Raport de Activitate pe anul 2013 Cita˘ri Institutul de Matematica “Simion Stoilow” al Academiei Romˆane Contents 1 Cit˘ari ap˘aruteˆın 2012 ¸si necon¸tinuteˆın Raportul pe 2013 1 1.1 Cita˘ri ap˘aruteˆın reviste cotate ISI . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Autocitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.2 Cita˘ri ap˘aruteˆın alte publica¸tii . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.2.1 Autocitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.3 Cita˘ri ap˘aruteˆın ca˘r¸ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 Cit˘ari ap˘aruteˆın 2013 42 2.1 Citari apa˘ruteˆın reviste cotate ISI . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1.1 Autocitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 2.2 Citari apa˘ruteˆın alte publica¸tii . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 2.2.1 Autocitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 2.3 Cita˘ri aparuteˆın c˘ar¸ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 1 Cit˘ari ap˘arute ˆın 2012 ¸si necon¸tinute ˆın Raportul pe 2013 1.1 Cit˘ari ap˘arute ˆın reviste cotate ISI 1. Hu, Ze-Chun; Sun, We, Balayage of semi-Dirichlet forms, Canad. J. Math. 64 (2012), pag. 869–891, IF: 0,556 Citeaza: Beznea, L., Boboc, N, Potential Theory and Right Processes, Springer Series, Mathematics and Its Applications (572), Kluwer, Dordrecht, 2004. 2. V.Rovenski,P.G.Walczak,Integralformulaeonfoliatedsymmetricspaces,Math. Ann. 362, 1, (2012), 223 – 237 Citeaza: V. Brinzanescu, R. Slobodeanu, Holomorphicity and the Walczak formula on Sasakian manifolds, J. Geom. Phys. 57, 1, (2006), pag. 193 – 207 3. M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vector bundles over Kodaira surfaces, Adv. Math. 231, 3-4,(2012),1202 – 1215 Citeaza: V. Brinzanescu, Holomorphic vector bundles over compact complex surfaces, Lect. Notes in Math., vol 1624 Springer 1996, pag. 180 4. M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vector bundles over Kodaira surfaces, Adv. Math. 231, 3-4,(2012),1202 – 1215 Citeaza: V. Brinzanescu, R. Moraru, Holomorphic rank-2 vector bundles on non-Kaehler elliptic surfaces, Ann. Inst. Fourier (Grenoble) 55, 5, (2005), pag. 1659 – 1683 5. M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vector bundles over Kodaira surfaces, Adv. Math. 231, 3-4,(2012),1202 – 1215 Citeaza: V. Brinzanescu, R. Moraru, Twisted Fourier-Mukai transforms and bundles on non-Kaehler elliptic surfaces, Math. Res. Lett. 13, 4, (2006), pag. 501 – 514 6. M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vector bundles over Kodaira surfaces, Adv. Math. 231, 3-4,(2012),1202 – 1215 Citeaza: V. Brinzanescu, R. Moraru, Stable bundles on non-Kaehler elliptic surfaces, Comm. Math. Phys. 254, 3, (2005), pag. 565 – 580 7. I. Coanda, D. Faenzi, A refined stable restriction theorem for vector bundles on quadric threefolds, Annali Mat. Pura Appl. November (2012) Citeaza: V. Brinzanescu, Algebraic 2-vector bundles on ruled surfaces, Ann. Univ. Ferrara Sez. VII, Sci 37 (1991), pag. 55 – 64 8. Chen Qin, Zhou Wubin, Bochner-type formulas for transversally harmonic maps, Inter- nat. J. Math. 23, 3, (2012) Citeaza: V. Brinzanescu, R. Slobodeanu, Holomorphicity and the Walczak formula on Sasakian manifolds, J. Geom. Phys. 57, 1, (2006), pag. 193 – 207 9. A. Sterian, Stable ample 2-vector bundles on Hirzebruch surfaces, Bull. Math. Soc. Sci. Math. Roum. 55 (103), 3, (2012), 311 – 317 Citeaza: M. Aprodu, V. Brinzanescu, Existence of stable 2-vector bundles over ruled surfaces, revista lucrare citata 43, 1-2 (1998), pag. 47 – 56 1 10. A. Sterian, Stable ample 2-vector bundles on Hirzebruch surfaces, Bull. Math. Soc. Sci. Math. Roum. 55 (103), 3, (2012), 311 – 317 Citeaza: M. Aprodu, V. Brinzanescu, Fibres vectoriels de rang 2 sur les surfaces reglees, C.R. Acad. Sci. Paris 323, Serie I, (1996), pag. 627 – 630 11. A. Sterian, Stable ample 2-vector bundles on Hirzebruch surfaces, Bull. Math. Soc. Sci. Math. Roum. 55 (103), 3, (2012), 311 – 317 Citeaza: M. Aprodu, V. Brinzanescu, Moduli spaces of vector bundles over ruled surfaces, Nagoya Math. J. 154 (1999), pag. 111 – 122 12. A. Sterian, Stable ample 2-vector bundles on Hirzebruch surfaces, Bull. Math. Soc. Sci. Math. Roum. 55 (103), 3, (2012), 311 – 317 Citeaza: V. Brinzanescu, Algebraic 2-vector bundles on ruled surfaces, Ann. Univ. Ferrara Sez. VII, Sci 37 (1991), pag. 55 – 64 13. Cuenin, Jean-Claude, Block diagonalization of operators with gaps, with applications to Dirac operators, Reviews in Mathematical Physics Volume: 24 (2012), Article Number: 1250021 Citeaza: D.R. Grigore, G. Nenciu, R. Purice, On the non-relativistic limit of the Dirac hamiltonian, Annales de l’Institut Henri Poincare-Physique Theorique Volume: 51 (1989), pag. 231 – 263. 14. Pedersen, JesperGoor; Brynildsen, MikkelH.; Cornean, HoriaD.; etal., OpticalHallcon- ductivity in bulk and nanostructured graphene beyond the Dirac approximation, PHYS- ICAL REVIEW B Volume: 86 (2012), Article Number: 235438. Citeaza: Cornean, HD ; Nenciu, G ; Pedersen, TG, The Faraday effect revisited: Gen- eral theory, JOURNAL OF MATHEMATICAL PHYSICS Volume: 47 (2006), Article Number: 013511. 15. Briet, Philippe; Savoie, Baptiste, A rigorous approach to the magnetic response in disor- dered systems, REVIEWS IN MATHEMATICAL PHYSICS Volume: 24 (2012), Article Number: 1250022 Citeaza: Nenciu. G, On asymptotic perturbation theory for quantum mechanics: Almost invariant subspaces and gauge invariant magnetic perturbation theory, JOURNAL OF MATHEMATICAL PHYSICS Volume: 43 (2002), pag. 1273 – 1298. 16. Teufel, Stefan; Wachsmuth, Jakob, Spontaneous Decay of Resonant Energy Levels for MoleculeswithMovingNuclei,COMMUNICATIONSINMATHEMATICALPHYSICS Volume: 315 (2012), 699 – 738 Citeaza: G. Nenciu, Linear adiabatic theory-exponential estimates, COMMUNICA- TIONS IN MATHEMATICAL PHYSICS Volume: 152 (1993), pag. 479 – 496. 17. Elgart, Alexander; Hagedorn, George A., A note on the switching adiabatic theorem, JOURNAL OF MATHEMATICAL PHYSICS Volume: 53 (2012), Article Num- ber: 102202 Citeaza: G. Nenciu, Adiabatic theorem of quantum mechanics, JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL Volume: 13(1980), pag. L15-L18. 2 18. Elgart, Alexander; Hagedorn, George A., A note on the switching adiabatic theorem, JOURNAL OF MATHEMATICAL PHYSICS Volume: 53 (2012), Article Num- ber: 102202 Citeaza: G. Nenciu, Linear adiabatic theory-exponential estimates, COMMUNICA- TIONS IN MATHEMATICAL PHYSICS Volume: 152 (1993), pag. 479-496. 19. Mandal, Anirban; Hunt, Katharine L. C., Adiabatic and nonadiabatic contributions to the energy of a system subject to a time-dependent perturbation: Complete separation and physical interpretation, JOURNAL OF CHEMICAL PHYSICS Volume: 137 (2012), Article Number: 164109 Citeaza: G.Nenciu,Adiabatictheoremofquantummechanics,JOURNALOFPHYSICS A-MATHEMATICAL AND GENERAL Volume: 13 (1980), pag. L15-L18. 20. Leclerc, A.; Viennot, D.; Jolicard, G., The role of the geometric phases in adiabatic population tracking for non-Hermitian Hamiltonians, JOURNAL OF PHYSICS A- MATHEMATICAL AND THEORETICAL Volume: 45 (2012), Article Number: 415201 Citeaza: G.Nenciu,Adiabatictheoremofquantummechanics,JOURNALOFPHYSICS A-MATHEMATICAL AND GENERAL Volume: 13 (1980), pag. L15-L18. 21. Ortigoso, Juan, QuantumadiabatictheoreminlightoftheMarzlin-Sandersinconsistency, PHYSICAL REVIEW A Volume: 86 (2012), Article Number: 032121 Citeaza: G.Nenciu,Adiabatictheoremofquantummechanics,JOURNALOFPHYSICS A-MATHEMATICAL AND GENERAL Volume: 13 (1980), pag. L15-L18. 22. Briet, Philippe; Fernandez, Claudio, Exponential decay and resonances in a driven sys- tem, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Volume: 396 (2012) Citeaza: Jensen, A ; Nenciu, G, The Fermi Golden Rule and its form at thresholds in odd dimensions, COMMUNICATIONS IN MATHEMATICAL PHYSICS Volume: 261 (2006), pag. 693-727. 23. Marzari, Nicola; Mostfi, Arash A.; Yates, Jonathan R.; et al., Maximally localized Wan- nier functions: Theory and applications, REVIEWS OF MODERN PHYSICS Vol- ume: 84 (2012), 1419 – 1475 Citeaza: G. Nenciu, Dynamics of band electrons in electric and magnetic fields: rigor- ous justfication of the effective hamiltonians, REVIEWS OF MODERN PHYSICS Volume: 63 (1991), 91-128. 24. Marzari, Nicola; Mostfi, Arash A.; Yates, Jonathan R.; et al., Maximally localized Wan- nier functions: Theory and applications, REVIEWS OF MODERN PHYSICS Vol- ume: 84 (2012), 1419-1475 Citeaza: G. Nenciu, Existence of exponentially localized Wannier functions, COMMU- NICATIONS IN MATHEMATICAL PHYSICS 91, (1983), 81-85. 25. D.Ili´c, V.Pavlovi´c, V.Rako´cevi´c, ExtensionsoftheZamfirescutheoremtopartialmetric spaces, Math. and Comput. Modell. 55 (2012), 801 – 809 Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972), pag. 292 – 298 3 26. W. Sintunavarat, P. Kumam, Common fixed point theorem for hybrid generalized multi- valued contraction mappings, Appl. Math. Letters 25 (2012), 52 – 57 Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972), pag. 292 – 298 27. V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory and Appl. 2012 (2012), 1 – 8 Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972), pag. 292 – 298 28. W. Sintunavarat, P. Kumam, Common fixed point theorem for cyclic generalized multi- valued contraction mappings, Appl. Math. Letters 25 (2012), 1849 – 1855 Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972), pag. 292 – 298 29. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topol. Appl. 159 (2012), 2642 – 2648 Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972), pag. 292 – 298 30. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159 (2012), 267 – 275 Citeaza: T. Zamfirescu, Baire Categories in Convexity, Atti Sem. Mat. Fis. Univ. Modena, Universita di Modena XXXIX (1991), pag. 139 – 164 31. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159 (2012), 267 – 275 Citeaza: T. Zamfirescu, Curvature properties of typical convex surfaces, Pac. J. Math. 131 (1988), pag. 191 – 207 32. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159 (2012), 267 – 275 Citeaza: T. Zamfirescu, Nonexistence of curvature in most points, Math. Ann. 252 (1980), pag. 217 – 219 33. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159 (2012), 267 – 275 Citeaza: T. Zamfirescu, The curvature of most convex surfaces vanishes almost every- where, Math. Z. 174 (1980), pag. 135 – 139 34. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159 (2012), 267 – 275 Citeaza: T. Zamfirescu, The Majority in Convexity Editura Universit˘a¸tii din Bu- cure¸sti, 1st Volume (2009) 35. J. Itoh, C. Vˆılcu, Cut locus structures on graphs, Discrete Math. 312 (2012), 524 – 531 Citeaza: T. Zamfirescu, Many endpoints and few interior points of geodesics, Invent. Math. 69 (1982), pag. 253 – 257 1 4 36. J. Itoh, C. Vˆılcu, Cut locus structures on graphs, Discrete Math. 312 (2012), 524 – 531 Citeaza: T. Zamfirescu, On the cut locus in Alexandrov spaces and applications to convex surfaces, Pacific J. Math. 217 (2004), pag. 375 – 386 37. J. C. Andrade ¸si J. P. Keating, The mean value of L(1,χ) in the hyperelliptic ensemble, 2 J. Number Theory 132, no. 12 (2012), pag. 2793–2816, Citeaza: A. Bucur ¸si A. Diaconu, Moments of quadratic Dirichlet L–functions over ratio- nal function fields, Mosc. Math. J. 10 (2010), pag. 485–517, 661 38. J. B. Conrey, H. Iwaniec ¸si K. Soundararajan, The sixth power moment of Dirichlet L– functions, Geom. Funct. Anal. 22, no. 5 (2012), pag. 1257–1288, Citeaza: A. Diaconu, D. Goldfeld ¸si J. Hoffstein, Multiple Dirichlet series and moments of zeta and L–functions, Compos. Math. 139 (2003), pag. 297–360 39. M. Alderson ¸si M. O. Rubinstein, Conjectures and experiments concerning the moments of L(1/2,χ ), Exp. Math. 21, no. 3 (2012), pag. 307–328, d Citeaza: A. Diaconu, D. Goldfeld ¸si J. Hoffstein, Multiple Dirichlet series and moments of zeta and L–functions, Compos. Math. 139 (2003), pag. 297–360 40. M. Radziwilli, The 4.36th moment of the Riemann zeta-function, Int. Math. Res. Not., no. 18 (2012), pag. 4245–4259, Citeaza: A. Diaconu, D. Goldfeld ¸si J. Hoffstein, Multiple Dirichlet series and moments of zeta and L–functions, Compos. Math. 139 (2003), pag. 297–360. 41. V. Balan, G. Yu. Bogoslovsky, S.S. Kokarev, D.G. Pavlov, S.V. Siparov, N. Voicu, Geo- metrical Models of the Locally Anisotropic Space-Time, Journal of Modern Physics, 3 (2012), 1314 – 1335 Citeaza: O. P˘asa˘rescu, Curves on Irrational Scrolls, GAR (2009) 42. V. Balan, G. Yu. Bogoslovsky, S.S. Kokarev, D.G. Pavlov, S.V. Siparov, N. Voicu, Geo- metrical Models of the Locally Anisotropic Space-Time, Journal of Modern Physics, 3 (2012), 1314 – 1335 Citeaza: O. Pasarescu, Curves on Rational Surfaces with Hyperelliptic Hyperplane Sec- tions arXiv:1101.0577v1 (2011) 43. Florin Stan and Alexandru Zaharescu, The Siegel norm of algebraic numbers, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103) No.1 (2012), pag. 69–77 Citeaza: V. Pasol, A. Popescu, and N. Popescu, Spectral norms on valued fields,, Math. Zeit. 238, no 1, (2001), pag. 101 – 114 44. J. S. Athreya, J. Chaika , The Distribution of Gaps for Saddle Connection Directions, Geometric and Functional Analysis, December 2012, Volume 22, Issue 6, pp 1491- 1516 Citeaza: FP Boca, V Pasol, AA Popa, A Zaharescu, Pair correlation of angles between reciprocal geodesics on the modular surface, Algebra and Number Theory-to appear 45. H. Ma, Y. Jia, Input-output finite-time mean square stabilisation of stochastic systems with Markovian jump, International Journal of Systems Science 45 (2012), 325 – 336. 5 Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods in robust control of linear stochastic systems, Springer (2006), pag. 312, carte. 46. Z.Lin, J.Liu, Y. Niu, Dissipative control of non-linear stochastic systems with Poisson jumps and Markovian switchings, Control Theory and Application IET 6 (2012), 2367 – 2374. Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods in robust control of linear stochastic systems, Springer (2006), pag. 312, carte. 47. Mehrdad Tabarraie, Robust L -induced deconvolution filtering for linear stochastic sys- ∞ tems and its application to fault reconstruction, Signal processing 93 (2012), 1379 – 1391. Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods in robust control of linear stochastic systems, Springer (2006), pag. 312, carte. 48. H. Mukaidani, T. Yamamoto, Nash strategy for multiparameter singularly perturbed Markov jump stochastic systems, IET Control Theory and Applications 6 (2012), pag. 2337 – 2345. Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods in robust control of linear stochastic systems, Springer (2006), pag. 312, carte. 49. S.A.KH. Mozaffari Niapour M. Tabarraie M.R. Feyzi, Design and analysis of speed- sensorless robust stochastic L∞-induced observer for high-performance brushless DC mo- tor drives with diminished torque ripple, Energy Conversion and Management 64 (2012), pag. 482 – 498 Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods in robust control of linear stochastic systems, Springer (2006), pag. 312, carte. 50. H. Mukaidani, T. Yamamoto, Nash strategy for multiparameter singularly perturbed Markov jump stochastic systems, IET Control Theory and Applications 6, 14 (2012), pag. 2337 – 2345. Citeaza: Vasile Dra˘gan, Toader Morozan, The linear quadratic optimization problems for a class of linear stochastic systems with multiplicative white noise and Markovian jumping, IEEE Transactions on Automatic Control 49 (2004), pag. 665 – 675 51. J.Liu, J. Zhang, New Upper Matrix Bounds of the solution for perturbed continuous coupled algebraic Riccati matrix equatiuon, International Journal of control, Au- tomation and Systems 10 (2012), pag. 1254 – 1259. Citeaza: VasileDr˘agan, The linear quadratic optimization problem for a class of singularly perturbed stochastic systems, INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL 1 (2005), pag. 53 – 63 52. J.Zhang, J.Liu, LowersolutionboundsofthecontinuouscoupledalgebraicRiccatimatrix equation, International Journal of control, Automation and Systems 10 (2013), pag. 1273 – 1278. Citeaza: VasileDr˘agan, The linear quadratic optimization problem for a class of singularly perturbed stochastic systems, INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL 1 (2005), pag. 53 – 63 6
Description: