Rational Catalan Combinatorics 2 Drew Armstrong et al. UniversityofMiami www.math.miami.edu/∼armstrong June 19, 2012 This talk will further advertise a definition. Here is it. Definition Let 0<a<b be coprime and consider x =a/(b−a)∈Q. Then we define the Catalan number (cid:18) (cid:19) 1 a+b (a+b−1)! Cat(x):= = . a+b a,b a!b! ! Please note the a,b-symmetry. This talk will further advertise a definition. Here is it. Definition Let 0<a<b be coprime and consider x =a/(b−a)∈Q. Then we define the Catalan number (cid:18) (cid:19) 1 a+b (a+b−1)! Cat(x):= = . a+b a,b a!b! ! Please note the a,b-symmetry. This talk will further advertise a definition. Here is it. Definition Let 0<a<b be coprime and consider x =a/(b−a)∈Q. Then we define the Catalan number (cid:18) (cid:19) 1 a+b (a+b−1)! Cat(x):= = . a+b a,b a!b! ! Please note the a,b-symmetry. Special cases. When b = 1 mod a... (cid:73) Eug`ene Charles Catalan (1814-1894) (a<b)=(n<n+1) gives the good old Catalan number (cid:16)n(cid:17) 1 (cid:18)2n+1(cid:19) Cat(n)=Cat = . 1 2n+1 n (cid:73) Nicolaus Fuss (1755-1826) (a<b)=(n<kn+1) gives the Fuss-Catalan number (cid:18) (cid:19) (cid:18) (cid:19) n 1 (k +1)n+1 Cat = . (kn+1)−n (k +1)n+1 n Special cases. When b = 1 mod a... (cid:73) Eug`ene Charles Catalan (1814-1894) (a<b)=(n<n+1) gives the good old Catalan number (cid:16)n(cid:17) 1 (cid:18)2n+1(cid:19) Cat(n)=Cat = . 1 2n+1 n (cid:73) Nicolaus Fuss (1755-1826) (a<b)=(n<kn+1) gives the Fuss-Catalan number (cid:18) (cid:19) (cid:18) (cid:19) n 1 (k +1)n+1 Cat = . (kn+1)−n (k +1)n+1 n Special cases. When b = 1 mod a... (cid:73) Eug`ene Charles Catalan (1814-1894) (a<b)=(n<n+1) gives the good old Catalan number (cid:16)n(cid:17) 1 (cid:18)2n+1(cid:19) Cat(n)=Cat = . 1 2n+1 n (cid:73) Nicolaus Fuss (1755-1826) (a<b)=(n<kn+1) gives the Fuss-Catalan number (cid:18) (cid:19) (cid:18) (cid:19) n 1 (k +1)n+1 Cat = . (kn+1)−n (k +1)n+1 n Euclidean Algorithm & Symmetry. Definition Again let x =a/(b−a) for 0<a<b coprime. Then we define the derived Catalan number (cid:18) (cid:19) (cid:40) 1 b Cat(1/(x −1)) if x >1 Cat(cid:48)(x):= = b a Cat(x/(1−x)) if x <1 This is a “categorification” of the Euclidean algorithm. Remark If we define Cat:Q\[−1,0]→N by Cat(−x −1):=Cat(x) then the formula is simpler: Cat(cid:48)(x)=Cat(1/(x −1))=Cat(x/(1−x)). Euclidean Algorithm & Symmetry. Definition Again let x =a/(b−a) for 0<a<b coprime. Then we define the derived Catalan number (cid:18) (cid:19) (cid:40) 1 b Cat(1/(x −1)) if x >1 Cat(cid:48)(x):= = b a Cat(x/(1−x)) if x <1 This is a “categorification” of the Euclidean algorithm. Remark If we define Cat:Q\[−1,0]→N by Cat(−x −1):=Cat(x) then the formula is simpler: Cat(cid:48)(x)=Cat(1/(x −1))=Cat(x/(1−x)). Euclidean Algorithm & Symmetry. Definition Again let x =a/(b−a) for 0<a<b coprime. Then we define the derived Catalan number (cid:18) (cid:19) (cid:40) 1 b Cat(1/(x −1)) if x >1 Cat(cid:48)(x):= = b a Cat(x/(1−x)) if x <1 This is a “categorification” of the Euclidean algorithm. Remark If we define Cat:Q\[−1,0]→N by Cat(−x −1):=Cat(x) then the formula is simpler: Cat(cid:48)(x)=Cat(1/(x −1))=Cat(x/(1−x)).
Description: