])0. .1W1amter2 /dsisicnhathrgeeH wyads rraeugluiclasteladb owriathto ar yfloafp Wvaulpvep, ertal Univecrosnittryol[l3ed7] w. Tithh ea cfhlouwt emwetiedrt hanwd apsum30pecdm inatnod anit soptoenta hledardo ptanhke ibgehfotrwe baesin2g.3 4comnv.eySekdim inmtoi nthge flow spillway. The chute was part of a closed water circuit. wasfoundforallmodeltests(compare[41–43]). Waterdischargewasregulatedwithaflapvalve, controlledwithaflowmeterandpumpedintoanopenheadtankbeforebeingconveyedintothe 3.2. Air-Water Flow Measurements spillway. Thechutewaspartofaclosedwatercircuit. Air-water flow measurements are conducted using a double-tip conductivity probe in the flume 3.2. Acier-nWtrealtienreF. Tlohwis Mpreoabseu croemnseinsttss of two needle tips with a diameter of 0.13 mm. Both tips are aligned in flow direction with a lateral spacing of 1 mm which aim to pierce up entrained bubbles and ejected Air-waterflowmeasurementsareconductedusingadouble-tipconductivityprobeintheflume droplets. By a change of resistivity depending on the surrounding medium, phase changes can be centredlienteec.tTedh ibsyp aropbpelycionng sai stthsroesfhtowldoinngee tdeclehntiipqsuew [i4t4h].a Fduiratmheert ienrfoorfm0.a1t3iomn mon. tBhoisth tytpipes oaf rperaolbige nceadn bine flow directfioounnwd iitnh [a45la].t eWraitlhs pthaec iansgsuomf1ptmionm thwaht i(c1h) abiomth ttoippsi epriceercue ptheen straamine ebdubbbulbebs laensda n(2d) ebjuecbtbeldesd arroep lets. Byactrhaannsgpeorotefdr eins ias tsilvipit-yfredee wpeany,d cirnogsso-cnortrheelastiuornr oouf bnodthin sgigmnaelds iyuiemld,sp ahna essetimchaaten gofe sthcea fnlowbe vdeleotceictyte. dby applyRineglevaatnhtr epsahraomldeitnegrst, escuhcnhi qaus eth[e4 4l]o.cFalu, rttihmeer-ainveforargmeadt iaoinr coonncthenistrtaytpioen,o fthper oSbauetcear ndibaemfeotuern danidn [45]. Withbthuebbalses cuomunptt iroante tchaant b(e1 )dibroecthtlyt idpesteprmierinceedt hfreomsa mthee sbigunbablsle. sAadndditio(2n)alb puabrbalmesetaerrse, tfroarn esxpaomrpteled, in a the specific air-water interface according to Equation (7), can be indirectly estimated from this data. slip-freeway,cross-correlationofbothsignalsyieldsanestimateoftheflowvelocity.Relevantparameters, For all configurations, tests are conducted from the inception point of self-aeration to farther suchasthelocal, time-averagedairconcentration, theSauterdiameterandbubblecountratecanbe downstream where quasi-uniform flow conditions set in. For the larger steps, data is gathered at step directlydeterminedfromthesignals.Additionalparameters,forexample,thespecificair-waterinterface edges and above the centre of the step cavity. For the smaller steps, all data is obtained at step edges accordingtoEquation(7),canbeindirectlyestimatedfromthisdata. Forallconfigurations,testsare only. conductedAfsr otmhe theextirnaccteiponti oonf psouirnftacoef swelafv-aese ra(Ftiiognurteo 1faar) thfreormd ocwonndsturcetaivmityw hpreorbeeq udaastai- uannidfo rtmhe flow conditdieotnesrmseitnianti.oFno orft htheel aarvgaeilrasbtleep asi,r-dwaatateirs ignatethrfearceed aabtosvtee ph7e5 disg neosta dnidreacbtloyv peotshseibclee,n atr ceoonftitnhueusmte pupca vity. Forthteo shm75 aisl lceornsstiedpesr,edal ilnd tahtias isstuodbyt aainnde da athtrsetee-pdiemdegnessioonnally s.inusoidal wave field (with waveheights H Astheextractionofsurfacewaves(Figure1a)fromconductivityprobedataandthedetermination oftheavailableair-waterinterfaceaboveh isnotdirectlypossible,acontinuumuptoh isconsidered 75 75 inthisstudyandathree-dimensionalsinusoidalwavefield(withwaveheightsHandwavelengthsλ), Geosciences2018,8,333 5of15 Geosciences 2018, 8, x FOR PEER REVIEW 5 of 15 leadingtoaninterfacialsurfaceS oftheair-watermixture. ThelatterisaddedtotheinterfaceA ent and wavelengths λ), leading to an interfacial surface of the air-water mixture. The latter is added formedbytheentrainedairbubbles. Aschematicillustrationoftheemployedconceptisshownin to the interface Aent formed by the entrained air bubbles. A schematic illustration of the employed Figure2. Inordertodeterminethespecificair-waterint𝒮𝒮erface,A =A +S needstoberelatedtothe concept is shown in Figure 2. In order to determine the speciftioct air-wenatter interface, Atot = Aent + totalvolume(uptotheupperwaveextent). needs to be related to the total volume (up to the upper wave extent). 𝒮𝒮 Figure 2. Schematic illustration of the considered flow structure over the step cavities consisting of a Figure2.Schematicillustrationoftheconsideredflowstructureoverthestepcavitiesconsistingofa continuous air-water mixture up to h75 and non-aerated, sinusoidal surface waves over h75. continuousair-watermixtureuptoh andnon-aerated,sinusoidalsurfacewavesoverh . 75 75 3.3. Surface Wave Characterization 3.3. SurfaceWaveCharacterization To estimate the interface being available for gas transfer due to surface waves, a simple three- Tdoimeesntsimionaatel sitnhuesoiindtaelr wfaacvee fbieelidn igs aasvsuamilaebdl. eThfiosr wgaavse ftierladn issf cehrardaucteertizoeds ubryf aeqcueawl waavveesl,enagtshism ple three-λd iimn ebnostiho, nsatlresaimnuwsisoei daanldw taravnesvfieerlsde idsiraesctsiuonm, eadn.d Tah wisawveahveeighfite lHd. iSsimchilaarra csuterrfaizcee dwbayvees qual waveclehnargatchtesrλistiincs bwoetrhe, asstsruemamedw tois aenaanlydtictarlalny sdveesrcsriebed tihreec steiolfn-a,earantdiona pwroacveeshs ebiyg [h3t], Hsh.eSdidminilga rligshutr face on the fluid mechanics of self-aeration. Hence, it is herein proposed that surface waves are connected wavescharacteristicswereassumedtoanalyticallydescribetheself-aerationprocessby[3],shedding to the upstream non-aerated region, holding similar structure. As no closed solution for the surface light on the fluid mechanics of self-aeration. Hence, it is herein proposed that surface waves are area of the supposed wave field exists, a numerical integration was performed to find an empirical connectedtotheupstreamnon-aeratedregion,holdingsimilarstructure. Asnoclosedsolutionfor fitting function. The description of the underlying assumptions and solutions can be found in thesurfaceareaofthesupposedwavefieldexists,anumericalintegrationwasperformedtofindan Appendix A. empiricalfittingfunction. Thedescriptionoftheunderlyingassumptionsandsolutionscanbefound Characteristic wavelengths and waveheights are obtained from high-speed videos analyzed in inAp[p46e]n, dwixhAich. extracted the free surface of the air-water mixture applying an image processing Ctehcahrnaiqcuteer. iFstriocmw thaivse dleantag, tthhse amneddiwana wveahveeliegnhgttshsa raendo bwtaavineehdeigfhrotsm, gihviegnh i-ns pTeaebdle v1i,d heaovse abneeanly zed in [46o]b,tawinheidch (Teaxbtlrea 1c)t eadndt hcoensfrideeeresdu rrfeapcreesoenftathtievea oirf -twhea twerhomlei xsttruurcetuarep ptol ydientgermanineim thaeg aeirp-wroacteers sing technmiqiuxteu.reF rsoumrfacthe iisn dSeacttaio,nth 4e.1m. edianwavelengthsandwaveheights, giveninTable1, havebeen obtained(Table1)andconsideredrepresentativeofthewholestructuretodeterminetheair-water Table 1. Median wavelengths and waveheights extracted from high-speed videos with use of an mixturesurfaceinSection4.1. image processing technique; corresponding median absolute deviations (MAD) given in brackets. Table1.M edianwavelengthsandwaSvloephee i1g:2h tsextractedfromhigh-speedvideSolospwe i1th:3 useofanimage prSotceeps sHineigghtetc [hcmni]q ue;corresp3o ndingmedianabso6lu tedeviations(MAD3 )giveninbrackets.6 Discharge [m2/s] 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 6.1 7.5 Sl8o.p9e 1:27.1 7.3 6.6 6.7 5.9 7.S1l o pe15:.39 5.7 6.6 λ [cm] (1.6) (1.4) (2.3) (1.7) (1.4) (1.8) (1.3) (1.2) (1.9) (1.3) (1.1) (1.6) StepHeight[cm] 3 6 3 6 1.4 1.3 1.3 2.6 2.0 2.1 1.3 1.3 1.2 3.9 3.1 2.9 DischargHe [[mcm2/]s ] 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 (0.6) (0.8) (0.6) (1.0) (1.3) (1.1) (0.8) (0.5) (0.7) (1.4) (1.2) (1.2) 6.1 7.5 8.9 7.1 7.3 6.6 6.7 5.9 7.1 5.9 5.7 6.6 λ[cm] (1.6) (1.4) (2.3) (1.7) (1.4) (1.8) (1.3) (1.2) (1.9) (1.3) (1.1) (1.6) 3.4. Dissolved Oxygen Measurements 1.4 1.3 1.3 2.6 2.0 2.1 1.3 1.3 1.2 3.9 3.1 2.9 H[cm] The re-aerat(i0o.n6) pot(e0n.8t)ial o(f0 .t6h)e di(f1f.e0)rent (s1t.3e)pped(1 .s1p)illw(0a.y8) mo(d0e.5l) setu(0p.7s) has (1b.e4e)n d(e1t.e2)rmin(1e.d2) by direct oxygen measurements. The absorption method, according to [47], has been applied by 3.4. Driesdsoulcviendg Othxey gdeisnsoMlveeadsu orxeymgeennt scontent through sodium solfite addition. In order to speed up the deoxygenation process, cobalt sulfate was added as a catalyst. Before starting the tests, accurate Tmhiexirneg- aoef rtahtei ochnepmoicteanlst wiaalso efntshuereddif bfeyr ceinrctusltaetpinpge tdhes pwialltwera iny tmheo tdaenlksse wtuitphs smhaasllb peuemnpdse. tBeersmidiense, dby directmooxryeg seondmiumea ssuurlfeimte ewntass. aTdhdeeadb tshoarnp ttihoenormeteictahlolyd ,naececdoerdd itno gentosu[r4e7 ]f,uhlla sdeboexeyngeanpaptiloiend. Obyxyrgeednu cing thedicsosnoclvenetdraotixoyng ewnacso nmteenastutrherdo uwgihths otdwiuo midseonltfiictael adopdtiitciaoln .pIrnoboersd e(rHtaochsp eHeQd1u0)p tuhpestdreeaomxy gaennda tion process, cobalt sulfate was added as a catalyst. Before starting the tests, accurate mixing of the chemicalswasensuredbycirculatingthewaterinthetankswithsmallpumps. Besides,moresodium sulfitewasaddedthantheoreticallyneededtoensurefulldeoxygenation. Oxygenconcentrationwas measuredwithtwoidenticalopticalprobes(HachHQ10)upstreamanddownstreamofthespillway Geosciences2018,8,333 6of15 andalltestswererepeatedatleastonce. Timeseriesofinstantaneousdissolvedoxygenconcentrations CDO(tG)eoasrcieenecexs p20e1c8t, e8,d x tFoORfo PlElEoRw REaVnIEeWx p onentialfunctiongivenby 6 of 15 downstream of the spillwCay a(ntd) a=ll Ctests w−er(cid:0)eC repeat−edC at(cid:1) le×aset− oknLc×ea. TT×imt,e series of instantaneous (8) DO S,p,T S,p,T 0 dissolved oxygen concentrations CDO(t) are expected to follow an exponential function given by where CS,p,T is the saturation concentration at local conditions (with atmospheric pressure(8p) and temperature T) and kLaT is the aeration coefficient at temper−a𝑘𝑘t𝐿𝐿u×r𝑔𝑔e𝑇𝑇×T𝑡𝑡 . For comparison of aeration where CS,p,T is the saturation c𝐶𝐶o𝐷𝐷n𝐷𝐷c(e𝜕𝜕n)t=ra t𝐶𝐶io𝑆𝑆,n𝑝𝑝, 𝑇𝑇a−t l�o𝐶𝐶c𝑆𝑆a,𝑝𝑝l ,𝑇𝑇co−n𝐶𝐶d0i�ti×on𝑒𝑒s (with a,tmospheric pressure p and performancetestswithdifferentlocalconditions,C andk a (yieldedbyanonlinearregression analytseims)pcearnatubree nTo)r manadl izkLeadT itso tahes taaenrdaatirodn tceomefpfiecrieantut Sra,ept, Totefm20pe◦rCaLtuaTnred Ta. pFroers csoumrepoafri1so0n1 3ohf Paaeraastion performance tests with different local conditions, CS,p,T and kLaT (yielded by a nonlinear regression analysis) can be normalized to a standard temperature of 20 °C and a pressure of 1013 hPa as k a = k a ×1.02420−T (9) L 20 L T (9) 20−𝑇𝑇 and and 𝑘𝑘𝐿𝐿𝑎𝑎20=𝑘𝑘𝐿𝐿𝑎𝑎𝑇𝑇×1.024 C 1013 C =C × S,St,20 × , (10) S,20 S,p,T CS,St,T p (10) respectively. In Equation (10), CS,St𝐶𝐶,T𝑆𝑆,20re=fe𝐶𝐶r𝑆𝑆s,𝑝𝑝,𝑇𝑇to×𝐶𝐶th𝑆𝑆,e𝑆𝑆𝑡𝑡,2s0t×an1d0a1r3d,ized saturation concentration for p=10r1es3phecPtaivaenlyd. Itne mEqpueartaitounr e(1T0),, wChS,Sitl,Te rCefers to =th9e. 0s9tamn𝐶𝐶𝑆𝑆dg,𝑆𝑆a𝑡𝑡/r,𝑇𝑇dLizfoedr 𝑝𝑝fsualtlusrtaatinodna crodnccoenntdraittiioonn sf.oAr pn =e x1e0m13p lary hPa and temperature T, while CS,St,20 = S9,S.0t,92 0mg/L for full standard conditions. An exemplary result resultfromasingleoxygenationtestisshowninFigure3a. Figure3bshowstheresidualsbetweenthe from a single oxygenation test is shown in Figure 3a. Figure 3b shows the residuals between the fitting fittingandthelaboratorydata,provingagoodfitting. and the laboratory data, proving a good fitting. (a) (b) Figure 3. Exponential regression of oxygenation curves for one exemplary model run with 1:2 slope, Figure3.Exponentialregressionofoxygenationcurvesforoneexemplarymodelrunwith1:2slope, s=6sc m= 6a cnmd aqn=d 0q .1=1 0.m112 /ms2:/s(:a ()a)F iFtittitningg ttoo tthhee eexxppeerriimmeenntatla lddataat afofro lrocloalc acolncdointidonitsi oannsd arnesdulrteinsug lting standardized oxygen transfer parameters (note: only every 2nd data point is shown for better standardizedoxygentransferparameters(note:onlyevery2nddatapointisshownforbetterlegibility); legibility); (b) Residuals resulting from the curve fitting. (b)Residualsresultingfromthecurvefitting. 4. Results 4. Results 4.1. Specific Air-Water Interface 4.1. SpecificAir-WaterInterface The specific air-water interface according to Equation (7) has been determined between the Tinhceepstpioenc ipfiocinat iorf- wsealft-eareriantitoenr faancde tahcec qouradsiin-ugnitfoorEmq fuloawtio rneg(io7n) fhoars 0 b≤ eze ≤n hd75 einte arlml cionnefdigubreattwioenes.n the incepTtihoen repsouilntst ionf dsiemlfe-anesiroantiaol nnuamndbetrhse aqreu iallsuis-utrnatiefodr imn Ffligouwrer e4g foior n1:f2o srlo0p≤e aznd≤ Fhigurien 5a flolrc o1:n3fi sglouprea.t ions. 75 It can be observed that the total amount strongly depends on the flow regime. While for smaller step TheresultsindimensionalnumbersareillustratedinFigure4for1:2slopeandFigure5for1:3slope. heights and larger discharges a more stable skimming flow regime is found, a more tumbling flow is Itcanbeobservedthatthetotalamountstronglydependsontheflowregime. Whileforsmallerstep found for larger step heights and lower discharges. This leads to a more chaotic flow regime and heightsandlargerdischargesamorestableskimmingflowregimeisfound,amoretumblingflow stronger aeration. For all configurations, the specific air-water interface follows a distribution as isfoundforlargerstepheightsandlowerdischarges. Thisleadstoamorechaoticflowregimeand shown in Figure 1b with a maximum slightly below h75. The highest air-water interfaces being strongobersearevreadt iionn t.hFe ocrurarlelncto tnefistgs uarrae tiino nthse, tohredesrp oefc i3fi5c0 amir2/-mw3a. terinterfacefollowsadistributionasshown inFigureI1nb woridtehr atmo adxeitmerummines litghhet lygabse ltorawnshf7e5r. Tvehleochitiyg hfersotma irt-hwe aateerraitniotenr feafcfiecsiebneciinesg o(sbhsoewrvne din thecusurrbesneqtuteesnttslya)r, ethine tthoetaol radier-rwoafte3r5 0inmte2rf/amce3 .from entrained air bubbles is required and can be Icnalocurdlaetredto bdye terminethegastransfervelocityfromtheaerationefficiencies(shownsubsequently), thetotalair-waterinterfacefromentrainedairbubblesisrequiredandcanbecalculatedby Geosciences2018,8,333 7of15 x=(cid:90)Ltoty(cid:90)=bz=(cid:90)h75 A = adxdydz, (11) ent x=Li y=0 z=0 whereL isthedistancefromthespillwaycresttotheinceptionpointofself-aeration,L isthetotallength i tot ofthespillwayandbisthewidthoftheflume.TheresultingsurfaceareaS ofthesupposedsinusoidal Geosciences 2018, 8, x FOR PEER REVIEW 7 of 15 air-watermixturesurfaceaccordingtoEquation(A7)isaddedtoA fromEquation(11)todeterminethe ent totalavailableair-waterA interface.Descriptionoftheassumedsurfacewavegeometryandderivation tot ofrelevantfunctionsisgivenintheAppendixA.ResultsforbothinterfacesA andS,aswellasthetotal 𝑥𝑥=𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 𝑦𝑦=𝑏𝑏𝑧𝑧= ℎ75 ent (11) air-waterinterfaceA fromallthetestedconfigurations,arelistedinTable2. tot 𝐴𝐴𝑒𝑒𝑛𝑛𝑡𝑡= � � � 𝑎𝑎d𝑥𝑥d𝑦𝑦d𝑧𝑧, where Li is the distancTe afbrolem2 t.hTeo staplilalwir-awy ac𝑥𝑥tr=ee𝐿𝐿rs𝑖𝑖tin t𝑦𝑦toe= rt0hfae𝑧𝑧c =ien0fcoerpatilolnco pnofiingtu oraf tsieolnf-sa.eration, Ltot is the total length of the spillway and b is the width of the flume. The resulting surface area of the supposed sinusoidal air-water mixture surface according to Equation (A7) is added to Aent from Equation (11) Slope1:2 Slop𝒮𝒮e1:3 to determine the total available air-water Atot interface. Description of the assumed surface wave StepHeight[cm] 3 6 3 6 geometry and derivation of relevant functions is given in the Appendix A. Results for both interfaces DiAscehnta argned[ m2,/ sa]s we0l.l0 7as the0 .0to9tal a0i.r1-1wate0r .0in7terfa0c.0e9 Atot f0r.o11m all0 t.0h7e tes0te.0d9 conf0i.g11uratio0.n07s, are0 .l0is9ted i0n.1 1 ETnatbralien 2ed. air bubblesAent𝒮𝒮[m2] 7.37 7.31 6.93 12.67 12.60 13.21 5.65 7.05 6.89 17.58 18.32 16.06 (Equation(11)) Table 2. Total air-water interface for all configurations. Air-watermixture surfaceS[m2] 1.95 1.58 1.34 3.24 2.29 2.58 2.55 2.62 2.06 10.67 7.88 5.71 Slope 1:2 Slope 1:3 (Equation(A7)) Step Height [cm] 3 6 3 6 Atot[mD2i]scharge [m9.23/s2] 8.89 0.078 .270.09 150..9111 01.40.78 9 0.1059. 79 0.118 .200.07 9.607.09 80..1915 02.087. 25 0.0296 .200.112 1.77 Entrained air bubbles Aent [m2] 7.37 7.31 6.93 12.67 12.60 13.21 5.65 7.05 6.89 17.58 18.32 16.06 (Equation (11)) Itisinterestingtonotethatforlessstableskimmingflowregimes(i.e.,forlargerstepsandlower Air-water mixture surface 1.95 1.58 1.34 3.24 2.29 2.58 2.55 2.62 2.06 10.67 7.88 5.71 discharges)[m, 2t]h (Eequtoattioanl (aAi7r))- water interface increases significantly with a relevant contribution of the 𝒮𝒮 surface waves.AWtot [imth2] considera9t.3io2 n8o.8f9 th8is.27t ot1a5l.9s1 ur1f4a.8c9e A15.79 in8T.2a0 bl9e.627 an8.9d5 th2e8.2t5o ta2l6.w20 ate21r.7v7 olume, tot consistingoftheair-watermixturevolume It is interesting to note that for less stable skimming flow regimes (i.e., for larger steps and lower discharges), the total air-water interface increases significantly with a relevant contribution of the surface waves. With consideration of this txo=(cid:90)taLlt ostuy(cid:90)r=fabce Atot in Table 2 and the total water volume, consisting of the air-water mixtureV vmoliuxm=e h75dxdydz (12) x=0 y=0 𝑥𝑥=𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 𝑦𝑦=𝑏𝑏 (12) plusthefluidvolumeV beneaththesurfacewavesforz>h accordingtoEquation(A8)(V =V +V), 75 tot mix thetotalspecificair-waterinterfacea is𝒱𝒱fo𝑚𝑚u𝑚𝑚𝑥𝑥n=da�sfoll�owℎs7i5ndT𝑥𝑥adb𝑦𝑦lde𝑧𝑧3: tot plus the fluid volume beneath the surface 𝑥𝑥w=a0ve𝑦𝑦s= f0or z > h75 according to Equation (A8) ( tot = mix + ), the total specTiafibc la𝒱𝒱eir3-.wTaottearl isnpteecrfifiaccea aitro-t wisa ftoeurnindt earsf faoclelofwors ailnl Tcoanbfileg 3u:r ations. 𝒱𝒱 𝒱𝒱 𝒱𝒱 Table 3. Total specific air-water interface for all configurations. Slope1:2 Slope1:3 StepHeight[ cm] 3 Slope 1:2 6 3 Slope 1:3 6 Step Height [cm] 3 6 3 6 Discharge[m2/s] 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 Discharge [m2/s] 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 atot[ma2to/t m[m32]/m3] 150 1501 32 132 106106 197197 190190 171777 9911 9988 8811 22232 3 1961 96 1531 53 (a) Figure4.Cont. Geosciences2018,8,333 8of15 Geosciences 2018, 8, x FOR PEER REVIEW 8 of 15 (b) (c) (d) (e) (f) FigureFi4g.uSrpe e4c. iSfipceaciirfi-cw aairt-ewraintetre rinfatecrefaac(ei na (min2 m/m2/m3)3)f oforra allllc coonnffiigguurraattiioonnss wwiitthh ssloloppe e1:12:;2 d;odwownsntrsetarmea mof ofthe the inception point of self-aeration and from z = 0 (pseudo-bottom) to h75; data in quasi-uniform flow inceptionpointofself-aerationandfromz=0(pseudo-bottom)toh ;datainquasi-uniformflowregion region assumed similar to the last two profiles: (a) s = 3 cm, q = 0.07 7m52/s; (b) s = 3 cm, q = 0.09 m2/s; (c) assumedsimilartothelasttwoprofiles:(a)s=3cm,q=0.07m2/s;(b)s=3cm,q=0.09m2/s;(c)s=3cm, s = 3 cm, q = 0.11 m2/s; (d) s = 6 cm, q = 0.07 m2/s; (e) s = 6 cm, q = 0.09 m2/s; (f) s = 6 cm, q = 0.11 m2/s. q=0.11m2/s;(d)s=6cm,q=0.07m2/s;(e)s=6cm,q=0.09m2/s;(f)s=6cm,q=0.11m2/s. Geosciences2018,8,333 9of15 Geosciences 2018, 8, x FOR PEER REVIEW 9 of 15 (a) (b) (c) (d) (e) (f) FigureFi5g.uSrpe e5c. iSfipceaciifri-cw aairt-ewraintetre rinfatecrefaac(ei na (min2 m/m2/m3)3)f oforra allllc coonnffiigguurraattiioonnss wwitithh ssloloppe e1:13:;3 d;odwonwsntrsetarmea mof ofthe the inception point of self-aeration and from z = 0 (pseudo-bottom) to h75; data in quasi-uniform flow inceptionpointofself-aerationandfromz=0(pseudo-bottom)toh ;datainquasi-uniformflowregion region assumed similar to the last two profiles: (a) s = 3 cm, q = 0.07 7m52/s; (b) s = 3 cm, q = 0.09 m2/s; (c) assumedsimilartothelasttwoprofiles:(a)s=3cm,q=0.07m2/s;(b)s=3cm,q=0.09m2/s;(c)s=3cm, s = 3 cm, q = 0.11 m2/s; (d) s = 6 cm, q = 0.07 m2/s; (e) s = 6 cm, q = 0.09 m2/s; (f) s = 6 cm, q = 0.11 m2/s. q=0.11m2/s;(d)s=6cm,q=0.07m2/s;(e)s=6cm,q=0.09m2/s;(f)s=6cm,q=0.11m2/s. Geosciences2018,8,333 10of15 4.2. Re-AerationPerfomance Relevant re-aeration performance parameters are obtained by nonlinear regression of the oxygenation data, as shown in Figure 3. As the experiments have been conducted on different dayswithdifferentlocalconditions,thestandardizedre-aerationparametersarealwayspresentedin thefollowing. Foreachconfiguration,fourindependentmodelrunswereperformedandtheaveraged resultsfork a andC arelistedinTable4. L 20 S,20 Table4.Standardizedre-aerationperformanceparametersforallconfigurations(eachaveragedfrom fourindependentmodelruns,correspondingminimumandmaximumvaluesgiveninbrackets). Slope1:2 Slope1:3 StepHeight[cm] 3 6 3 6 Discharge[m2/s] 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 (6.71) (9.27) (9.39) (8.51) (11.61) (10.53) (6.56) (8.14) (9.74) (7.74) (9.40) (10.92) kLa20[1/h] 6.85 9.32 9.76 8.73 11.68 11.11 7.54 8.87 10.17 8.60 10.08 11.47 (7.04) (9.41) (10.13) (8.87) (11.81) (11.49) (11.33) (11.33) (11.33) (11.33) (11.33) (11.89) (8.44) (8.57) (8.60) (8.46) (8.54) (8.61) (8.29) (8.39) (8.41) (8.26) (8.31) (8.34) CS,20[mg/L] 8.61 8.68 8.70 8.63 8.67 8.75 8.43 8.48 8.48 8.42 8.43 8.53 (8.77) (8.78) (8.70) (8.80) (8.79) (8.95) (8.61) (8.61) (8.61) (8.61) (8.61) (8.86) 4.3. MassTransferVelocity ThemasstransfercoefficientcanbedirectlydeducedfromTables3and4. Theresultsareshown inTable5. Table5.Deducedmasstransfervelocitiesforallconfigurations. Slope1:2 Slope1:3 StepHeight[cm] 3 6 3 6 Discharge[m2/s] 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.09 0.11 kL[cm/h] 4.6 7.1 9.2 4.4 6.1 6.3 8.3 9.1 12.6 3.9 5.1 7.5 Obviously, k increases for higher discharges and is thus a function of the Reynolds number. L Theflowregime(i.e.,thestabilityoftheskimmingflow),whichwasaffectingthespecificair-water interface, is found to have no significant influence on k . In addition, it is noticed that the air L concentration strongly affects the mass transfer as well (as it was also described in [38] under consideration of an air-water mixture up to h ). With the average flow velocity u being found 90 intheaeratedflowregionandtheaverageairconcentrationonthestructure(uptoh ),thefollowing 75 relationshipisfound: k L =2.342∗e−5.579×C×10−5. (13) u The curve fitting reaches R2 = 0.96 when neglecting a single obvious outlier, as indicated in Figure6.

Description:
Hydraulic Engineering Section (HES), FH Aachen University of Applied Sciences, Department of ArGEnCo, Research Group of Hydraulics in Environmental and Civil Engineering (HECE),. University . Shading of the markers from.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.