ebook img

Rational points and arithmetic of fundamental groups : evidence for the section conjecture PDF

253 Pages·2013·1.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rational points and arithmetic of fundamental groups : evidence for the section conjecture

Lecture Notes in Mathematics 2054 Editors: J.-M.Morel,Cachan B.Teissier,Paris Forfurthervolumes: http://www.springer.com/series/304 • Jakob Stix Rational Points and Arithmetic of Fundamental Groups Evidence for the Section Conjecture 123 JakobStix MathematicsCenterHeidelberg(MATCH) UniversityofHeidelberg Heidelberg,Germany ISBN978-3-642-30673-0 ISBN978-3-642-30674-7(eBook) DOI10.1007/978-3-642-30674-7 SpringerHeidelbergNewYorkDordrechtLondon LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 LibraryofCongressControlNumber:2012945519 MathematicsSubjectClassification(2010):14H30,14G05,14H25,11G20,14G32,14F35 (cid:2)c Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Antonia,Jadenand Lucie andtoSabine • Preface The section conjecture,as stated by Grothendieck[Gr83] in a letter to Faltings in 1983,speculatesaboutarepresentationofrationalpointsintherealmofanabelian geometry.Every k-rational point of a geometrically connected variety X=k gives risetoaconjugacyclassofsections s W(cid:2) .Spec.k//!(cid:2) .X/ 1 1 ofthe naturalprojection(cid:2) .X/ ! (cid:2) .Spec.k// ofe´tale fundamentalgroups.The 1 1 section conjecture suggests that the converse also holds for smooth, projective curvesofgenusatleast2overfieldskthatarefinitelygeneratedoverQ. If the section conjecture turns out to be true, then it would shed new Galois theoreticlightontheoldDiophantineproblemofdescribingrationalpoints. This volume of Lecture Notes consists of the author’s Habilitationsschrift and aimstodevelopthefoundationsoftheanabeliangeometryofsectionsandtopresent ourknowledgeaboutthesectionconjecturewithanaturalbiastowardstheworkof theauthor.Inaddition,wediscussthesectionconjectureovernumberfieldsfroma localtoaglobalpointofviewandprovidedetaileddiscussionsofvariousanalogues ofthesectionconjecture,whichmightserveassupportingevidenceinfavourofthe conjecture. Acknowledgments Asthispresentbookbuildsonseveralyearsofwork,itisquitenaturalthatoverthis periodI have been influencedby many people and institutionsand owe to them a certaindebtofgratitudethatIwillnowtrytobalance. I have worked at several places: the Mathematische Institut Bonn, the Institute forAdvancedStudyinPrincetonfortheacademicyear2006/2007,theUniversityof PennsylvaniainPhiladelphiain2007/2008,theIsaacNewtonInstituteinCambridge during the summer of 2009, and most recently at the Mathematisches Institut Heidelberg and in particular the MAThematics Center Heidelberg (MATCH). vii viii Preface I thank all these institutes, particularly the people there, I thank for the excellent working conditions and the supportive environment that they provided, for the coffeeandforthediscussionsonmathematics,life,theuniverse,andalltherest. IamgratefultoFlorianPopforhisongoinginterestinmywork,forthenumerous discussions, and for becoming, beyond an academic teacher, a collaborator and friend.I thankHiroakiNakamuraand Akio Tamagawaformy severalstimulating visits to Okayama and Kyoto. To Kirsten Wickelgren and Gereon Quick, I owe thanks for the enlightening discussions on the point of view of homotopy fixed points towards the section conjecture. My thanks also go to Jochen Ga¨rtner for the discussions on Galois groups of number fields with restricted ramification. I thank David Harari for the pleasant collaboration on the descent obstruction, and I am grateful to He´le`ne Esnault and Olivier Wittenberg for the wonderful, stimulating, and very intense meetings in Essen, Paris, and Heidelberg, and also fortheirenthusiasticapproachtowardsmathematics. Thereare certainlyaspectsofthe sectionconjecturebeyondwhatis coveredin thisbook,andalso someaspectsthatwere originallyintendedto beincluded.But then,amongotherthings,AntoniaandJadenwouldnotsleepintheirbelovedbunk bed.So, bykeepingme busyotherwise,my kidsearnedthe honourof forcingme to focuson finding an end pointfor this piece of work.I am thankfulto Antonia, Jaden,andLucieforthejoy thattheyareandgiveeveryday,andforbringingme coffeeandbreakfastwhilethesefinallineswerebeingwritteninJanuary2011. Tomyparents,GiselaandMichaelStix,Iamextremelygratefulforbeingthere wheneverahelpinghandwasneeded. Writing my Habilitationsschrift as a culmination of research conducted over several years while being part of a growing family would have been simply impossiblewithoutthewarm,enthusiastic,andinexhaustiblesupportofmybeloved wife,Sabine.Ithankherfromthebottomofmyheartwithwholeheartedloveand admiration,althoughthere are no wordsthat capture the uncountablegratefulness shedeserves. Heidelberg,Germany JakobStix Contents PartI FoundationsofSections 1 ContinuousNon-abelianH1withProfiniteCoefficients................ 3 1.1 Torsors,SectionsandNon-abelianH1 .............................. 3 1.2 Twisting,DifferencesandComparison.............................. 4 1.3 LongExactCohomologySequence................................. 7 1.4 Non-abelianHochschild–SerreSpectralSequence................. 9 2 TheFundamentalGroupoid............................................... 13 2.1 FibreFunctorsandPathSpaces ..................................... 13 2.2 TheFundamentalGroupoid.......................................... 14 2.3 TheFundamentalGroupoidintheRelativeCase................... 16 2.4 GaloisInvariantBasePoints......................................... 18 2.5 AbstractSections..................................................... 20 2.6 HomotopyFixedPointsandtheSectionConjecture ............... 21 3 BasicGeometricOperationsinTermsofSections...................... 25 3.1 FunctorialityintheSpaceandAbelianization...................... 25 3.2 BaseChange.......................................................... 26 3.3 CentralisersandGaloisDescentforSections....................... 27 3.4 FibresAboveSections ............................................... 28 3.5 WeilRestrictionofScalarsandSections............................ 34 4 TheSpaceofSectionsasaTopologicalSpace ........................... 37 4.1 SectionsandClosedSubgroups ..................................... 37 4.2 TopologyontheSpaceofSections.................................. 39 4.3 LimitsofSections.................................................... 40 4.4 TheDecompositionTowerofaSection............................. 42 5 EvaluationofUnits......................................................... 45 5.1 KummerTheorywithFiniteCoefficients........................... 45 5.2 KummerTheorywithProfiniteCoefficients........................ 47 ix

Description:
The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, it
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.