Random Circulant Matrices Random Circulant Matrices By Arup Bose Koushik Saha CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20180913 International Standard Book Number-13: 978-1-138-35109-7 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Bose, Arup, author. | Saha, Koushik, author. Title: Random circulant matrices / Arup Bose and Koushik Saha. Description: Boca Raton : CRC Press, Taylor & Francis Group, 2018. Identifiers: LCCN 2018028758 | ISBN 9781138351097 (hardback) Subjects: LCSH: Random matrices--Problems, exercises, etc. | Matrices--Problems, exercises, etc. | Eigenvalues--Problems, exercises, etc. Classification: LCC QA196.5 .B6725 2018 | DDC 512.9/434--dc23 LC record available at https://lccn.loc.gov/2018028758 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To the memory of my teacher J.C. Gupta A.B. To my parents and teachers K.S. Contents Preface xi About the Authors xiii Introduction xv 1 Circulants 1 1.1 Circulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Symmetric circulant . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Reverse circulant . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 k-circulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Symmetric and reverse circulant 9 2.1 Spectral distribution . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Moment method . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Input and link . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Trace formula and circuits . . . . . . . . . . . . . . . . 13 2.2.4 Words and vertices . . . . . . . . . . . . . . . . . . . . 14 2.2.5 (M1) and Riesz’s condition . . . . . . . . . . . . . . . 16 2.2.6 (M4) condition . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Reverse circulant . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Symmetric circulant . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Related matrices . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Reduced moment . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6.1 A metric. . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6.2 Minimal condition . . . . . . . . . . . . . . . . . . . . 24 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 LSD: normal approximation 27 3.1 Method of normal approximation . . . . . . . . . . . . . . . 27 3.2 Circulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 k-circulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 vii viii Contents 4 LSD: dependent input 37 4.1 Spectral density . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Circulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Reverse circulant . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 Symmetric circulant . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 k-circulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Spectral radius: light tail 67 5.1 Circulant and reverse circulant . . . . . . . . . . . . . . . . . 67 5.2 Symmetric circulant . . . . . . . . . . . . . . . . . . . . . . . 70 5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6 Spectral radius: k-circulant 79 6.1 Tail of product . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 Additional properties of the k-circulant . . . . . . . . . . . . 83 6.3 Truncation and normal approximation . . . . . . . . . . . . . 86 6.4 Spectral radius of the k-circulant . . . . . . . . . . . . . . . . 88 6.4.1 k-circulant for sn=kg+1 . . . . . . . . . . . . . . . 97 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7 Maximum of scaled eigenvalues: dependent input 99 7.1 Dependent input with light tail . . . . . . . . . . . . . . . . . 99 7.2 Reverse circulant and circulant . . . . . . . . . . . . . . . . . 100 7.3 Symmetric circulant . . . . . . . . . . . . . . . . . . . . . . . 104 7.4 k-circulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.4.1 k-circulant for n=k2+1 . . . . . . . . . . . . . . . . 115 7.4.2 k-circulant for n=kg+1, g >2 . . . . . . . . . . . . 117 7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 Poisson convergence 119 8.1 Point process . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8.2 Reverse circulant . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.3 Symmetric circulant . . . . . . . . . . . . . . . . . . . . . . 126 8.4 k-circulant, n=k2+1 . . . . . . . . . . . . . . . . . . . . . 128 8.5 Reverse circulant: dependent input . . . . . . . . . . . . . . . 135 8.6 Symmetric circulant: dependent input . . . . . . . . . . . . 137 8.7 k-circulant, n=k2+1: dependent input . . . . . . . . . . . 137 8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9 Heavy-tailed input: LSD 139 9.1 Stable distribution and input sequence . . . . . . . . . . . . 139 9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.3 Reverse circulant and symmetric circulant . . . . . . . . . . 144 9.4 k-circulant: n=kg+1 . . . . . . . . . . . . . . . . . . . . . 145 9.4.1 Proof of Theorem 9.4.2 . . . . . . . . . . . . . . . . . 149 Contents ix 9.5 k-circulant: n=kg−1 . . . . . . . . . . . . . . . . . . . . . 154 9.6 Tail of the LSD . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10 Heavy-tailed input: spectral radius 159 10.1 Input sequence and scaling . . . . . . . . . . . . . . . . . . . 159 10.2 Reverse circulant and circulant . . . . . . . . . . . . . . . . . 160 10.3 Symmetric circulant . . . . . . . . . . . . . . . . . . . . . . . 164 10.4 Heavy-tailed: dependent input . . . . . . . . . . . . . . . . . 166 10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 11 Appendix 173 11.1 Proof of Theorem 1.4.1 . . . . . . . . . . . . . . . . . . . . . 173 11.2 Standard notions and results . . . . . . . . . . . . . . . . . . 177 11.3 Three auxiliary results . . . . . . . . . . . . . . . . . . . . . 182 Bibliography 185 Index 189