ebook img

Rationality of Bershadsky-Polyakov vertex algebras PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rationality of Bershadsky-Polyakov vertex algebras

RATIONALITY OF W-ALGEBRAS, I: BERSHADSKY-POLYAKOV VERTEX ALGEBRAS 0 1 TOMOYUKIARAKAWA 0 2 y a M Abstract. WeprovetheconjectureofKac-Wakimotoontherationalityofex- ceptionalW-algebrasforthefirstnon-trivialseries,namely,fortheBershadsky- 6 Polyakov vertex algebrasW(2) atlevelk=p/2−3withp=3,5,7,.... This 3 givesnewexamples ofrationalconformalfieldtheories. ] A Q 1. Introduction . h Recently,aremarkablefamilyofW-algebrasassociatedwithsimpleLie algebras t a andtheirnon-principal nilpotentelements,calledexceptional W-algebras, hasbeen m discoveredbyKacandWakimoto[KW08]. In[KW08]itwasconjecturedthatwith [ an exceptional W-algebra one can associated a rational conformal field theory. As a first step to resolve the Kac-Wakimoto conjecture we have proved in the 2 previous article [Ara10b] that (non-principal) exceptional W-algebras are lisse, or v 5 equivalently [Ara10a], C2-cofinite. Therefore it remains [Zhu96, Hua08] to show 8 that exceptional W-algebras are rational, i.e., that the representations are com- 1 pletely reducible, in order to prove the conjecture. In this article we prove the 0 rationality of the first non-trivial series of exceptional W-algebras, that is, the . 5 Bershadsky-Polyakov (vertex) algebras W(2) [Pol90, Ber91] at level k = p/2−3 0 3 with p = 3,5,7,.... The vertex algebra W(2) is the W-algebra associated with 0 3 1 g=sl3 and it minimal nilpotent element. : Let us state our main result more precisely: Let W denote the unique simple v k i quotient of W(2) at level k 6=−3. X 3 r Main Theorem (Conjectured by Kac and Wakimoto [KW08]). Let k = p/2−3 a with p = 3,5,7,.... Then the vertex algebra W is rational. The simple W - k k modules are parameterized by the set of integral dominant weights of sl of level 3 p−3. These simple modules can be obtained by the quantum BRST reduction from irreducible admissible representations of sl of level k. b 3 For p = 3, W is one-dimensional. In the remaining cases W are con- 3/2−3 b p/2−3 formal with negative central charges. They have features in common with the sl -integrableaffine vertex algebrasin the sense that their Zhu algebrasare closely 2 related with Smith’s algebra [Smi90] and that the following relations hold: b :G+(z)p−2 :=:G−(z)p−2 :=0. This work is partially supported by the JSPS Grant-in-Aid for Scientific Research (B) No. 20340007. 1 2 TOMOYUKIARAKAWA 2. Bershadsky-Polyakov algebras at exceptional levels. Let Wk denote the Bershadsky-Polyakov(vertex) algebra W(2) at level k 6=−3, 3 whichisthevertexalgebrafreelygeneratedbythefieldsJ(z),G±(z),T(z)withthe following OPE’s: 2k+3 J(z)J(w)∼ , G±(z)G±(w)∼0, 3(z−2)2 1 J(z)G±(w)∼± G±(w), z−w (2k+3)(3k+1) 2 1 T(z)T(w)∼− + T(w)+ ∂T(w), 2(k+3)(z−w)4 (z−w)2 z−w 3 1 T(z)G±(w)∼ G±(w)+ ∂G±(w), 2(z−w)2 z−w 1 1 T(z)J(w)∼ J(w)+ ∂J(w), (z−w)2 z−w (k+1)(2k+3) 3(k+1) G+(z)G−(w)∼ + J(w) (z−w)3 (z−w)2 1 3(k+1) + 3:J(w)2 :+ ∂J(w)−(k+3)T(w) . z−w 2 (cid:18) (cid:19) As in introduction we denote by W the unique simple quotient of Wk. k Theorem 2.0.1 ([Ara10b]). Let k, p be as in Main Theorem. Then W is lisse. k Set 1 L(z)= L z−n−2 =T(z)+ ∂J(w). n 2 n∈Z X This defines a conformal vector of Wk with central charge 4(k+1)(2k+3) 4(p−4)(p−3) c(k)=− =− , k+3 p which gives J, G+, G− conformal weights 1, 1, and 2, respectively. Hence Wk is Z -graded with respect to the Hamiltonian L . We expand the corresponding ≥0 0 fields accordingly: J(z)= J z−n−1, G+(z)= G+z−n−1, G−(z)= G−z−n−2. n n n n∈Z n∈Z n∈Z X X X Then we have 2k+3 [J ,J ]= mδ , [J ,G ]=G , [J ,F ]=−F , m n m+n,0 m n m+n m n m+n 3 (2k+3)(m+1)m [L ,J ]=−nJ − δ , m n m+n m+n,0 6 [L ,G+]=−nG+ , [L ,G−]=(m−n)G− , m n m+n m n m+n [G+,G−]=3(J2) +(3(k+1)m−(2k+3)(m+n+1))J −(k+3)L m n m+n m+n m+n (k+1)(2k+3)m(m+1) + δ , m+n,0 2 where (J2) z−n−2 :=:J(z)2 :. n∈Z n P RATIONALITY OF W-ALGEBRAS, I: BERSHADSKY-POLYAKOV VERTEX ALGEBRAS 3 For (ξ,χ)∈C2, let L(ξ,χ)be the irreducible representationof Wk generatedby the vector |ξ,χi such that J |ξ,χi=ξ|ξ,χi, J |ξ,χi=0 (n>0), 0 n L |ξ,χi=χ|ξ,λi, L |ξ,χi=0 (n>0), 0 n G−|ξ,χi=0 (n≥0), G+|ξ,χi=0 (n≥1). n n By Theorem 2.0.1, any simple W -module is of the form L(ξ,λ) with some ξ and k χ. (It is important that the lisse condition is defined independent of the grading.) For a Wk-module M set M = {m ∈ M;J m = am, L m = dm}. It is a,d 0 0 clear that L(ξ,χ) = L(ξ,χ) , dimL(ξ,χ) = 1. Let L(ξ,χ) = {v ∈ a,d ξ,χ top (a,d)∈C2 d∈χL+Z≥0 L(ξ,χ);L v = χv} = L(ξ,χ) . By definition L(ξ,χ) is spanned by the 0 a a,χ top vectors (G+)i|ξ,χi with i≥0. 0 L Following [Smi90] set g(ξ,χ)=−(3ξ2−(2k+3)ξ−(k+3)χ), so that G−G+|ξ,χi=g(ξ,χ)|ξ,χi. We have 0 0 G−(G+)i|ξ,χi=ih (ξ,χ)(G+)i−1|ξ,χi, 0 0 i 0 where 1 h (ξ,χ)= (g(ξ,χ)+g(ξ+1,χ)+···+g(ξ+i−1,χ)) i i =−i2+ki−3ξi+3i−3ξ2−k+2kξ+6ξ+kχ+3χ−2. Hence we have the following assertion. Proposition 2.0.2. The space L(ξ,χ) is n-dimensional only if h (ξ,χ)=0. top n Define ∞ −J ∆(−J,z)=z−J0exp (−1)k+1 k , kzk ! k=1 X and set ψ(a )z−n−1 =Y(∆(−J,z)a,z) (n) n∈Z X for a ∈Wk. Then for any Wk-module M, we can define on M a new WK-module structure by twisting the action of Wk as a 7→ ψ(a ) ([Li97]). We denote by (n) (n) ψ(M) thus obtained Wk-module from M. Proposition 2.0.3. Suppose that dimL(ξ,χ) =i. Then top 2k+3 2k+3 ψ(L(ξ,χ))∼=L(ξ+i−1− ,χ−(ξ−i+1)+ ). 3 3 Proof. The assertion follows from the fact that 2k+3 2k+3 ψ(J )=J − δ , ψ(L )=L −J + , n n n,0 n n n 3 3 ψ(G+)=G+ , ψ(G−)=G− . n n−1 n n+1 (cid:3) 4 TOMOYUKIARAKAWA By solving the equation 2k+3 2k+3 h (ξ,χ)=h (ξ+i−1− ,χ−(ξ−i+1)+ ) i j 3 3 we obtain the following assertion. Proposition 2.0.4. Suppose that dimL(ξ,χ) = i and dimψ(L(ξ,χ)) = j. top top Then 1 ξ =ξ := (−2i−j+2k+6), i,j 3 i2+ji−ki−3i+j2−6j−2jk+3k+6 χ=χ := . i,j 3(k+3) Proposition 2.0.5. Let k, p be as in Main Theorem. Then (G+ )p−21 belongs to −1 the maximal ideal of Wk. Proof. Because ξ = χ = 0, the corresponding 1 7→ |ξ ,χ i gives 1,p−2 1,p−2 1,p−2 1,p−2 anisomorphismW ∼=L(ξ ,χ ). Becauseh (ξ −(2k+3)/2,χ + k 1,p−2 1,p−2 p−2 1,p−2 1,p−2 (2k+3)/3)= 0, from Proposition 2.0.3 it follows that ψ(W ) is at most p−2- k top dimensional. Hence (G+ )p−21=0. (cid:3) −1 Remark 2.0.6. One can show that in fact (G+ )p−2 generatesthe maximalideal of −1 Wk. However we do not need this fact. Proposition2.0.7. Let k, p beas in Main Theorem. Then any simple W -module k isisomorphic toL(ξ ,χ )for some(i,j)suchthat1≤i≤p−2,1≤j ≤p−i−1. i,j i,j Proof. LetL(ξ,χ)beasimpleW -module. Because:G+(z)p−2 :=0byProposition k 2.0.5,L(ξ,χ) isatmost(p−2)-dimensional. Sinceψ(L(ξ,χ))isalsoaW -module top k we have (ξ,χ)=(ξ ,χ ) for some 1≤i,j ≤p−2. Because ψ(ψ(L(ξ ,χ ))) is i,j i,j i.j i,j alsoa W -moduleit followsthatξ +i−1−2k+3 = i−j ≤ −2j−1+2k+6 = p−2j−1. k i,j 3 3 3 3 Hence j ≤p−i−1. (cid:3) Remark 2.0.8. The simple Wk-modules L(ξ ,χ ) with 1 ≤ i ≤ p−2, 1 ≤ j ≤ i,j i,j p−i−1, are mutually non-isomorphic because their highest weights are distinct. 3. Proof of Main Theorem Let k, p be as in Main Theorem. Let g = sl as in introduction, h ⊂ g be the Cartan subalgebra of g consisting 3 of diagonal matrixes. Set h = E −E , h = h +h , e = e = E , i i,i i+1,i+1 θ 1 2 i αi i,i+1 f = f = E for i = 1,2, e = E , f = E , where E is the matrix i αi i+1,i θ 1,3 θ 3,1 i,j element. We equip g the invariant form (x|y) = tr(xy). Set Λ¯ = (2h +h )/3, 1 1 2 Λ¯ =(h +2h )/3, so that (Λ¯ |h )=δ . 1 1 2 i j i,j Let g = g[t,t−1]⊕CK⊕CD be the (non-twisted) affine Kac-Moody algebra associated with g, where K is the central element and D is the degree operator. Let h =bh⊕CK⊕CD ⊂ g the standard Cartan subalgebra, h∗ = h∗⊕CΛ0⊕Cδ the dual of h, where Λ and δ are elements dual to K and D, respectively. 0 Lebtus consider the minbimalnilpotent elementfθ andthe cobrrespondingDynkin gradingofgb: g ={u∈g;[h ,u]=2ju}. Denote by H∞2+0(?) the BRST cohomol- j θ fθ ogy ofthe generalizedquantized Drinfeld-Sokolovreduction associatedwith (g,f ) θ RATIONALITY OF W-ALGEBRAS, I: BERSHADSKY-POLYAKOV VERTEX ALGEBRAS 5 andthe correspondingDyndin grading. Then we have[KRW03, KW04] the vertex algebra isomorphism Wk →∼ H∞2+0(Vk(g)), fθ which is given by the following assignment: J(z)7→J−Λ¯1+Λ¯2(z)−:Φ (z)Φ (z):, 1 2 G+(z)7→Jf1(z)−:Jh1(z)Φ (z):+:Φ (z)Φ (z)2 :−(k+1)∂Φ (z), 2 1 2 2 G+(z)7→−Jf2(z)−:Jh2(z)Φ (z):−:Φ (z)2Φ (z):−(k+1)∂Φ (z), 1 1 2 1 Here Ju(z) = u(z) − cfuγ,fβ : ψβ∗(z)ψγ(z) : for u ∈ g, cuu31,u2 is the β,γ∈{α1,α2,θ} structureconstant,ψ (z),ψ∗P(z)withα∈{α ,α ,θ}arefermionicghostssatisfying α α 1 2 δ (1) ψ (z)ψ∗(w)∼ α,β , ψ (z)ψ (w)∼ψ∗(z)ψ (∗w)∼0, α β z−w α β α β Φ (z), Φ (z) are bosonic ghosts satisfying 1 2 1 Φ (z)Φ (w)∼ , Φ (z)Φ (w)∼0, 1 2 i i z−w and the BRST differential is the zero mode of the field Q(z)= e (z)ψ∗(w)−:ψ∗ (z)ψ∗ (z)ψ (z): α α α1 α2 θ α∈{αX1,α2,θ} +Φ (z)ψ∗ (z)+Φ (z)ψ (z)+ψ (z), 1 α1 2 α2 θ Let O be the category O of g at level k, L the irreducible representation of g k λ with highest weight λ. Let Wk-Mod be the category of Wk-modules. Theorem 3.0.9 ([Ara05]). b(i) The functor H∞2+0(?) : O → Wk-Mod ibs fθ k exact. (ii) For L ∈O we have H∞2+0(L )=0 if and only if λ(α∨)∈{0,1,2,...}. λ k fθ λ 0 Otherwise H∞2+0(L ) is irreducible. fθ λ Let Admk be the set of admissible weights [KW89] of g of level k, and put Admk ={λ∈Admk;λ¯ is an integral dominant weight of g}, + b where h∗ ∋λ7→λ¯ ∈h∗ is the restriction. Then Admk ={µ¯+kΛ ;µ∈Pp−3}, b + 0 ++ where Pp−3 is the set of integral dominant weights of g of level p−3. Explicitly, ++ b we have b Admk ={λ ;1≤i≤p−2, 1≤j ≤bp−i−1}, + i,j where λ =(i−1)Λ¯ +(p−i−j−1)Λ¯ +kΛ . i,j 1 2 0 Note that (λ |λ +2ρ¯) (2) ξ =(λ |−Λ¯ +Λ¯ ), χ = i,j i,j −(λ |Λ¯ ), i,j i,j 1 2 i,j i,j 2 2(k+3) where ρ¯=Λ¯ +Λ¯ . 1 2 Recall the following result of Malikov and Frenkel [MF99]. 6 TOMOYUKIARAKAWA Theorem 3.0.10 ([MF99]). For λ∈Admk, L is a module over L . + λ kΛ0 Proposition 3.0.11. For λ ∈Admk, H∞2+0(L ) is a simple W -module iso- i,j + fθ λi,j k morphic to L(ξ ,χ ). i,j i,j Proof. By Theorem 3.0.9 we have W ∼=H∞2+0(L ). Hence by the functoriality k fθ kΛ0 ofH∞2+0(?),Theorem3.0.10immediatelygivesthatH∞2+0(L )isaW -module. fθ fθ λi,j k This module is (nonzero and) irreducible by Theorem 3.0.9. Let v be the image ∞+0 of the highest weight vector of L in H 2 (L ). By (2) and the fact [KW04] λi,j fθ λi,j that the image of L(z) in Wk is cohomologous to Lg(z)+Lch(z)+LΦ(z)+∂JΛ¯2(z), where L (z) is the Sugawara operator of g, L (z)=− : φ (z)∂φ∗(z), g ch α=α1,α2,θ α α L (z)= 1(:Φ (z)∂Φ (z):−:∂Φ (z)Φ (z)),itisstraightforwardtocheckthatthe Φ 2 2 1 1 2 P assignment|ξ ,χ i7→vgivesaWk-modulehomomorphism. Bytheirreducibility, i,j i,j this must be an isomorphism. (cid:3) By Propositions 2.0.7 and 3.0.11, {H∞2+0(L );λ ∈ Admk} gives the complete set of isomorphism classes of simple Wf-θmodulλes. Therefor+e Main Theorem now k followsimmediatelyfromthefollowingimportantresultofGorelikandKac[GK09]. Theorem 3.0.12 ([GK09, Corollary 8.8.9]). For any λ,µ∈Admk, we have Ext1Wk-Mod(Hf∞2θ+0(Lλ),Hf∞2θ+0(Lµ))=0. . References [Ara05] Tomoyuki Arakawa. Representation theory of superconformal algebras and the Kac- Roan-Wakimotoconjecture.Duke Math. J.,Vol.130,No.3,pp.435–478, 2005. [Ara10a] T. Arakawa. A remark on the C2-cofiniteness condition on vertex algebras. ArXiv e- prints,April2010. [Ara10b] T. Arakawa. Associated varieties of modules over Kac-Moody algebras and C2- cofiniteness ofW-algebras.ArXiv e-prints,April2010. [Ber91] MichaelBershadsky.ConformalfieldtheoriesviaHamiltonianreduction.Comm. Math. Phys.,Vol.139,No.1,pp.71–82, 1991. [GK09] M.Gorelik and V.Kac. Oncomplete reducibility forinfinite-dimensional Liealgebras. ArXiv e-prints,May2009. [Hua08] Yi-Zhi Huang. Vertex operator algebras and the Verlinde conjecture. Commun. Con- temp. Math.,Vol.10,No.1,pp.103–154, 2008. [KRW03] Victor Kac, Shi-Shyr Roan, and Minoru Wakimoto. Quantum reduction for affine su- peralgebras.Comm. Math. Phys.,Vol.241,No.2-3,pp.307–342, 2003. [KW89] V.G.KacandM.Wakimoto.Classificationofmodularinvariantrepresentationsofaffine algebras. In Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Vol.7ofAdv. Ser. Math. Phys.,pp.138–177. WorldSci.Publ.,Teaneck, NJ,1989. [KW04] VictorG.KacandMinoruWakimoto.Quantumreductionandrepresentationtheoryof superconformalalgebras.Adv. Math.,Vol.185,No.2,pp.400–458, 2004. [KW08] VictorG.KacandMinoruWakimoto.OnrationalityofW-algebras.Transform.Groups, Vol.13,No.3-4,pp.671–713, 2008. [Li97] Haisheng Li. The physics superselection principleinvertex operator algebra theory. J. Algebra,Vol.196,No.2,pp.436–457, 1997. [MF99] F.G. MalikovandI. B. Frenkel′.Annihilatingideals and tiltingfunctors.Funktsional. Anal. i Prilozhen.,Vol.33,No.2,pp.31–42, 95,1999. RATIONALITY OF W-ALGEBRAS, I: BERSHADSKY-POLYAKOV VERTEX ALGEBRAS 7 [Pol90] A.M.Polyakov.Gaugetransformationsanddiffeomorphisms.Internat.J.ModernPhys. A,Vol.5,No.5,pp.833–842, 1990. [Smi90] S.P.Smith.Aclassofalgebrassimilartotheenvelopingalgebraofsl(2).Trans. Amer. Math. Soc.,Vol.322,No.1,pp.285–314, 1990. [Zhu96] YongchangZhu.Modularinvarianceofcharactersofvertexoperatoralgebras.J.Amer. Math. Soc.,Vol.9,No.1,pp.237–302, 1996. Departmentof Mathematics,Nara Women’s University,Nara 630-8506,JAPAN E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.