Random Perturbation Methods with Applications in Science and Engineering Anatoli V. Skorokhod Frank C. Hoppensteadt Habib Salehi Springer Applied Mathematical Sciences Volume 150 Editors S.S. Antman J.E. Marsden L. Sirovich Advisors J.K. Hale P. Holmes J. Keener J. Keller B.J. Matkowsky A. Mielke C.S. Peskin K.R.S. Sreenivasan This page intentionally left blank Anatoli V. Skorokhod Frank C. Hoppensteadt Habib Salehi Random Perturbation Methods with Applications in Science and Engineering With 31 Figures AnatoliV.Skorokhod FrankC.Hoppensteadt HabibSalehi InstituteofMathematics SystemsScienceand DepartmentofStatistics UkrainianAcademyof EngineeringResearch andProbability Science Center MichiganStateUniversity 3TereshchenkivskaStreet ArizonaStateUniversity EastLansing,MI48824 Kiev01601,Ukraine Tempe,AZ85287-7606 USA and USA [email protected] DepartmentofStatistics [email protected] andProbability MichiganStateUniversity EastLansing,MI48824 USA [email protected] Editors S.S.Antman J.E.Marsden L.Sirovich DepartmentofMathematics ControlandDynamical DivisionofApplied and Systems,107-81 Mathematics InstituteforPhysicalScience CaliforniaInstituteof BrownUniversity andTechnology Technology Providence,RI02912 UniversityofMaryland Pasadena,CA91125 USA CollegePark,MD20742-4015 USA [email protected] USA [email protected] [email protected] MathematicsSubjectClassification(2000):37-02,60JXX,70K50 LibraryofCongressCataloging-in-PublicationData Skorokhod,A.V.(AnatoliiVladimirovich),1930– Randomperturbationmethodswithapplicationsinscienceandengineering/Anatoli V.Skorokhod,FrankC.Hoppensteadt,HabibSalehi. p.cm.—(Appliedmathematicalsciences;150) Includesbibliographicalreferencesandindex. ISBN0-387-95427-9(acid-freepaper) 1.Perturbation(Mathematics) 2.Differentiabledynamicalsystems. I.Hoppensteadt, F.C. II.Salehi,Habib. III.Title. IV.Appliedmathematicalsciences(Springer-Verlag NewYork,Inc.);v.150. QA1.A647vol.150b [QA871] 510s—dc21 [515′.35] 2001059799 ISBN0-387-95427-9 Printedonacid-freepaper. 2002Springer-VerlagNewYork,Inc. All rights reserved. This work may not be translated or copied in whole or in part without the writtenpermissionofthepublisher(Springer-VerlagNewYork,Inc.,175FifthAvenue,NewYork, NY10010,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Use inconnection withany formof informationstorageand retrieval,electronic adaptation,computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if theyarenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornot theyaresubjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. 9 8 7 6 5 4 3 2 1 SPIN10864032 Typesetting:PagescreatedbyauthorsusingaSpringerTEXmacropackage. www.springer-ny.com Springer-Verlag NewYork Berlin Heidelberg AmemberofBertelsmannSpringerScience+BusinessMediaGmbH Preface This book has its roots in two different areas of mathematics: pure mathematics,wherestructuresarediscoveredinthecontextofothermath- ematical structures and investigated, and applications of mathematics, where mathematical structures are suggested by real–world problems aris- ing in science and engineering, investigated, and then used to address the motivating problem. While there are philosophical differences between ap- pliedandpuremathematicalscientists,itisoftendifficulttosortthemout. The authors of this book reflect these different approaches. ThisprojectbeganwhenProfessorSkorokhodoftheUkranianAcademy of Sciences joined the faculty in the Department of Statistics and Prob- ability at Michigan State University in 1993. After that, the authors collaborated on numerous joint publications that have culminated in the production of this book. The structure of the book is roughly in two parts: The first part (Chap- ters 1–7) presents a careful development of mathematical methods needed to study random perturbations of dynamical systems. The second part (Chapters 8–12) presents nonrandom problems in a variety of important applications, reformulations of them that account for both external and system random noise, and applications of the results from the first part to analyze,simulate,andvisualizetheseproblemsperturbedbynoise.Inmost cases,weidentifywhichresultsarenovelandwhicharecloselyrelatedtode- velopmentsbyothers.Wehavetriedtoacknowledgetheprimarysourceson which our work is based, but we apologize for those we have inadvertently omitted. The authors are grateful for the support in these projects from the De- partmentofStatisticsandProbabilityandtheCollegeofNaturalScienceat Michigan State University, the Systems Science and Engineering Research Center at Arizona State University, and the National Science Foundation. Kiev, Ukraine Anatoli V. Skorokhod Paradise Valley, Arizona, USA Frank C. Hoppensteadt East Lansing, Michigan, USA Habib Salehi December 2001 This page intentionally left blank Contents Preface v Introduction 1 What Are Dynamical Systems? . . . . . . . . . . . . . . . . . . 1 What Is Random Noise? . . . . . . . . . . . . . . . . . . . . . . 3 What Are Ergodic Theorems? . . . . . . . . . . . . . . . . . . . 8 What Happens for t Large? . . . . . . . . . . . . . . . . . . . . 18 What Is in This Book? . . . . . . . . . . . . . . . . . . . . . . . 21 1 Ergodic Theorems 49 1.1 Birkhoff’s Classical Ergodic Theorem . . . . . . . . . . . 49 1.1.1 Mixing Conditions . . . . . . . . . . . . . . . . . 53 1.1.2 Discrete–Time Stationary Processes . . . . . . . . 54 1.2 Discrete–Time Markov Processes . . . . . . . . . . . . . 56 1.3 Continuous–Time Stationary Processes . . . . . . . . . . 60 1.4 Continuous–Time Markov Processes . . . . . . . . . . . . 61 2 Convergence Properties of Stochastic Processes 64 2.1 Weak Convergence of Stochastic Processes . . . . . . . . 64 2.1.1 Weak Compactness in C . . . . . . . . . . . . . . 66 2.2 Convergence to a Diffusion Process . . . . . . . . . . . . 68 2.2.1 Diffusion Processes . . . . . . . . . . . . . . . . . 68 2.2.2 Weak Convergence to a Diffusion Process. . . . . 70 2.3 Central Limit Theorems for Stochastic Processes . . . . 73 viii Contents 2.3.1 Continuous–Time Markov Processes. . . . . . . . 73 2.3.2 Discrete–Time Markov Processes . . . . . . . . . 75 2.3.3 Discrete–Time Stationary Processes . . . . . . . . 76 2.3.4 Continuous–Time Stationary Processes . . . . . . 79 2.4 Large Deviation Theorems . . . . . . . . . . . . . . . . . 80 2.4.1 Continuous–Time Markov Processes. . . . . . . . 81 2.4.2 Discrete–Time Markov Processes . . . . . . . . . 86 3 Averaging 88 3.1 Volterra Integral Equations. . . . . . . . . . . . . . . . . 88 3.1.1 Linear Volterra Integral Equations . . . . . . . . 92 3.1.2 Some Nonlinear Equations . . . . . . . . . . . . . 97 3.2 Differential Equations . . . . . . . . . . . . . . . . . . . . 99 3.2.1 Linear Differential Equations. . . . . . . . . . . . 101 3.3 Difference Equations . . . . . . . . . . . . . . . . . . . . 102 3.3.1 Linear Difference Equations . . . . . . . . . . . . 105 3.4 Large Deviation for Differential Equations . . . . . . . . 105 3.4.1 Some Auxiliary Results . . . . . . . . . . . . . . . 106 3.4.2 Main Theorem. . . . . . . . . . . . . . . . . . . . 110 3.4.3 Systems with Additive Perturbations . . . . . . . 112 4 Normal Deviations 114 4.1 Volterra Integral Equations. . . . . . . . . . . . . . . . . 114 4.2 Differential Equations . . . . . . . . . . . . . . . . . . . . 120 4.2.1 Markov Perturbations . . . . . . . . . . . . . . . 127 4.3 Difference Equations . . . . . . . . . . . . . . . . . . . . 128 5 Diffusion Approximation 133 5.1 Differential Equations . . . . . . . . . . . . . . . . . . . . 133 5.1.1 Markov Jump Perturbations . . . . . . . . . . . . 134 5.1.2 Some Generalizations . . . . . . . . . . . . . . . . 140 5.1.3 General Markov Perturbations . . . . . . . . . . . 145 5.1.4 Stationary Perturbations . . . . . . . . . . . . . . 146 5.1.5 Diffusion Approximations to First Integrals . . . 150 5.2 Difference Equations . . . . . . . . . . . . . . . . . . . . 156 5.2.1 Markov Perturbations . . . . . . . . . . . . . . . 156 5.2.2 Diffusion Approximations to First Integrals . . . 161 5.2.3 Stationary Perturbations . . . . . . . . . . . . . . 166 6 Stability 172 6.1 Stability of Perturbed Differential Equations . . . . . . . 172 6.1.1 Jump Perturbations of Nonlinear Equations . . . 173 6.1.2 Stationary Perturbations . . . . . . . . . . . . . . 182 6.2 Stochastic Resonance for Gradient Systems . . . . . . . . 193 6.2.1 Large Deviations near a Stable Static State . . . 193 Contents ix 6.2.2 Transitions Between Stable Static States . . . . . 198 6.2.3 Stochastic Resonance . . . . . . . . . . . . . . . 199 6.3 Randomly Perturbed Difference Equations . . . . . . . . 200 6.3.1 Markov Perturbations: Linear Equations . . . . . 201 6.3.2 Stationary Perturbations . . . . . . . . . . . . . . 203 6.3.3 Markov Perturbations: Nonlinear Equations . . . 205 6.3.4 Stationary Perturbations . . . . . . . . . . . . . . 210 6.3.5 Small Perturbations of a Stable System . . . . . . 211 6.4 Convolution Integral Equations . . . . . . . . . . . . . . 216 6.4.1 Laplace Transforms and Their Inverses . . . . . . 218 6.4.2 Laplace Transforms of Noisy Kernels . . . . . . . 222 7 Markov Chains with Random Transition Probabilities 232 7.1 Stationary Random Environment . . . . . . . . . . . . . 233 7.2 Weakly Random Environments . . . . . . . . . . . . . . 243 7.3 Markov Processes with Randomly Perturbed Transition Probabilities . . . . . . . . . . . . . . . . . . . 249 7.3.1 Stationary Random Environments . . . . . . . . . 249 7.3.2 Ergodic Theorem for Markov Processes in Random Environments . . . . . . . . . . . . . 253 7.3.3 Markov Process in a Weakly Random Environment . . . . . . . . . . . . . . . . . . . . . 254 8 Randomly Perturbed Mechanical Systems 257 8.1 Conservative Systems with Two Degrees of Freedom. . . 257 8.1.1 Conservative Systems . . . . . . . . . . . . . . . . 258 8.1.2 Randomly Perturbed Conservative Systems . . . 262 8.1.3 Behavior of the Perturbed System near a Knot . . . . . . . . . . . . . . . . . . . . . 273 8.1.4 Diffusion Processes on Graphs . . . . . . . . . . . 285 8.1.5 Simulation of a Two-Well Potential Problem . . . 290 8.2 Linear Oscillating Conservative Systems . . . . . . . . . 290 8.2.1 Free Linear Oscillating Conservative Systems . . 290 8.2.2 Randomly Perturbed Linear Oscillating Systems . . . . . . . . . . . . . . . . . 293 8.3 A Rigid Body with a Fixed Point . . . . . . . . . . . . . 297 8.3.1 Motion of a Rigid Body around a Fixed Point . . . . . . . . . . . . . . . . . . . . 298 8.3.2 Analysis of Randomly Perturbed Motions . . . . 299 9 Dynamical Systems on a Torus 303 9.1 Theory of Rotation Numbers . . . . . . . . . . . . . . . . 303 9.1.1 Existence of the Rotation Number . . . . . . . . 305 9.1.2 Purely Periodic Systems . . . . . . . . . . . . . . 307 9.1.3 Ergodic Systems. . . . . . . . . . . . . . . . . . . 308