Rapidly Convergent Summation Formulas involving Stirling Series Raphael Schumacher MSc ETH Mathematics Switzerland 6 1 [email protected] 0 2 n a Abstract J 1 This paper presents a family of rapidly convergent summation formulas for various 3 finite sums of analytic functions. These summation formulas are obtained by applying ] a series acceleration transformation involving Stirling numbers of the first kind to the T asymptotic, but divergent, expressions for the corresponding sums coming from the N Euler-Maclaurin summation formula. While it is well-known that the expressions ob- . h tained from the Euler-Maclaurin summation formula diverge, our summation formulas t a are all very rapidly convergent and thus computationally efficient. m [ 1 Introduction 1 v 6 In this paper we will use asymptotic series representations for finite sums of various analytic 3 3 functions, coming from the Euler-Maclaurin summation formula [13, 17], to obtain rapidly 0 convergent series expansions for these finite sums involving Stirling series [1, 2]. The key tool 0 for doing this will be the so called Weniger transformation [1] found by J. Weniger, which . 2 transforms an inverse power series into a Stirling series. 0 6 For example, two of our three summation formulas for the sum n √k, where n N, look 1 k=0 ∈ like P : v Xi n √k = 2n32 + 1√n 1 ζ 3 +√n ∞ ( 1)k kl=1(−1)l2(2l(ll−+31))!!!Bl+1Sk(1)(l) r 3 2 − 4π (cid:18)2(cid:19) − P(n+1)(n+2) (n+k) a Xk=0 Xk=1 ··· 2 1 1 3 √n √n 53√n 3 = n2 + √n ζ + + + 3 2 − 4π (cid:18)2(cid:19) 24(n+1) 24(n+1)(n+2) 640(n+1)(n+2)(n+3) 79√n + +..., 320(n+1)(n+2)(n+3)(n+4) 1 or n √k = 2n32 + 1√n 1 ζ 3 + 1 + ∞ ( 1)k kl=1(−1)l2l(+21l−(l1+)2!!)!Bl+2Sk(1)(l) 3 2 − 4π (cid:18)2(cid:19) 24√n − P√n(n+1)(n+2) (n+k) Xk=0 Xk=1 ··· 2 1 1 3 1 1 1 3 = n2 + √n ζ + 3 2 − 4π (cid:18)2(cid:19) 24√n − 1920√n(n+1)(n+2) − 640√n(n+1)(n+2)(n+3) 259 115 ..., − 46080√n(n+1)(n+2)(n+3)(n+4) − 4608√n(n+1)(n+2)(n+3)(n+4)(n+5) − (1) where the Bl’s are the Bernoulli numbers and Sk (l) denotes the Stirling numbers of the first kind. All other formulas in this article have a similar shape. We have searched our resulting formulas in the literature and on the internet, but we could findonlythree ofthem; thereforewe believe that allothersarenew andour methodtoobtain them has not been recognized before. The first of these three previously known formulas is n ∞ 1 1 1 1 k! = ζ(2) + k2 − n n2 − k +1 · n(n+1)(n+2) (n+k) Xk=1 Xk=1 ··· 1 1 1 2 3 = ζ(2) + − n n2 − 2n(n+1) − 3n(n+1)(n+2) − 2n(n+1)(n+2)(n+3) 24 ... − 5n(n+1)(n+2)(n+3)(n+4) − and was already known to Stirling around 1730 [2]. This formula follows directly from the identity [2] ∞ ∞ 1 1 1 k! = + k2 n k +1 · n(n+1)(n+2) (n+k) Xk=n Xk=1 ··· 1 1 2 3 = + + + n 2n(n+1) 3n(n+1)(n+2) 2n(n+1)(n+2)(n+3) 24 + +.... 5n(n+1)(n+2)(n+3)(n+4) The second was obtained by Gregorio Fontana around 1780 [3, 4] and reads n 1 = log(n)+γ + 1 ∞ (−k+1)1k kl=+01 l+11Sk(1+)1(l) k 2n − n(n+1)P(n+2) (n+k) Xk=1 Xk=1 ··· ∞ k 1 ( 1) k!Ck+1 = log(n)+γ + − 2n − n(n+1)(n+2) (n+k) Xk=1 ··· 1 1 1 19 = log(n)+γ + 2n − 12n(n+1) − 12n(n+1)(n+2) − 120n(n+1)(n+2)(n+3) 9 ..., − 20n(n+1)(n+2)(n+3)(n+4) − 2 where the Gregory numbers Ck for k N0 [3, 5, 6, 7] are defined by ∈ 1 1 Ck : = (x)kdx k! Z 0 1 1 = x(x 1) (x k +1)dx k! Z − ··· − 0 k 1 1 (1) = S (l). k k! l +1 Xl=0 The last one is a convergent version of Stirling’s formula for the logarithm of the factorial function [8], namely n 1 1 ∞ (−21k)k kl=1 (l+(−1)1()l+ll2)Sk(1)(l) log(k) = nlog(n) n+ log(2π)+ log(n)+ − 2 2 (n+P1)(n+2) (n+k) Xk=1 Xk=1 ··· ∞ 1 1 ak = nlog(n) n+ log(2π)+ log(n)+ − 2 2 (n+1)(n+2) (n+k) Xk=1 ··· 1 1 1 1 = nlog(n) n+ log(2π)+ log(n)+ + − 2 2 12(n+1) 12(n+1)(n+2) 59 29 + + +..., 360(n+1)(n+2)(n+3) 60(n+1)(n+2)(n+3)(n+4) where the numbers ak for k N [8, 9, 10] are defined by ∈ 1 1 1 ak : = (x)k x dx k Z (cid:18) − 2(cid:19) 0 k 1 l (1) = S (l) k 2k (l+1)(l+2) Xl=1 (cid:12)(cid:12) (cid:12)(cid:12) k k l (cid:12) (cid:12) ( 1) ( 1) l (1) = − − S (l). k 2k (l+1)(l+2) Xl=1 and was also found around 1800. 2 Definitions Definition 1. (Fractional part x of x) { } Let x denote the floor function evaluated at the point x R, which is the largest integer ⌊ ⌋ ∈ less than or equal to x. Written out explicitly, this means that x := max m x . ⌊ ⌋ m∈Z { ≤ } 3 We define by x the fractional part of x, that is { } x := x x . { } −⌊ ⌋ Note that we have 0 x < 1. ≤ { } Definition 2. (Pochhammer symbol)[1] We define the Pochhammer symbol (or rising factorial function) (x)k by Γ(x+k) (x)k := x(x+1)(x+2)(x+3) (x+k 1) = , ··· − Γ(x) where Γ(x) is the gamma function defined by ∞ Γ(x) := e−ttx−1dt. Z 0 Definition 3. (Stirling Series)[1, 2] A Stirling series (or inverse factorial series) for a function f : C C, which vanishes at → z + , is an expansion of the type → ∞ ∞ k!ak 0!a0 1!a1 2!a2 3!a3 f(x) = = + + + +..., Xk=0 (x)k+1 x x(x+1) x(x+1)(x+2) x(x+1)(x+2)(x+3) where (x)k denotes the Pochhammer symbol. Definition 4. (Stirling numbers of the first kind)[1] Let k,l N be two non-negative integers such that k l 0. We define the Stirling 0 ∈ (1) ≥ ≥ numbers of the first kind S (l) as the connecting coefficients in the identity k k k l (1) l (x)k = ( 1) ( 1) Sk (l)x , − − Xl=0 where (x)k is the rising factorial. Definition 5. (Bernoulli numbers)[12] We define the k-th Bernoulli number Bk as the k-th coefficient in the generating function relation ∞ x = Bkxk x C with x < 2π. ex 1 k! ∀ ∈ | | − Xk=0 Definition 6. (Euler numbers)[13] ∞ We define the sequence of Euler numbers {Ek}k=0 by the generating function identity x ∞ 2e Ek k = x . e2x +1 k! Xk=0 4 Definition 7. (Tangent numbers)[14, 15] We define the k-th tangent number Tk by the equation 22k(22k 1) B2k Tk := − | |, 2k where the Bk’s are the Bernoulli numbers. Definition 8. (Bernoulli polynomials)[16, Proposition 23.2, p. 86] We define the n-th Bernoulli polynomial Bn(x) by n n n−k Bn(x) := Bkx , (cid:18)k(cid:19) Xk=0 where the Bk’s are the Bernoulli numbers. 3 The Summation Formulas Inthissectionwewilllist32summationformulasforvariousfinitesumsofanalyticfunctions. For this, we need the following Lemma 9. (Euler-Maclaurin summation formula)[13, 17] Let f be an analytic function. Then we have that n n m f(k) = f(x)dx+ 1 (f(n)+f(1))+ Bk f(k−1)(n) f(k−1)(1) Z 2 k! − Xk=1 1 Xk=2 (cid:0) (cid:1) ( 1)m+1 n + − Bm( x )f(m)(x)dx, m! Z { } 1 where Bm(x) is the m-th Bernoulli polynomial and x denotes the fractional part of x. { } Therefore, for many functions f, we have the asymptotic expansion n n ∞ f(k) f(x)dx+C B1f(n)+ Bkf(k−1)(n) as n , ∼ Z − 1! k! → ∞ Xk=1 1 Xk=2 for some constant C C. ∈ As well as the next key result found by J. Weniger: Lemma 10. (Weniger transformation)[1] ∞ a For every inverse power series k , the following transformation formula holds k=1 xk+1 P ∞ ∞ k k ak ( 1) l (1) Xk=1 xk+1 = Xk=1 (x−)k+1 Xl=1(−1) alSk (l) ∞ k k l (1) = (−1) l=1(−1) alSk (l) . x(x+1P)(x+2) (x+k) Xk=1 ··· 5 Now it is time for our summation formulas. For every single finite sum there are infinitely many different such formulas, therefore we give here just the canonical ones. It is not hard to prove, using the asymptotic expansions of the Bernoulli numbers and the Stirling numbers of the first kind as well as that of the Euler numbers, that all series below converges very rapidly. Theorem 11. (Summation formulas for the harmonic series) For every natural number n N, we have that ∈ n 1 = log(n)+γ + 1 + ∞ (−1)k+1 kl=1 (−l+11)lBl+1Sk(1)(l) k 2n n(n+1P)(n+2) (n+k) Xk=1 Xk=1 ··· 1 1 1 19 = log(n)+γ + 2n − 12n(n+1) − 12n(n+1)(n+2) − 120n(n+1)(n+2)(n+3) 9 .... − 20n(n+1)(n+2)(n+3)(n+4) − We also have that n 1 = log(n)+γ + ∞ (−1)k+1 kl=1 (−l1)lBlSk(1)(l) k (n+1)(Pn+2) (n+k) Xk=1 Xk=1 ··· 1 5 3 = log(n)+γ + + + 2(n+1) 12(n+1)(n+2) 4(n+1)(n+2)(n+3) 251 + +.... 120(n+1)(n+2)(n+3)(n+4) Proof. Applying the Euler-Maclaurin summation formula to the function f(x) := 1, we get x that n ∞ 1 Bk log(n)+γ . k ∼ − knk Xk=1 Xk=1 Applying now the Weniger transformation to the equivalent series n ∞ 1 1 Bk log(n)+γ + k ∼ 2n − knk Xk=1 Xk=2 ∞ 1 Bk+1 log(n)+γ + , ∼ 2n − (k +1)nk+1 Xk=1 we get the first claimed formula. To obtain the second expression, we apply the Weniger transformation to the identity n ∞ 1 Bk log(n)+γ n . k ∼ − knk+1 Xk=1 Xk=1 6 All summation formulas in this article, which we list below, are obtained using the same uni- versal technique: For each finite sum, we used first the Euler-Maclaurin summation formula and then applied to it the Weniger transformation to get convergent formulas. Therefore, we omit full proofs and list here just our final results. 1.) Summation formulas for the harmonic series: For every natural number n N, we have ∈ n 1 = log(n)+γ + 1 + ∞ (−1)k+1 kl=1 (−l+11)lBl+1Sk(1)(l) k 2n n(n+1P)(n+2) (n+k) Xk=1 Xk=1 ··· 1 1 1 19 = log(n)+γ + 2n − 12n(n+1) − 12n(n+1)(n+2) − 120n(n+1)(n+2)(n+3) 9 ... − 20n(n+1)(n+2)(n+3)(n+4) − and n 1 = log(n)+γ + ∞ (−1)k+1 kl=1 (−l1)lBlSk(1)(l) k (n+1)(Pn+2) (n+k) Xk=1 Xk=1 ··· 1 5 3 = log(n)+γ + + + 2(n+1) 12(n+1)(n+2) 4(n+1)(n+2)(n+3) 251 + +.... 120(n+1)(n+2)(n+3)(n+4) 2.) Summation formulas for the n-th partial sum of ζ(2): For every natural number n N, we have ∈ n 1 = ζ(2) 1 + 1 + 1 ∞ (−1)k+1 kl=1(−1)lBl+1Sk(1)(l) k2 − n 2n2 n n(n+1P)(n+2) (n+k) Xk=1 Xk=1 ··· 1 1 1 1 3 = ζ(2) + − n 2n2 − 6n2(n+1) − 6n2(n+1)(n+2) − 10n2(n+1)(n+2)(n+3) 4 ... − 5n2(n+1)(n+2)(n+3)(n+4) − 7 and n 1 = ζ(2) 1 + ∞ (−1)k+1 kl=1(−1)lBlSk(1)(l) k2 − n n(n+1)P(n+2) (n+k) Xk=1 Xk=1 ··· ∞ 1 1 (k 1)! = ζ(2) + − − n k +1 · n(n+1)(n+2) (n+k) Xk=1 ··· 1 1 1 1 = ζ(2) + + + − n 2n(n+1) 3n(n+1)(n+2) 2n(n+1)(n+2)(n+3) 6 + +.... 5n(n+1)(n+2)(n+3)(n+4) 3.) Summation formulas for the n-th partial sum of ζ(3): For every natural number n N, we have ∈ n 1 = ζ(3) 1 + 1 + 1 ∞ (−1)k+1 kl=1(−1)l(l+2)Bl+1Sk(1)(l) k3 − 2n2 2n3 2n2 n(nP+1)(n+2) (n+k) Xk=1 Xk=1 ··· 1 1 1 1 5 = ζ(3) + − 2n2 2n3 − 4n3(n+1) − 4n3(n+1)(n+2) − 12n3(n+1)(n+2)(n+3) 1 ... − n3(n+1)(n+2)(n+3)(n+4) − and n 1 = ζ(3) 1 + 1 ∞ (−1)k+1 kl=1(−1)l(l+1)BlSk(1)(l) k3 − 2n2 2 n2(nP+1)(n+2) (n+k) Xk=1 Xk=1 ··· 1 1 1 1 = ζ(3) + + + − 2n2 2n2(n+1) 4n2(n+1)(n+2) 4n2(n+1)(n+2)(n+3) 1 + +.... 3n2(n+1)(n+2)(n+3)(n+4) 4.) Summation formulas for the sum of the square roots of the first n natural numbers: For every natural number n N, we have ∈ n √k = 2n32 + 1√n 1 ζ 3 +√n ∞ ( 1)k kl=1(−1)l2(2l(l−l+31))!!!Bl+1Sk(1)(l) 3 2 − 4π (cid:18)2(cid:19) − P(n+1)(n+2) (n+k) Xk=0 Xk=1 ··· 2 1 1 3 √n √n 53√n 3 = n2 + √n ζ + + + 3 2 − 4π (cid:18)2(cid:19) 24(n+1) 24(n+1)(n+2) 640(n+1)(n+2)(n+3) 79√n + +..., 320(n+1)(n+2)(n+3)(n+4) 8 as well as n √k = 2n23 + 1√n 1 ζ 3 + 1 + ∞ ( 1)k kl=1(−1)l2l(+21l−(l1+)2!!)!Bl+2Sk(1)(l) 3 2 − 4π (cid:18)2(cid:19) 24√n − P√n(n+1)(n+2) (n+k) Xk=0 Xk=1 ··· 2 1 1 3 1 1 3 = n2 + √n ζ + 3 2 − 4π (cid:18)2(cid:19) 24√n − 1920√n(n+1)(n+2) 1 259 − 640√n(n+1)(n+2)(n+3) − 46080√n(n+1)(n+2)(n+3)(n+4) 115 ... − 4608√n(n+1)(n+2)(n+3)(n+4)(n+5) − and n √k = 2n32 1 ζ 3 +n√n ∞ ( 1)k kl=1(−1)l(22ll−−15l)!!!BlSk(1)(l) 3 − 4π (cid:18)2(cid:19) − P(n+1)(n+2) (n+k) Xk=0 Xk=1 ··· 2 1 3 n√n 13n√n 9n√n 3 = n2 ζ + + + 3 − 4π (cid:18)2(cid:19) 2(n+1) 24(n+1)(n+2) 8(n+1)(n+2)(n+3) 2213n√n + +.... 640(n+1)(n+2)(n+3)(n+4) 5.) Summation formulas for the n-th partial sum of ζ( 3/2): − For every natural number n N, we have ∈ n k√k = 2n52 + 1n32 3 ζ 5 + 3n32 ∞ ( 1)k+1 kl=1(−1)l2l(−2l1−(l5+)!1!)!Bl+1Sk(1)(l) 5 2 − 16π2 (cid:18)2(cid:19) 2 − P(n+1)(n+2) (n+k) Xk=0 Xk=1 ··· 2 1 3 5 n√n n√n 481n√n 5 3 = n2 + n2 ζ + + + 5 2 − 16π2 (cid:18)2(cid:19) 8(n+1) 8(n+1)(n+2) 1920(n+1)(n+2)(n+3) 241n√n + +..., 320(n+1)(n+2)(n+3)(n+4) as well as n k√k = 2n52 + 1n32 + 1√n 3 ζ 5 + 3 ∞ ( 1)k+1 kl=1(−1)l2l(+21l−(l1+)3!!)!Bl+3Sk(1)(l) 5 2 8 − 16π2 (cid:18)2(cid:19) 2 − P√n(n+1)(n+2) (n+k) Xk=0 Xk=1 ··· 2 1 1 3 5 1 1 5 3 = n2 + n2 + √n ζ + + 5 2 8 − 16π2 (cid:18)2(cid:19) 1920√n(n+1) 1920√n(n+1)(n+2) 107 51 + + +... 107520√n(n+1)(n+2)(n+3) 17920√n(n+1)(n+2)(n+3)(n+4) 9 and n k√k = 2n52 3 ζ 5 + 3n52 ∞ ( 1)k+1 kl=1(−1)l(22ll−−27l)!!!BlSk(1)(l) 5 − 16π2 (cid:18)2(cid:19) 2 − P(n+1)(n+2) (n+k) Xk=0 Xk=1 ··· 2 3 5 n2√n 5n2√n 11n2√n 5 = n2 ζ + + + 5 − 16π2 (cid:18)2(cid:19) 2(n+1) 8(n+1)(n+2) 8(n+1)(n+2)(n+3) 8401n2√n + +.... 1920(n+1)(n+2)(n+3)(n+4) 6.) Summation formulas for the n-th partial sum of ζ( 5/2): − For every natural number n N, we have ∈ n k2√k = 2n72 + 1n52 + 15 ζ 7 + 15n52 ∞ ( 1)k kl=1(−1)l2l(−22l−(l7+)1!!)!Bl+1Sk(1)(l) 7 2 64π3 (cid:18)2(cid:19) 4 − P(n+1)(n+2) (n+k) Xk=0 Xk=1 ··· 2 1 15 7 5n2√n 5n2√n 7 5 = n2 + n2 + ζ + + 7 2 64π3 (cid:18)2(cid:19) 24(n+1) 24(n+1)(n+2) 53n2√n 79n2√n + + 128(n+1)(n+2)(n+3) 64(n+1)(n+2)(n+3)(n+4) 35187n2√n + +..., 7168(n+1)(n+2)(n+3)(n+4)(n+5) as well as n 2 1 5 15 7 1 k2√k = n27 + n52 + n32 + ζ 7 2 24 64π3 (cid:18)2(cid:19)− 384√n Xk=0 + 15 ∞ ( 1)k kl=1(−1)l2l(+21l−(l1+)4!!)!Bl+4Sk(1)(l) 4 − P√n(n+1)(n+2) (n+k) Xk=1 ··· 2 1 5 15 7 1 1 7 5 3 = n2 + n2 + n2 + ζ + 7 2 24 64π3 (cid:18)2(cid:19)− 384√n 21504√n(n+1)(n+2) 1 115 + + 7168√n(n+1)(n+2)(n+3) 229376√n(n+1)(n+2)(n+3)(n+4) 255 + +... 114688√n(n+1)(n+2)(n+3)(n+4)(n+5) 10