ebook img

Randomized Matrix-Free Trace and Log-Determinant Estimators PDF

31 Pages·2017·3.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Randomized Matrix-Free Trace and Log-Determinant Estimators

Randomized Matrix-Free Trace and Log-Determinant Estimators Ilse Ipsen Joint with: Alen Alexanderian & Arvind Saibaba NorthCarolinaStateUniversity Raleigh,NC,USA ResearchsupportedbyDARPAXData Our Contribution to this Minisymposium Inverse problems: Bayesian OED Big data: Randomized estimators Given: Hermitian positive semi-definite matrix A Want: trace(A) and logdet(I+A) Our estimators • Matrix free, simple implementation • Much higher accuracy than Monte Carlo • Informative probabilistic bounds, even for small dimensions Inverse Problem: Diffusive Contaminant Transport Forwardproblem: Time-dependentadvection-diffusionequation Inverseproblem: Re-constructuncertaininitialconcentration frommeasurementsof35sensors,at3timepoints Prior-preconditionedFisherinformation H≡C1/2F∗Γ−1 FC1/2 prior noise prior SensitivityofOED: trace(H) BayesianD-optimaldesigncriterion: logdet(I+H) Our estimators • Fast and accurate for Bayesian inverse problem • Matrix free, simple implementation • Much higher accuracy than Monte Carlo • Informative probabilistic bounds, even for small dimensions Our Contribution to this Minisymposium Inverse problems: Bayesian OED Big data: Randomized estimators Given: Hermitian positive semi-definite matrix A Want: trace(A) and logdet(I+A) Our Contribution to this Minisymposium Inverse problems: Bayesian OED Big data: Randomized estimators Given: Hermitian positive semi-definite matrix A Want: trace(A) and logdet(I+A) Our estimators • Fast and accurate for Bayesian inverse problem • Matrix free, simple implementation • Much higher accuracy than Monte Carlo • Informative probabilistic bounds, even for small dimensions Existing Estimators Small Explicit Matrices: Direct Methods Trace = sum of diagonal elements (cid:88) trace(A) = a jj j Logdet (1) Convert to trace logdet(I+A) = trace(log(I+A)) (2) Cholesky factorization I+A = LL∗ (cid:89) logdet(I+A) = log|det(L)|2 = 2log l jj j Large Sparse or Implicit Matrices Trace: Monte Carlo methods N (cid:88) trace(A) ≈ 1 z∗Az N j j j=1 N independent random vectors z j Rademacher, standard Gaussian ⇒ unbiased estimator Hutchinson1989, Avron&Toledo2011 Roosta-Khorasani&Ascher2015, Lin2016 Logdet: Expansion of log   (cid:88) logdet(I+A) ≈ trace pj(A) j Barry&Pace1999, Pace&LeSage2004, Zhangetal. 2008 Chenetal. 2011, Anitescuetal. 2012,Boutsidisetal. 2015 Hanetal. 2015 Our Estimators Randomized Subspace Iteration Given: n×n matrix A with k dominant eigenvalues Compute low rank approximation T: (1) Pick random starting guess Ω with (cid:96) ≥ k columns (2) Subspace iteration Y = AqΩ (3) Orthonormalize: Thin QR Y = QR (4) Compute (cid:96)×(cid:96) matrix T = Q∗AQ Estimators: trace(T) ≈ trace(A) logdet(I+T) ≈ logdet(I+A)

Description:
Big data: Randomized estimators. Given: Hermitian positive semi-definite matrix A. Want: trace(A) and log det(I + A). Our estimators. • Matrix free
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.