ebook img

Random Recursive Equations and Their Distributional Fixed Points PDF

297 Pages·2012·1.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Random Recursive Equations and Their Distributional Fixed Points

Gerold Alsmeyer Random Recursive Equations and Their Distributional Fixed Points January23,2012 Springer Preface Use the template preface.tex together with the Springer document class SVMono (monograph-type books) or SVMult (edited books) to style your preface in the Springerlayout. Aprefaceisabook’spreliminarystatement,usuallywrittenbytheauthorored- itorofawork,whichstatesitsorigin,scope,purpose,plan,andintendedaudience, andwhichsometimesincludesafterthoughtsandacknowledgmentsofassistance. When written by a person other than the author, it is called a foreword. The preface or foreword is distinct from the introduction, which deals with the subject ofthework. Customarilyacknowledgmentsareincludedaslastpartofthepreface. Place(s), FirstnameSurname monthyear FirstnameSurname v Acknowledgements Use the template acknow.tex together with the Springer document class SVMono (monograph-type books) or SVMult (edited books) if you prefer to set your ac- knowledgement section as a separate chapter instead of including it as last part of yourpreface. vii Contents 1 Introduction................................................... 1 1.1 Atrueclassic:thecentrallimitproblem........................ 1 1.2 Aprominentqueuingexample:theLindleyequation ............. 4 1.3 Arichpoolofexamples:branchingprocesses................... 7 1.4 ThesortingalgorithmQuicksort ........................... 10 1.5 Randomdifferenceequationsandperpetuities................... 16 1.6 Anonlineartimeseriesmodel ................................ 20 1.7 Anoisyvotermodelonadirectedtree ......................... 22 1.8 Anexcursiontohydrology:theHorton-Strahlernumber .......... 24 2 Renewaltheory ................................................ 29 2.1 Anintroductionandfirstresults............................... 29 2.2 Animportantspecialcase:exponentiallifetimes................. 33 2.3 Lattice-type ............................................... 35 2.4 Uniformlocalboundednessandstationarydelaydistribution ...... 37 2.4.1 Uniformlocalboundedness............................ 37 2.4.2 Finitemeancase:thestationarydelaydistribution......... 38 2.4.3 Infinitemeancase:restrictingtofinitehorizons ........... 40 2.5 Blackwell’srenewaltheorem................................. 42 2.5.1 Firststepoftheproof:shakingofftechnicalities.......... 42 2.5.2 Settingupthestage:thecouplingmodel ................. 44 2.5.3 Gettingtothepoint:thecouplingprocess ................ 45 2.5.4 Thefinaltouch ...................................... 46 2.6 Thekeyrenewaltheorem .................................... 47 2.6.1 DirectRiemannintegrability........................... 48 2.6.2 Thekeyrenewaltheorem:statementandproof............ 52 2.7 Therenewalequation ....................................... 55 2.7.1 Gettingstarted....................................... 56 2.7.2 Existenceanduniquenessofalocallyboundedsolution .... 57 2.7.3 Asymptotics ........................................ 58 2.8 Renewalfunctionandfirstpassagetimes ....................... 63 ix x Contents 2.9 Anintermezzo:randomwalks,stoppingtimesandladdervariables . 65 2.10 Two-sidedrenewaltheory:ashortpathtoextensions ............. 72 2.10.1 Thekeytool:cyclicdecomposition ..................... 72 2.10.2 Uniformlocalboundednessandstationarydelaydistribution 74 2.10.3 ExtensionsofBlackwell’sandthekeyrenewaltheorem .... 75 2.10.4 Anapplication:Tailbehaviorofsup S inthenegative n 0 n driftcase .......................≥.................... 77 3 Iteratedrandomfunctions ...................................... 81 3.1 Themodel,definitions,somebasicobservationsandexamples..... 81 3.1.1 Definitionofaniteratedfunctionsystemanditscanonical model.............................................. 82 3.1.2 Lipschitzconstants,contractionpropertiesandthetop Liapunovexponent................................... 85 3.1.3 Forwardversusbackwarditerations..................... 86 3.1.4 Examples........................................... 87 3.2 GeometricergodicityofstronglycontractiveIFS ................ 90 3.3 ErgodictheoremformeancontractiveIFS...................... 96 3.4 AcentrallimittheoremforstronglymeancontractiveIFS.........102 4 Powerlawbehaviorofstochasticfixedpointsandimplicitrenewal theory ........................................................107 4.1 Goldie’simplicitrenewaltheorem.............................107 4.2 Makingexplicittheimplicit..................................111 4.3 Proofoftheimplicitrenewaltheorem..........................113 4.3.1 ThecasewhenM 0a.s. .............................116 ≥ 4.3.2 ThecasewhenP(M>0) P(M<0)>0 ...............116 ∧ 4.3.3 ThecasewhenM 0a.s. .............................120 ≤ 4.4 Applications...............................................122 4.4.1 Randomdifferenceequationsandperpetuities ............122 4.4.2 Lindley’sequationandarelatedmax-typeequation........129 d 4.4.3 Letac’smax-typeequationX =M(N X)+Q............131 ∨ 4.4.4 TheAR(1)-modelwithARCH(1)errors .................135 5 The smoothing transform: a stochastic linear recursion with branching PartI:Contractionproperties ...................................143 5.1 Settingupthestage:theweightedbranchingmodel ..............145 5.2 Adigression:weightedbranchingandrandomfractals............151 5.3 TheminimalLp-metric......................................155 5.4 ConditionsforS tobeaself-mapofPp(R) ...................163 5.5 ContractionconditionsforS ................................168 5.5.1 Convergenceofiteratedmeanvalues....................168 5.5.2 Contractionconditionsif0<p 1.....................170 ≤ 5.5.3 Contractionconditionsif p>1 ........................171 Contents xi 5.5.4 Contractionconditionsif p>2and∑i 1 Ti Lp.........179 5.5.5 Aglobalcontractionconditionif p 1≥..|..|.∈.............183 ≥ 5.5.6 Existenceofexponentialmoments......................184 5.6 Anapplication:Quicksortasymptotics......................188 5.7 TheHausdorffdimensionofrandomCantorsets:completingthe proofofTheorem5.12 ......................................194 6 Thecontractionmethodforaclassofdistributionalrecursions ......205 6.1 Thesetup:adistributionalrecursionofgeneraladditivetype ......206 6.2 TheZolotarevmetric........................................207 6.3 Asymptoticnormality:ZolotarevversusminimalLp-metrics ......215 6.4 Backtorecurrenceequation(6.2):ageneralconvergencetheorem..217 6.5 Thedegeneratecase:recursion(6.2)withtautologicallimitequation223 6.6 Applications...............................................233 6.6.1 Thetotalpathlengthinarandomrecursivetree...........233 6.6.2 Thenumberofleavesofarandomrecursivetree ..........240 6.6.3 Sizeandtotalpathlengthofarandomm-arysearchtree....243 7 The smoothing transform: a stochastic linear recursion with branching PartII:Fixedpoints............................................251 7.1 Thesmoothingtransformwithdeterministicweights .............251 References.....................................................251 A Aquicklookatsomeergodictheoryandtheorems .................257 A.1 Measure-preservingtransformationsandergodicity ..............257 A.2 Birkhoff’sergodictheorem ..................................259 A.3 Kingman’ssubadditiveergodictheorem........................260 B Convexfunctioninequalitiesformartingalesandtheirmaxima......263 C Banach’sfixedpointtheorem....................................267 D Hausdorffmeasuresanddimension ..............................271 Index .............................................................281

Description:
preface or foreword is distinct from the introduction, which deals with the subject of the work. stochastic fixed-point equation (SFPE), also called recursive distributional equa- tion by ALDOUS applications to model a quantity that is subject to an intrinsic random increase or decay, given by Mn
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.