ebook img

Random matrices and application to detection and estimation in array processing PDF

150 Pages·2017·1.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Random matrices and application to detection and estimation in array processing

Random matrices and application to detection and estimation in array processing Julia Vinogradova To cite this version: Julia Vinogradova. Random matrices and application to detection and estimation in array processing. SignalandImageprocessing. InstitutMines-Télécom,TélécomParisTech,CNRSLTCI,2014. English. ￿NNT: ￿. ￿tel-01762182￿ HAL Id: tel-01762182 https://hal.science/tel-01762182 Submitted on 9 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2014-ENST-0073 EDITE-ED130 Doctorat ParisTech T H È S E pourobtenirlegradededocteurdélivrépar TELECOM ParisTech Spécialité «Electronique et Communications » présentéeetsoutenuepubliquementpar Julia VINOGRADOVA le27novembre2014 Matrices aléatoires et application à la détection et estimation en traitement d’antennes Directeurdethèse:WalidHACHEM Co-encadrementdelathèse:RomainCOUILLET Jury M.PascalLARZABAL,Professeuràl’ENSdeCachan Rapporteur M.PhilippeLOUBATON,Professeuràl’UniversitéMarne-la-Vallée Rapporteur M.FrédéricPASCAL,ProfesseuràSupélec Examinateur M.RomainCOUILLET,MaîtredeconférencesàSupélec Examinateur,co-directeurdethèse M.WalidHACHEM,DirecteurdeRechercheauCNRSàTélécomParisTech Directeurdethèse M.Jean-YvesTOURNERET,ProfesseuràINP-ENSEEIHTToulouse Président TélécomParisTech Grandeécoledel’InstitutMines-Télécom-membrefondateurdeParisTech 46rueBarrault75013Paris-(+33)145817777-www.telecom-paristech.fr Contents Remerciements V Abstract VI Acronyms VII Notations VIII RØsumØ en fran(cid:231)ais X 1 Introduction 1 1.1 Model and problem statement . . . . . . . . . . . . . . . . . . 1 1.1.1 System model . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Large dimensional regime . . . . . . . . . . . . . . . . 2 1.1.3 White noise setting . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Correlated noise . . . . . . . . . . . . . . . . . . . . . 3 1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . 4 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.1 Journal papers . . . . . . . . . . . . . . . . . . . . . . 5 1.4.2 Conference papers . . . . . . . . . . . . . . . . . . . . 5 2 Some results of random matrix theory 7 2.1 Basic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Asymptotic spectrum analysis . . . . . . . . . . . . . . . . . . 9 2.2.1 Basic results on asymptotic spectrum. . . . . . . . . . 9 2.2.2 Further results on asymptotic spectrum . . . . . . . . 11 2.2.3 Some background on the limiting support . . . . . . . 12 2.2.4 Fluctuations of the largest eigenvalue . . . . . . . . . . 13 2.3 Spiked models . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 II 2.3.1 Background on spiked models . . . . . . . . . . . . . . 16 2.3.2 Advanced spiked models . . . . . . . . . . . . . . . . . 19 3 Detection techniques of a small rank signal 23 3.1 Problem statement and motivation . . . . . . . . . . . . . . . 23 3.2 Detection techniques . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 White noise environment. . . . . . . . . . . . . . . . . 24 3.2.2 Correlated noise environment . . . . . . . . . . . . . . 34 3.3 Direction-of-arrival estimation . . . . . . . . . . . . . . . . . . 40 4 Detection/estimation of a small rank signal in the presence of correlated noise 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 System model and assumptions . . . . . . . . . . . . . . . . . 44 4.2.1 Hypotheses on the noise matrix . . . . . . . . . . . . . 44 4.2.2 Hypotheses on the signal matrix . . . . . . . . . . . . 47 4.3 Results on the information-plus-noise matrix . . . . . . . . . . 49 4.3.1 Preliminary results . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Signal detection . . . . . . . . . . . . . . . . . . . . . . 50 4.3.3 Parameter estimation . . . . . . . . . . . . . . . . . . 51 4.3.4 Subspace estimation . . . . . . . . . . . . . . . . . . . 53 4.4 Narrow band array processing . . . . . . . . . . . . . . . . . . 55 4.4.1 System model and assumptions . . . . . . . . . . . . . 55 4.4.2 Detection, power estimation, and localization . . . . . 58 4.4.3 Second order performance analysis . . . . . . . . . . . 59 4.4.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4.5 Proof of Theorem 26 . . . . . . . . . . . . . . . . . . . 63 4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.7.1 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . 71 4.7.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . 71 4.7.3 Proof of Theorem 27 . . . . . . . . . . . . . . . . . . . 72 4.7.4 Proof of Proposition 10 . . . . . . . . . . . . . . . . . 72 4.7.5 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . 73 4.7.6 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . 75 4.7.7 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . 76 III 5 Estimation of Toeplitz covariance matrices and application to source detection 77 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Performance of the estimators . . . . . . . . . . . . . . . . . . 79 5.2.1 Model and assumptions . . . . . . . . . . . . . . . . . 79 5.2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.3 Some basic mathematical results . . . . . . . . . . . . 81 5.2.4 Biased estimator: proof of Theorem 28 . . . . . . . . . 82 5.2.5 Unbiased estimator: proof of Theorem 29 . . . . . . . 85 5.3 Estimators for (cid:16)signal-plus-noise(cid:17) model . . . . . . . . . . . . 92 5.3.1 Model, assumptions, and results . . . . . . . . . . . . 92 5.3.2 Main elements of the proof of Theorem 30 . . . . . . . 94 5.4 Application to source detection . . . . . . . . . . . . . . . . . 98 5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.7.1 Proofs for Theorem 28: proof of Lemma 10 . . . . . . 104 5.7.2 Proofs for Theorem 29: proof of Lemma 14 . . . . . . 105 5.7.3 Proofs for Theorem 29: proof of Lemma 16 . . . . . . 105 Conclusion and perspectives 107 IV Remerciements Toutd’abordjetiens(cid:224)remercierPascalLarzabaletPhilippeLoubatonpour avoir acceptØ d’Œtre les rapporteurs de cette thŁse. Je remercie Øgalement Jean-Yves Tourneret d’avoir acceptØ d’Œtre le prØsident du jury et FrØdØric Pascal d’en Œtre l’examinateur. Je souhaite exprimer ma profonde gratitude (cid:224) mes directeurs de thŁse WalidetRomainpourm’avoirinitiØe(cid:224)larecherched’unetrŁsgranderigueur et pour toutes les connaissances que j’ai pu acquØrir au cours de cette thŁse. JesuisØgalementtrŁsreconnaissantepourleurpatience,leurgrandedisponi- bilitØ et tous les conseils qu’ils m’ont apportØs. Je voudrais remercier Chantal, Yvonne et, en particulier, Zouina pour leur prØcieuse aide administrative mais aussi morale. Merci (cid:224) tous les collŁgues d’avoir contribuØ (cid:224) crØer un environnement de travail chaleureux et amical. Je remercie (cid:224) part mes chers collŁgues de bureau, Asma, Elie et Mohamed, pour leur bonne humeur malgrØ tout. Merci (cid:224) tous les amis et tous ceux qui Øtaient l(cid:224) pour moi tout au long de cette thŁse mais aussi (cid:224) tous les autres moments de ma vie. JeremerciemesparentsSvetlanaetVassilipourleuramourin(cid:28)niettous les sacri(cid:28)ces incommensurables qu’ils ont faits pour nous. Abstract Consider a sensor network with N sensors observing T successive snapshots of K source signals. The aim is to derive parameter estimators considering two main di(cid:30)culties arising in modern sensor networks. Usually scenarios with large dimensional systems and fast dynamics where T is limited and is generally of the same order of magnitude as N are considered. Therefore, it is natural to assume the asymptotic regime denoted by T → ∞, where T converges to in(cid:28)nity while N/T → c > 0. Therefore, the classical parameter estimation methods fail. In this regime, large dimensional random matrix theory tools allow to construct (N,T)-consistent estimators for the system parameters. The second di(cid:30)culty comes from the fact that usually the re- ceived signals are embedded in a temporally (or spatially) correlated noise, i.e., there is a dependency between the noise data across successive obser- vations (or across the sensors). Such scenarios are usually met for instance in radar systems. The aim of this thesis is to develop consistent parameter estimators under this setting. The studies in this thesis follow two di(cid:27)erent axes. According to the (cid:28)rst axis, we do not make any assumption on the statistics of the noise samples. We propose a detection algorithm of the number of sources and estimation methods for their powers and the directions-of-arrival which are based on the sample covariance matrix of the signal-plus-noise model. Within the second axis, we assume that the noise is a stationary process whose covari- ance matrix has a Toeplitz structure. We revisit the known approaches for estimation of such matrices based on a Toeplitzi(cid:28)ed version of the sample covariance matrix. The main contribution of this work consists in establish- ing concentrations inequalities on the spectral norm of the noise covariance matrix, whether or not the signal is present. The well-known (cid:16)whitening(cid:17) procedure leads back to the white noise case. Acronyms AIC Akaike’s Information Criterion AR AutoRegressive ARMA AutoRegressive Moving Average a.s. almost surely c.d.f. cumulative distribution function CDR Correct Detection Rate CLT Central Limit Theorem dB deciBel FAR False Alarm Rate GLRT Generalized Likelihood-Ratio Test GUE Gaussian Unitary Ensemble LRT Likelihood-Ratio Test MDL Minimum Description Length MIMO Multiple-Input Multiple-Output ML Maximum Likelihood MSE Mean Square Error MUSIC Multiple SIgnal Classi(cid:28)cation NMSE Normalized Mean Square Error QPSK Quadrature Phase-Shift Keying SNR Signal-to-Noise Ratio TW Tracy(cid:21)Widom Notations I N ×N identity matrix N (cid:0) (cid:1) T x ,...,x Toeplitz matrix formed from the coe(cid:30)cients −(T−1) T−1 x ,...,x −(T−1) T−1 diag(x ,...,x ) Diagonal matrix with entries x ,...,x 0 T−1 0 T−1 XT Transpose of X XH Hermitian transpose of X det(X) Determinant of X Tr(X) Trace of X rank(X) Rank of X (cid:107)X(cid:107) Spectral norm of X (cid:107)·(cid:107) Frobenius norm fro X (cid:12)Y Hadamard product of X and Y C, R, Z, N Set of complex, real, rational, and natural numbers (cid:60)(z) Real part of z (cid:61)(z) Imaginary part of z (cid:107)f(cid:107) sup of the function f ∞ x+ Right-limit of the real x x− Left-limit of the real x (x)+ For x ∈ R,max(x,0) (cid:98)·(cid:99) Floor function 1 Indicator function on the set A A δ Kronecker delta function (= 1 if k = (cid:96) and 0 k(cid:96) otherwise) d(x,y) Distance from x to y O(·) Landau’s big-O o(·) Landau’s small-o #{A} Cardinality of the set A E{X} Statistical expectation of X

Description:
Let Xk be a complex martingale di erence sequence with respect to the in- creasing sequence of σ-fields Fk. Then models —nd f—ilure di—gnosis in sensor networksD IEEE Transactions on Information TheoryD volF SWD noF ID
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.