ebook img

Raport de Activitate pe anul 2017 Cit˘ari PDF

144 Pages·2017·0.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Raport de Activitate pe anul 2017 Cit˘ari

Raport de Activitate pe anul 2017 Cita˘ri Institutul de Matematica “Simion Stoilow” al Academiei Romˆane Contents 1 Cit˘ari ap˘aruteˆın 2016 ¸si necon¸tinuteˆın Raportul pe 2016 1 2 Cit˘ari ap˘aruteˆın 2017 26 1 Cit˘ari ap˘arute ˆın 2016 ¸si necon¸tinute ˆın Raportul pe 2016 1. Lai, C.-J., Bounding volumes of singular Fano threefolds, Nagoya Math. J. 224(1) (2016), pag. 37 – 73; Citeaza: Ambro F., On the classification of toric singularities, in Combinatorial Aspects of Commutative Algebra, Contemporary Mathematics 502 , AMS (2009), pag. 1 – 3 2. Altmann, K.; Koll´ar, J., The dualizing sheaf on first-order deformations of toric surface singu- larities, Crelles Journal Published Online: 2016-11-08 , DOI: https://doi.org/10.1515/crelle- 2016-0063; Citeaza: Ambro F., Quasi-log varieties, Proc. Steklov Inst. Math. Vol 240 (1) (2003), pag. 214 – 233 3. Fujino, O., Koll´ar-type effective freeness for quasi-log canonical pairs, International Journal of Mathematics 27(14) (2016), 10.1142/S0129167X16501147; Citeaza: Ambro F., Quasi-log varieties, Proc. Steklov Inst. Math. Vol 240 (1) (2003), pag. 214 – 233 4. Hashizume, K., Remarks on the abundance conjecture, Proc. Japan Academy, Series A, Math. Sciences 92 (9) (2016), pag. 101 – 106; Citeaza: Ambro F., Quasi-log varieties, Proc. Steklov Inst. Math. Vol 240 (1) (2003), pag. 214 – 233 5. Lehn, C.; Pacienza, G., Deformations of singular symplectic varieties and termination of the log minimal model program Algebraic Geometry 3(4) (2016), pag. 392 – 406 Citeaza: Ambro F., On minimal log discrepancies, Math. Res. Lett. Vol 6 (5-6) (1999), pag. 573 – 580 6. De Stefani, A.; Nunez-Betancourt, L; F-thresholds of traded rings, Nagoya Math. J., https://doi.org/10.1017/nmj.2016.65 Published online: 07 December 2016; Citeaza: Ambro F., Ladders on Fano varieties, J. Math. Sci. (New York) Vol 94 (1) (1999), pag. 1126 – 1135 7. C. Bertone, F. Cioffi, M. Guida, M. Roggero, The scheme of liftings and applications Journal of Pure and Applied Algebra, (2016) Citeaza: Constantinescu A., Parametrizations of Ideals of k[x, y] and k[x, y, z] Journal of Algebra vol. 346, issue 1, pp. 1–30, (2011) 8. A. Abedelfatah, Hilbert functions of monomial ideals containing a regular sequence - Israel Journal of Mathematics, (2016) Citeaza: Caviglia G., Constantinescu A., Varbaro M., Note on a conjecture by Kalai Israel Journal of Mathematics, 0021–2172, pp. 1–7, (2014) 9. Piedra de la Quadra, Ramon, Introducti´on a la teoria de valoraciones, idUS (2016), pag. 1–57, Citeaz˘a: N.C. Bonciocat, Sch¨onemann-Eisenstein-Dumas-type irreducibility conditions that use arbitrarily many prime numbers, Comm. Algebra 43 (8) (2015), pag. 3102–3122. 10. M. Bliznac, A. Filipin, An upper bound for the number of Diophantine quintuples, Bull. Aust. Math. Soc. 94 (2016), 384–394 Citeaz˘a: M. Cipu, Further remarks on Diophantine quintuples, Acta Arith. 168 (2015), 201–219. 11. Justin Charles Keller, Generalized supercharacter theories and Schur rings for Hopf algebras, Ph. D Thesis, University of Colorado at Boulder (2016), search.proquest.com, 1 Citeaza: S. Burciu, Categorical Hopf kernels and representations of semisimple Hopf algebras, Journal of Algebra 337 (2011), pag. 253–260. 12. Jingcheng Dong and Li Dai, Existence of Tannakian Subcategories and its applications, Com- munications in Algebra, volum 44 no. 4 (2016), pag. 1767–1782 Citeaza: S. Burciu and S. Natale, Fusion rules of equivariantizations of fusion categories, Jour- nal of Mathematical Physics 54 (2013), pag. 013511. 13. M.Keilberg,P.Schauenburg,OntensorfactorizationsofHopfalgebras, AlgebraandNumber Theory, Vol. 10 No. 1 (2016), pag. 61–87 Citeaza: S. Burciu, On the factorization problem and complements for Hopf algebras, Central European Journal of Mathematics 9 (2011), pag. 905–914 14. E. K. Cetinalp, E. G. Karpuz, F. Ates, A. S. Cevik, Two-Sided Crossed Products of Groups, Filomat 30 (2016), pag. 1005–1012 Citeaza: A.L.Agore, G.Militaru, Crossed product of groups. Applications, Arab. J. Sci. Eng. (33) (2008), pag. 1–18. 15. E. K. Cetinalp, E. G. Karpuz, F. Ates, A. S. Cevik, Two-Sided Crossed Products of Groups, Filomat 30 (2016), pag. 1005–1012 Citeaza: A.L. Agore, D. Fratila, Crossed product of cyclic groups, Czechoslovak Math. J. (60) (2010), pag. 889–901. 16. V. Gebhardt, S. Tawn, Zappa-Szep products of Garside monoids, Math. Zeit. 282 (2016), pag. 341–369 Citeaza: A.L. Agore, A. Chirvasitu, B. Ion, G. Militaru Bicrossed products for finite groups, Algebr. Represent. Theory (12) (2009), pag. 481–488. 17. A. Ardizzoni, C. Menini, Milnor-Moore Categories and Monadic Decomposition, J. Algebra (448) (2016), pag. 488–563. Citeaza: A.L. Agore, Categorical constructions for Hopf algebras, Comm. Algebra (39) (2011), pag. 1476–1481. 18. A.H. Abdulwahid, M.C. Iovanov, Generators for comonoids and universal constructions, Arch. Mathematik (106) (2016), pag. 21–33 Citeaza: A.L. Agore, Categorical constructions for Hopf algebras, Comm. Algebra (39) (2011), pag. 1476–1481. 19. H.Sore,TheDold-Kancorrespondenceandcoalgebrastructures,J.HomotopyRelat. Struct. (11) (2016), pag. 67–96 Citeaza: A.L. Agore, Limits of coalgebras, bialgebras and Hopf algebras, Proc. Amer. Math. Soc. (139) (2011), pag. 855–863. 20. G.C. Drummond-Cole, J. Hirsh, Model structures for coalgebras, Proc Amer. Math. Soc. (144) (2016), pag. 1467–1481. Citeaza: A.L. Agore, Limits of coalgebras, bialgebras and Hopf algebras, Proc. Amer. Math. Soc. (139) (2011), pag. 855–863. 21. A.H. Abdulwahid, M.C. Iovanov, Generators for comonoids and universal constructions, Arch. Mathematik (106) (2016), pag. 21–33. Citeaza: A.L. Agore, Limits of coalgebras, bialgebras and Hopf algebras, Proc. Amer. Math. Soc. (139) (2011), pag. 855–863. 2 22. C. Walton, X. Wang, On quantum groups associated to non-Noetherian regular algebras of dimension 2, Math. Zeit. (284) (2016), pag. 543–574. Citeaza: A.L. Agore, Limits of coalgebras, bialgebras and Hopf algebras, Proc. Amer. Math. Soc. (139) (2011), pag. 855–863. 23. V. Gebhardt, S. Tawn, Zappa-Szep products of Garside monoids, Math. Zeit. (282) (2016), pag. 341–369. Citeaza: A.L. Agore, G. Militaru, Extending structures II: The quantum version, J. Algebra (336) (2011), pag. 321–341. 24. L. Zhang, R. Niu, Maschke-type theorem for partial smash products, Int. Electron. J. Algebra (19) (2016), pag. 49–57. Citeaza: A.L. Agore, G. Militaru, Extending structures II: The quantum version, J. Algebra (336) (2011), pag. 321–341. 25. J.M. Fernandez Vilaboa, R. Gonzalez Rodriguez, A.B. Rodrguez Raposo, Equivalences for weak crossed products, Comm. Algebra (44) (2016), pag. 4519–4545 Citeaza: A.L. Agore, G. Militaru, Unified products and split extensions of Hopf algebras, Con- temporary Math. AMS (585) (2013), pag. 1–15. 26. Q.-G. Chen, D.-G. Wang, A class of coquasitriangular Hopf group algebras, Comm Algebra (44) (2016), pag. 310–335. Citeaza: A.L. Agore, Crossed product of Hopf algebras, Comm. Algebra (40) (2013), pag. 2519 – 2542. 27. Q.-G. Chen, D.-G. Wang, A class of coquasitriangular Hopf group algebras, Comm Algebra (44) (2016), pag. 310–335. Citeaza: A.L. Agore, Coquasitriangular structures for extensions of Hopf algebras. Applications, Glasgow Math. J. (55) (2013), pag. 201 – 215. 28. Q.-G. Chen, D.G. Wang, A Duality Theorem for L-R Crossed Product, Filomat (30) (2016), pag. 1305–1313. Citeaza: A.L. Agore, Coquasitriangular structures for extensions of Hopf algebras. Applications, Glasgow Math. J. (55) (2013), pag. 201 – 215. 29. M.Keilberg,P.Schauenburg,OntensorfactorizationsofHopfalgebras,Algebra and Number Theory (10) (2016), pag. 61–87. Citeaza: A.L. Agore, G. Bontea, G. Militaru, Classifying bicrossed products of Hopf algebras, Algebr. Represent. Theory (17) (2014), pag. 227–264. 30. R. Hermann, Monoidal categories and the Gerstenhaber bracket in Hochschild cohomology, Memoirs Amer. Math. Soc. (243) (2016). Citeaza: A.L.Agore,S.Caenepeel,G.Militaru,Braidingsonthecategoryofbimodules, Azumaya algebras and epimorphisms of rings, Appl. Cat. Structures (22) (2014), pag. 29–42. 31. R. Hermann, Exact sequences, Hochschild cohomology, and the Lie module structure over the M-relative center, J. Algebra (454) (2016), pag. 29–69. Citeaza: A.L.Agore,S.Caenepeel,G.Militaru,Braidingsonthecategoryofbimodules, Azumaya algebras and epimorphisms of rings, Appl. Cat. Structures (22) (2014), pag. 29–42. 32. D.A. Towers, On n-maximal subalgebras of Lie algebras, Proc Amer. Math. Soc. (144) (2016), pag. 1457–1466. Citeaza: A.L. Agore, G. Militaru, Extending structures for Lie algebras, Monatsh. fu¨r Math- ematik (174) (2014), pag. 169–193. 3 33. J.A. Carrilloa,Young-Pil Choi, Ewelina Zatorska textbookOn the pressureless damped Euler- Poisson equations with quadratic confinement: Critical thresholds and large-time behavior Math. Models Methods Appl. Sci. 26, 2311 (2016), Citeaza: Ionel Popescu, Mass Transportation Proofs of Free Functional Inequalities, and Free Poincar Inequalities, Journal of Functional Analysis volume 257 (2009), no. 4, 1175-1221, 34. I. Demir, K.C. Misra, E. Stitzinger, Classification of some Solvable Leibniz Algebras, Algebr. Repr. Theory (19) (2016), pag. 405–417. Citeaza: A.L. Agore, G. Militaru, Itˆo’s theorem and metabelian Leibniz algebras, Linear Mul- tilinear Algebra (63) (2015), pag. 2187–2199. 35. U.B. Sharma, Asymptotic of Number of Similarity Classes of Commuting Tuples, J. Ramanu- jan Math. Soc. (31) (2016), pag. 385–397. Citeaza: A.L.Agore, The maximal dimension of unital subalgebras of the matrix algebra, Forum Math. (29) (2017), pag. 1–5. 36. D. Hassanzadeh-Lelekaami, H. Roshan-Shekalgouarabi, On the generalized local cohomology of minimax modules, Journal of Algebra and its Applications, Volume 15, (8), (2016). Citeaza: G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc., 32, (2000), pag. 1-7. 37. Seyed Fakhari, Depth, Stanley depth, and regularity of ideals associated to graphs, Arch. Math. (Basel) 107 no.5 (2016), pag. 461 – 471 Citeaza: Mircea Cimpoea¸s, Stanley depth of monomial ideals with small number of generators, Cent. Eur. J. Math. 7 no.4 (2009), pag. 629 – 634 38. Daniel Campos, Ryan Gunderson, Susan Morey, Chelsey Paulsen, Thomas Polstra, Depths and Stanley depths of path ideals of spines, Involve 9 no.1 (2016), pag. 155 – 170 Citeaza: Mircea Cimpoea¸s, Stanley depth of monomial ideals with small number of generators, Cent. Eur. J. Math. 7 no.4 (2009), pag. 629 – 634 39. Seyed Fakhari, Depth, Stanley depth, and regularity of ideals associated to graphs, Arch. Math. (Basel) 107 no.5 (2016), pag. 461 – 471 Citeaza: MirceaCimpoea¸s,SeveralinequalitiesregardingStanleydepth,Rom. J. Math. Com- put. Sci. 2, no.1 (2012), pag. 28 – 40 40. Gyu Whan Chang, WHEN THE NAGATA RING D(X) IS A SHARP DOMAIN, Korean J. Math. 24 (2016), pag. 537 – 543 Citeaza: Z. Ahmad, T. Dumitrescu, M. Epure, A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roumanie Tome 55(103) (2012), pag. 241 – 247 41. Ahmad Yousefian Darani, Mahdi Rahmatinia, On L-sharp rings, Commun. Korean Math. Soc. 31 (2016), pag. 237 – 246 Citeaza: Z. Ahmad, T. Dumitrescu, M. Epure, A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roumanie Tome 55(103) (2012), pag. 241 – 247 42. Gyu Whan Chang, WHEN THE NAGATA RING D(X) IS A SHARP DOMAIN, Korean J. Math. 24 (2016), pag. 537 – 543 Citeaza: Z. Ahmad, T. Dumitrescu, M. Epure, A Schreier domain type condition II, Algebra Colloq. 22, Issue spec01 (2015), pag. 923 – 934 43. M. Tabaˆa, Sur le produit tensoriel d’alg`ebres, Math. Scand. 119 (2016), pag. 5 – 13 Citeaza: Cristodor Ionescu, More properties of almost Cohen-Macaulay rings, J. Commut. Algebra 7 (2015), pag. 363 – 372 4 44. D.-G. Wang, J.J. Zhang, G. Zhuang, Primitive cohomology of Hopf algebras, J. Algebra 464 (2016), pag. 36–96 Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Co., Amsterdam, New York (1982) 45. D.F. Anderson, G.W. Chang, Graded integral domains whose nonzero homogeneous ideals are invertible, Int. J. Algebra Comput. 26 (2016), 1361 Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Co., Amsterdam, New York (1982) 46. P. Belmans, K. De Laet, L. Le Bruyn, The point variety of quantum polynomial rings, J. Algebra 463 (2016), pag. 10–22 Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Co., Amsterdam, New York (1982) 47. M. Hazewinkel, N. Gubareni, Algebras, Rings and Modules: Non-commutative Algebras and Rings, CRC Press (2016), 368 pag. Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Co., Amsterdam, New York (1982) 48. R. Hazrat, Graded Rings and Graded Grothendieck Groups, Cambridge University Press (2016), London Mathematical Society Lecture Note Series 435, 234 pag. Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Co., Amsterdam, New York (1982) 49. R. Hazrat, Graded Rings and Graded Grothendieck Groups, Cambridge University Press (2016), London Mathematical Society Lecture Note Series 435, 234 pag. Citeaz˘a: C. N˘ast˘asescu, B. Torrecillas, F. Van Oystaeyen, IBN for graded rings, Comm. Al- gebra 28 (2000), pag. 1351–1360 50. F.Arici,F.D’Andrea,G.Landi,PimsnerAlgebrasandCircleBundles. In: D.Alpay,F.Cipriani, F. Colombo, D. Guido, I. Sabadini, J.L. Sauvageot (eds.), Noncommutative Analysis, Operator Theory and Applications. Operator Theory: Advances and Applications, Vol. 252, Birk¨auser, Cham (2016) Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Co., Amsterdam, New York (1982) 51. M.C. Iovanov, Z. Mesyan, M.L. Reyes, Infinite-dimensional diagonalization and semisimplicity, Israel J. Math. 215 (2016), pag. 801–855 Citeaz˘a: S. D˘asc˘alescu, C. N˘ast˘asescu, S¸. Raianu, Hopf Algebras. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics 235, Marcel Dekker, Inc., New York (2001) 52. F. Gao, S. Yang, H-simple module algebras for eight-dimensional non-semisimple Hopf algebras, J. Algebra Appl. 15 (2016), no. 7 Citeaz˘a: S. D˘asc˘alescu, C. N˘ast˘asescu, S¸. Raianu, Hopf Algebras. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics 235, Marcel Dekker, Inc., New York (2001) 53. O. David, The center of the generic G-crossed product, J. Algebra 463 (2016), pag. 103–163 Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathe- matics 1836, Springer-Verlag, Berlin (2004) 54. D. Bogdanic, Existence of gradings on associative algebras, Comm. Algebra 44 (2016), pag. 3069–3076 5 Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathe- matics 1836, Springer-Verlag, Berlin (2004) 55. A.J.C. Mart´ın, D.M. Cheikh. In: C. Gueye, M. Molina (eds.), Non-Associative and Non- Commutative Algebra and Operator Theory. Springer Proceedings in Mathematics & Statistics, Vol. 160, Springer, Cham (2016) Citeaz˘a: C. N˘ast˘asescu, F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathe- matics 1836, Springer-Verlag, Berlin (2004) 56. T. Albu, M. Iosif, A. Tercan, The conditions (C ) in modular lattices and applications, J. Al- i gebra Appl. 15 (2016), No. 1 Citeaz˘a: T. Albu, C. N˘ast˘asescu, Relative Finiteness in Module Theory, Monographs and Text- books in Pure and Applied Mathematics 84, Marcel Dekker, Inc., New York, Basel (1984) 57. M Bousquet-M´elou, An elementary solution of Gessel’s walks in the quadrant, Advances in Mathematics, 303, (2016), 1171-1189 Citeaza: Dorin Popescu, General Neron desingularization and Approximation, Nagoya Math. J., 104 (1986), 85-115. 58. I A Panin, On Grothendieck-Serre’s conjecture concerning principal G-bundles over reductive group schemes: II, Izvestiya: Mathematics, 80;4, (2016), 759-790. Citeaza: Dorin Popescu, General Neron desingularization and Approximation, Nagoya Math. J., 104, (1986), 85-115. 59. ZTian,LZhang,WeakApproximationforCubicHypersurfacesandDegree4delPezzoSurfaces, International Mathematics Research Notices, 254, (2016), https://doi.org/10.1093/imrn/rnw254 Citeaza: Dorin Popescu, General Neron desingularization and Approximation, Nagoya Math. J., 104, (1986), 85-115. 60. Fanggui Wang, Hwankoo Kim, Foundations of Commutative Rings and Their Modules (2016) Springer Book Citeaza: Dorin Popescu, Polynomial rings and their projective modules, Nagoya Math. J.,113(1989), 121-128. 61. A Bahlekeh, E Hakimian, S Salarian, Annihilation of cohomology, generation of modules and finiteness of derived dimension, The Quarterly Journal of Mathematics, 67, (2016), 387- 404. Citeaza: D. Popescu, M. Roczen, Indecomposable Cohen-Macaulay modules and irreducible maps, Compositio Math. 76(1990), 277-294. 62. S A S Fakhari, Depth, Stanley depth, and regularity of ideals associated to graphs, Archiv der Mathematik, 107, (2016), 461-471. Citeaza: D. Popescu, Bounds of Stanley depth, An. St. Univ. Ovidius. Constanta, 19(2),(2011), 187-194. 63. A. Popescu, Signature Standard Bases over Principal Ideal Rings, Technische Universitt Kaiserslautern, 2016, Teza de doctorat, Citeaza: B. Ichim, A. Zarojanu, An algorithm for computing the multigraded Hilbert depth of a module, Experimental Mathematics 23 (2015) pag 322 – 331 6

Description:
Dhara, Sandip, Origin of Shifts in the Surface Plasmon Resonance .. L. Maxim, Intersection spaces, perverse sheaves and string theory, J. Singul. G. Popescu, HOLOMORPHIC AUTOMORPHISMS OF NONCOMMUTATIVE
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.