Lecture Notes in Computer Science 1518 Editedby G.Goos,J. Hartmanisand J.van Leeuwen 3 Berlin Heidelberg NewYork Barcelona Budapest HongKong London Milan Paris Singapore Tokyo Michael Luby Jose´ Rolim Maria Serna (Eds.) Randomization and Approximation Techniques in Computer Science Second International Workshop, RANDOM’98 Barcelona, Spain, October 8-10, 1998 Proceedings 1 3 SeriesEditors GerhardGoos,KarlsruheUniversity,Germany JurisHartmanis,CornellUniversity,NY,USA JanvanLeeuwen,UtrechtUniversity,TheNetherlands VolumeEditors MichaelLuby InternationalComputerScienceInstitute 1947CenterStreet,Suite600,Berkeley,CA94704-1198,USA E-mail:[email protected] Jose´D.P.Rolim UniversityofGeneva,ComputerScienceDepartment 24,rueGe´ne´ralDufour,CH-1211Geneva4,Switzerland E-mail:[email protected] MariaSerna UniversityofBarcelona(UPC) JordiGironaSalgado1-3,E-08034Barcelona,Spain E-mail:[email protected] Cataloging-in-Publicationdataappliedfor DieDeutscheBibliothek-CIP-Einheitsaufnahme Randomizationandapproximationtechniquesincomputer science:secondinternationalworkshop,RANDOM’98,Barcelona, Spain,October8-10,1998;proceedings/MichaelLuby... (Hrsg.).-Berlin;Heidelberg;NewYork;Barcelona;Budapest; HongKong;London;Milan;Paris;Singapore;Tokyo:Springer, 1998 (Lecturenotesincomputerscience;Vol.1518) ISBN3-540-65142-X CRSubjectClassification(1991):F.2,G.1.2,G.1.6,G.2,G.3,E.1,I.3.5 ISSN0302-9743 ISBN3-540-65142-X Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,re-useofillustrations,recitation,broadcasting, reproductiononmicrofilmsorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsare liableforprosecutionundertheGermanCopyrightLaw. (cid:1)c Springer-VerlagBerlinHeidelberg1998 PrintedinGermany Typesetting:Camera-readybyauthor SPIN10692778 06/3142–543210 Printedonacid-freepaper Foreword The Workshop on Randomization and Approximation Techniques in Computer Science, Random’98, focuses on algorithmic and complexity aspects arising inthedevelopmentofe(cid:14)cientrandomizedsolutionstocomputationallydi(cid:14)cult problems.Itaims,inparticular,atfosteringthecooperationamongpractitioners andtheoreticiansandamongalgorithmicandcomplexityresearchersinthe(cid:12)eld. RANDOM’98, held at the University of Barcelona (UPC), October 8{10, 1998, is the second in the series, after Bologna. This volume contains all contributed papers accepted for presentation at the workshop, together with invited lectures by Josep D(cid:19)(cid:16)az (UPC Barcelona), Alan M. Frieze (Carnegie Mellon U.), Michael Luby (ICSI Berkeley), and Emo Welzl (ETH Zu¨rich). The contributed papers were selected out of several dozen submissions received in response to the call for papers. All papers published in the workshop proceedings were selected by the program committee on the basis of referee reports. Considerable e(cid:11)ort was devoted to the evaluation of the submissionsbytheprogramcommitteeandanumberofotherreferees.Extensive feedback was provided to authors as a result, which we hope has proven helpful to them. Wewouldliketothankalloftheauthorswhorespondedtothecallforpapers, our invited speakers, the referees, and the members of the program committee: Michael Luby, Chair, ICSI Berkeley Andrei Broder, Digital Systems Research Center Bernard Chazelle, Princeton U. Andrea Clementi, U. of Rome Anna Karlin, U. of Washington Richard Karp, U. of Washington Claire Kenyon, U. of Paris Sud Michael Mitzenmacher, Digital Systems Research Center Rajeev Motwani, Stanford U. Prabhakar Raghavan, IBM Maria Serna, UPC Barcelona Alistair Sinclair, U. of California, Berkeley Madhu Sudan, MIT Avi Wigderson, Hebrew U. Peter Winkler, Bell Labs We gratefully acknowledge support from the European Association INTAS, the Comissionat per a Universitats i Recerca { Generalitat de Catalunya, and Universitat Polit(cid:18)ecnica de Catalunya. Finally, we would like to thank Helena Martinez,CarmeAlvarez,ConradoMartinez,andJordiPetitiSilvestrefortheir help in the preparation of the meeting. August 1998 Michael Luby, Jos(cid:19)e D. P. Rolim, Maria J. Serna Contents Invited Paper Disjoint Paths in Expander Graphs via Random Walks: A Short Survey 1 Alan M. Frieze Regular Papers A Derandomization Using Min-Wise Independent Permutations 15 Andrei Z. Broder, Moses Charikar and Michael Mitzenmacher An Algorithmic Embedding of Graphs via Perfect Matchings 25 Vojtech R¨odl, Andrzej Rucin´ski and Michelle Wagner Deterministic Hypergraph Coloring and Its Applications 35 Chi-Jen Lu On the De-randomization of Space-Bounded Computations 47 Roy Armoni Talagrand’s Inequality and Locality in Distributed Computing 60 Devdatt P. Dubhashi On-Line Bin-Stretching 71 Yossi Azar and Oded Regev CombinatorialLinear Programming:Geometry Can Help 82 Bernd Ga¨rtner A Note on Bounding the Mixing Time by Linear Programming 97 Abraham Sharell Robotic Exploration,Brownian Motion and Electrical Resistance 116 Israel A. Wagner, Michael Lindenbaum and Alfred M. Bruckstein Fringe Analysis of Synchronized Parallel Algorithms on 2-3 Trees 131 Ricardo Baeza-Yates, Joaquim Gabarro´ and Xavier Messeguer On Balls and Bins with Deletions 145 Richard Cole, Alan Frieze, Bruce M. Maggs, Michael Mitzenmacher Andr´ea W. Richa, Ramesh K. Sitamaran and Eli Upfal “Balls into Bins” — A Simple and Tight Analysis 159 Martin Raab and Angelika Steger VIII Contents Invi te d Pap e r Tornado Codes: Practical Erasure Codes Based on Random Irregular Graphs 171 Michael Luby Regular Papers Using Approximation Hardness to Achieve Dependable Computation 172 Mike Burmester, Yvo Desmedt and Yongge Wang Complexity of Sequential Pattern Matching Algorithms 187 Mireille R´egnier and Wojciech Szpankowski A Random Server Model for Private Information Retrieval 200 Yael Gertner, Shafi Goldwasser and Tal Malkin Almost Optimal (on the average)Combinatorial Algorithms for Boolean Matrix Product Witnesses, Computing the Diameter 218 C.P. Schnorr and C.R. Subramanian Randomized Lower Bounds for Online Path Coloring 232 Stefano Leonardi and Andrea Vitaletti ParallelRandom Search and Tabu Search for the Minimal Consistent Subset Selection Problem 248 Vicente Cerver´on and Ariadna Fuertes On Various Cooling Schedules for Simulated Annealing Applied to the Job Shop Problem 260 K. Steinh¨ofel, A. Albrecht and C.K. Wong A High Performance Approximate Algorithm for the Steiner Problem in Graphs 280 Pere Guitart and Josep M. Basart Invited Paper Random Geometric Problems on [0,1]2 294 Josep D´ıaz, Jordi Petit and Maria Serna Regular Papers A Role of Constraint in Self-Organization 307 Carlos Domingo, Osamu Watanabe and Tadashi Yamazaki Cont ent s I X Constructive Bounds and Exact Expectations for the Random AssignmentProblem319 Don Coppersmith and Gregory B. Sorkin The “Burnside Process” Converges Slowly 331 Leslie Ann Goldberg and Mark Jerrum QuicksortAgain Revisited 346 Charles Knessl and Wojciech Szpankowski Sampling Methods Applied to Dense Instances of Non-Boolean Optimization Problems 357 Gunnar Andersson and Lars Engebretsen Second-Order Methods for Distributed Approximate Single- and Multicommodity Flow 369 S. Muthukrishnan and Torsten Suel Author Index 385 Disjoint Paths in Expander Graphs via Random Walks: a Short Survey AlanM.Frieze (cid:3) DepartmentofMathematicalSciences Carnegie-MellonUniversity Pittsburgh PA15213 USA tcarbtAs There has been a significant amount of research lately on solving the edge disjoint path and related problems on expander graphs. We review the random walkapproachofBroder,FriezeandUpfal. 1 onticuodtrIn Thebasicproblemdiscussed in thispaper can bedescribedasfollows: we are given a graph and a set of disjoint pairs of vertices in . If possible, find edge disGjoin=t p(aVth;Es ) that join Kto for . WVe call this the Edge DisjointPathsproblPemi . We alsoasiay tbhiat iis= -1ouatbelr;2;::: ;Kif suchpathsexistforany set of pairs. For arbitrary graphs, decGidingKwhether such paths exist is in for fixed K– Robertson and Seymour [16], but is -complete if is part of thPe in- put,bKeingoneofKarp’soriginalproblems. ThisNnPegativeresultcKanbecircumvented for certain classes of graphs, see Frank [7]. In this paperwe will focusonxpandere aphsgr . Therehavebeenessentially twobasesforapproachestothis problemin this context:(i)randomwalksand(ii)multicommodityflows. Ouraimhereistoprovidea summaryoftheresultsknowntousatpresenttogetherwithanoutlineofsomeoftheir proofs. Weemphasisetherandomwalkapproach,see[11,12,13]formoredetailon themulticommodityflowapproach. rexadEpnsahGrp Forcertainboundeddegreeexpandergraphs,PelegandUpfal [15]showedthatif isasufficientlystrongexpanderthen is -routableforsome (cid:15) small constant G that depends only on the expansioGn prnoperties of the input graph.Furtherm(cid:15)o(cid:28)reth1e=r3eisapolynomialtimealgorithmforconstructingsuchpaths. This result has now been substantially improved and there is only a small factor (essentially )betweenupperandlowerboundsformaximumroutability. logn SupportedinpartbyNSFgrantCCR9530974.E-mail:ud.uem.hcta.mmodna@rnala . (cid:3) (cid:77)(cid:46)(cid:32)(cid:76)(cid:117)(cid:98)(cid:121)(cid:44)(cid:32)(cid:74)(cid:46)(cid:32)(cid:82)(cid:111)(cid:108)(cid:105)(cid:109)(cid:44)(cid:32)(cid:97)(cid:110)(cid:100)(cid:32)(cid:77)(cid:46)(cid:32)(cid:83)(cid:101)(cid:114)(cid:110)(cid:97)(cid:32)(cid:40)(cid:69)(cid:100)(cid:115)(cid:46)(cid:41)(cid:58)(cid:32)(cid:82)(cid:65)(cid:78)(cid:68)(cid:79)(cid:77)(cid:39)(cid:57)(cid:56)(cid:44)(cid:32)(cid:76)(cid:78)(cid:67)(cid:83)(cid:32)(cid:49)(cid:53)(cid:49)(cid:56)(cid:44)(cid:32)(cid:112)(cid:112)(cid:46)(cid:32)(cid:49)(cid:45)(cid:49)(cid:52)(cid:44)(cid:32)(cid:49)(cid:57)(cid:57)(cid:56)(cid:46) (cid:32) (cid:83)(cid:112)(cid:114)(cid:105)(cid:110)(cid:103)(cid:101)(cid:114)(cid:45)(cid:86)(cid:101)(cid:114)(cid:108)(cid:97)(cid:103)(cid:32)(cid:66)(cid:101)(cid:114)(cid:108)(cid:105)(cid:110)(cid:32)(cid:72)(cid:101)(cid:105)(cid:100)(cid:101)(cid:108)(cid:98)(cid:101)(cid:114)(cid:103)(cid:32)(cid:49)(cid:57)(cid:57)(cid:56) (cid:50) (cid:65)(cid:46)(cid:77)(cid:46)(cid:32)(cid:70)(cid:114)(cid:105)(cid:101)(cid:122)(cid:101) Using randomwalks, Broder, Frieze and Upfal[2] improvedthe resultof [15] to obtain the same result for where depends only on the expansion (cid:20) propertiesofthegraph. MoKrer=ecnen=t(llyo,gthne)y[3]impr(cid:20)ovedthisbyreplacing by foranypositiveconstant , attheexpenseofrequestinggreaterexpan(cid:20)sionp2r+op(cid:15)- erties of . More recent(cid:15)ly>st0ill, Leighton, Rao and Srinivasan [13], using the rival multi-comGmodityflowtechnologyhaveimprovedonthisbyshowingthatthe canbe replacedby . InSection4 wewill showhowtherandomwalksapproach(cid:15)can be improvedtoog(iv1e)thesameresult,Theorem3.Itisratherinterestingthatthese,inmany waysquitedifferent,approachesseemtoyieldroughlythesameresults. Wenotethat bothapproachesyieldanon-constructiveproof[3],[12](viathelocallemma)thatina sufficientlystrongexpander isachievable. 2 oadmRnsaGhrp RandoKmg=ra(cid:10)ph(ns=ar(elowgenll)k)nowntobeexcellentexpandersandso itisperhapsnotsurprisingthattheyveryhighly“routable”. Broder,Frieze,Suenand Upfal[4] andFriezeandZhao[9] (seeTheorems7,8)showthattheyare -routable where iswithin aconstantfactorof asimplelowerbound,somethingtKhathasnot yetbeeKnachievedforarbitraryexpandergraphs. woLotgineosnCathPetsS Onewayofgeneralisingtheproblemistoboundthe numberofpathsthatuseanyoneedge,theeedgestiocnong ,bysomevalue inplace ofone.BoundsonthenumberofroutablepairsinthiscasearegiveninTheogrem5. cyaiDnmmeolbrp Inthedynamicversionoftheproblemeachvertexreceivesan infinitestreamofrequestsforpathsstartingatthatvertex.Thetimesbetweenrequests arerandomandpathsareareonlyrequiredforacertaintime(untilthecommunication terminates)andthenthepathisdeleted.Againeachedgeinthenetworkshouldnotbe usedbymorethan pathsatonce. The random waglk approach gives a simple and fully distributed solution for this problem. In [3] (see Theorem 6) we show that if the injection to the network and thedurationof connectionsarebothcontrolledby Poisson processesthenthereis an algorithmwhichachievesasteadystateutilizationofthenetworkwhichissimilarto theutilizationachievedinthecaitts casesituation,Theorem5. aoxtmoiinrppA gloArmtih So far we have only considered the case where all requestsforpathshaveto befilled. Ifthisis notpossiblethenonemightbesatisfied withfillingasmanyrequestsaspossible. KleinbergandRubinfeld[10](seeTheorem 10)provethatacertaingreedystrategyprovideshasaworst-caseperformanceratioof order . ertexVDisjointathsP 1=(lognloglogn) Finally,thereistheproblemoffindingvertexdisjointpaths betweenagivensetofpairsofvertices.Intheworst-caseonecannotdobetterthanthe minimumdegreeofthegraph. Theinterestthereforemustbeongraphswithdegrees whichgrowwiththesizeofthegraph.Inthiscontextrandomgraphs[5]haveoptimal routingproperties,towithinaconstantfactor. The structureof the paper is nowas follows: Section 3 discusses the problemof splitting an expander, a basic requirementfor finding edge disjoint paths. Section 4 detailstheaforementionedresultsonexpandergraphsandoutlinessomeoftheproofs for the random walk approach. Section 5 details the results on random graphs and outlines the corresponding proofs. Section 6 describes the result of Kleinberg and Rubinfeld.Afinalsectionprovidessomeopenproblems.
Description: