ebook img

Ramanujan's Theta Functions PDF

696 Pages·2017·6.408 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ramanujan's Theta Functions

Shaun Cooper Ramanujan’s Theta Functions Ramanujan’s Theta Functions Shaun Cooper Ramanujan’s Theta Functions 123 ShaunCooper InstituteofNaturalandMathematical Sciences MasseyUniversity Auckland,NewZealand ISBN978-3-319-56171-4 ISBN978-3-319-56172-1 (eBook) DOI10.1007/978-3-319-56172-1 LibraryofCongressControlNumber:2017937318 Mathematics Subject Classification: 11-02 (primary); 05A30, 11A55, 11F11, 11F27, 11Y55, 33-02 (secondary) ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ToHilary Preface Athetafunctionisaseriesoftheform 1 X qn2xn; where jqj<1 and 0<jxj<1; nD(cid:2)1 orageneralizationorspecializationofsuchaseries.Thetafunctionswerestudied extensivelybyRamanujanandformthecentralthemeofthisbook. Quotients of theta functions can be used to construct elliptic functions and modular functions. One of the incredible results discovered by Jacobi is that the quotientofthetafunctionsdefinedby 0 1 14 X q.nC12/2 B C xDBBnD(cid:2)1 CC for 0<q<1 (1) B 1 C @ X qn2 A nD(cid:2)1 hasaninversefunctionthatisgivenbytheformula (cid:2) F.1(cid:2)x/(cid:3) X1 2n!2 x !n qDexp (cid:2)(cid:2) ; where F.x/D (2) F.x/ n 16 nD0 ! 2n and isthebinomialcoefficient.Moreover, n 1 !2 !n 1 !2 X 2n x D X qn2 : (3) n 16 nD0 nD(cid:2)1 vii viii Preface Jacobi’s results are fundamental to the theory, computation, and applications of Jacobianellipticfunctionsandellipticintegrals. RamanujandiscoveredthreeanaloguesofJacobi’sresult.Atthetime,theybarely received attention. But since the 1990s they have become the subject of intense interest. The goal of this book is to provide a systematic development of the results of JacobiandRamanujanandtoextendtheresultstoageneraltheory.Thetreatment is comprehensive and provides a detailed study of theta functions and modular forms for levels up to 12. Jacobi’s results in (1)–(3) above arise in the theory for level 4, while Ramanujan’s alternative results occur in the corresponding theories for levels 1, 2, and 3. The organization of the material lends itself to serving as a useful reference. Additionally, the book contains a rich source of examples for theoreticians in number theory and modular forms. The topics, especially those in thesecondhalfofthebook,havebeenthesubjectofmuchrecentresearch;manyof thesealsoappearingforthefirsttimeinbookform.Furtherresultsaresummarized inthenumerousexercisesattheendofeachchapter. Thisbookhasbeenwrittenforadvancedundergraduates,graduatestudents,and researchers. It is user friendly and in principle can be used to learn the subject from scratch. The prerequisites are fairly straightforward and rely mainly on an understandingofundergraduatecomplexanalysis(especiallyintermsofthezeros andpolesofmeromorphicfunctions,andconvergenceofinfiniteseriesandinfinite products)andthebasictheoryoflineardifferentialequations.Thereaderisexpected to come up to speed quickly with manipulations of series and products; that is inevitableinanyseriousstudyofRamanujan’smathematics. Chapter0containsanintroductiontothemainidentitiesinq-analysis:Jacobi’s tripleproductidentity,thequintupleproductidentity,Ramanujan’ssummationfor- mula,andtheq-binomialtheorem.Wealsomeetq-analoguesofthesineandcosine functions,whicharedenotedbys.(cid:3)/andc.(cid:3)/,respectively.Thefunctions.(cid:3)/has zerosthataresimpleandlieonalattice,andbecauseofthisfundamentalstructure, itplaysanimportantrolethroughoutthebook. Chapter 1 develops the theory of elliptic functions to deduce identities that can beusedtoconvertinfiniteproductstoseries(andviceversa).Specificexamplesthat leadtothenumberofrepresentationsofanintegerbythequadraticformsx2C7y2 andx2Cy2C3z2C3w2areworkedthroughindetail.PropertiesoftheWeierstrass, Jacobian, and Dixon elliptic functions are developed from q-infinite products, the latterbeingthefirst(totheauthor’sknowledge)inabook. Chapter2containsanintroductiontomodulartransformationswithanemphasis onexamples.Mostbookspresentonlythesimplestexamplesandexpendaconsider- ableamountoflabortohandleconditionallyconvergentseries.WetreatEisenstein seriesthatarisefromeitherthemodulargroup(cid:4) ortheHeckecongruencesubgroup (cid:4) .p/caseinasimplewaybystartingwithabsolutelyconvergentinfiniteproducts. 0 Theanalysisalsoworksformodularformsofweightsoneandtwoandavoidsthe difficultiesofconditionalconvergencethatariseinthemorestandardapproaches. Preface ix Chapter 3 provides a comprehensive and systematic treatment of the main propertiesofRamanujan’sthetafunctions 1 1 '.q/D X qj2 and .q/DXqj.jC1/=2 jD(cid:2)1 jD0 andtheBorweins’cubicthetafunctionsa.q/,b.q/,andc.q/.Theapproachempha- sizes the interconnections between the two sets of functions and pays attention to how properties for one set of functions carry over to the other set of functions. The identities are classified by weight, and some have not been published before. Thechapterendswithananalysisofrepresentationsofintegersbyquadraticforms and includes results for sums of 2, 4, 6, 8, 10, and 12 squares (and also triangular numbers)aswellasadiscussionofRamanujan’sgeneralresultforsumsofanyeven numberofsquaresandanyevennumberoftriangularnumbers.Cubicanaloguesare also analyzed. Exercises include representations by several other quadratic forms, includingx2Cmy2 wherem D 2,3,4,5,6,and15.Thecasesm D 7andm D 8 aredetailedinChapters1and8,respectively. In Chapter 4, the theory of theta functions is used to prove Jacobi’s inversion theorem given by (1)–(3). The same procedure is used to prove the main results for Ramanujan’s alternative theories. The most significant result is Theorem 4.30, in which all four theories occur in a unified way and where F hypergeometric 3 2 functionsareparameterizedbythetafunctions.Thearithmetic-geometricmeanand otheriterationsareanalyzedasaconsequence,andhypergeometrictransformation formulasareobtained. In Chapter 5 we start with the Rogers–Ramanujan continued fraction and establish its expansion as an infinite product. We prove the Rogers–Ramanujan identitiesandRamanujan’spartitioncongruencemodulo5.Fromthere,itisshown that the Rogers–Ramanujan continued fraction is central to a level 5 theory that is analogous to Jacobi’s results in (1)–(3). This gives rise to Apéry-type numbers andZagier’ssporadicsequences,andalsototwostunningandrecentanaloguesof Clausen’sidentityforthesquaresofcertainpowerseries. Chapter 6 centers around Ramanujan’s cubic continued fraction. The results in this chapter are the level 6 analogues of the results in Chapter 5. An interesting aspect is that there are three analogues in the level 6 theory of every function for level5. The corresponding theories for levels 7–12 are developed in Chapters 7–12, respectively. Each theory has its own idiosyncrasies and individual features. The results in Chapter 11 reach the limits of our approach, which up to this point has beenbythetafunctions.Weobtainaglimpseintotheimportantroleofthetheoryof modularformsinstudyinghigherlevels.Thetheoryforlevel23canbedeveloped withnoextraeffortandisalsoincluded. x Preface In Chapter 13, the level 10 and level 12 theories are used to develop and sys- tematizeanenormousnumberofhypergeometricmodulartransformationformulas. Anexampleofoneofthebeautifulspecialcasesthatarisefromtheidentitiesinthis chapteris 1 (cid:2)1; 1; 1 (cid:2) 1Ct (cid:3)5(cid:3) F 2 2 2I(cid:2)64t .1(cid:2)4t/5=2 3 2 1; 1 1(cid:2)4t 1 (cid:2)1; 1; 1 (cid:2) 1Ct (cid:3)(cid:3) D F 2 2 2I(cid:2)64t5 .1(cid:2)4t/1=2 3 2 1; 1 1(cid:2)4t 8 9 1 X1 <Xn n!4= t.1Ct/.1(cid:2)4t/!n D : .1C4t2/3=2 : j ; .1C4t2/2 nD0 jD0 Finally, in Chapter 14 we show how everything in the book can be brought together to explain a class of series for 1=(cid:2), which are due to Ramanujan. This culminatesinTables14.1and14.2,whichprovideaconcisesummaryofthemain results. My teacher Richard Askey opened the door to Ramanujan’s mathematics to me and I have been captivated by the subject ever since. My career has been enriched through interactions with coauthors, and I especially acknowledge Heng Huat Chan, Michael Hirschhorn, and my recent student Dongxi Ye. Chapters 0–4 havebeenusedasthebasisofaone-semestergraduatecourseatMasseyUniversity since2001.Iamgratefultoallofthestudentswhohaveparticipatedinthecourse and especially to those who have gone on to write theses, including Uros Abaz, AntesarAldawoud,JinqiGe,HeungYeungLam,LynetteO’Brien,andDongxiYe. Themanuscriptwaspreparedoveranumberofyearsandwascompletedduringlong leaveattheUniversityofNewcastleinAustralia.MichaelCoons,MumtazHussain, Wadim Zudilin, and the late Jonathan Borwein provided excellent hospitality and a wonderful working environment at Newcastle. Invigorating discussions with Zudilin helped shape the last two chapters. Hilary Boyd, Jesús Guillera, Michael Hirschhorn, Winston Sweatman, and Pee Choon Toh supplied feedback on parts of the manuscript. Elizabeth Loew at Springer provided enthusiastic and expert guidance to bring the manuscript to publication. To all of the people mentioned inthisparagraph,Ioffermyheartfeltthanks. Auckland,NewZealand ShaunCooper February2017 Contents 0 SumtoProductIdentities.................................................. 1 0.1 Introduction ......................................................... 1 0.2 Euler’sidentityforinfiniteproducts ............................... 1 0.3 Jacobi’stripleproductidentity ..................................... 4 0.4 Ramanujan’sthetafunctionf.a;b/................................. 8 0.5 Thequintupleproductidentity ..................................... 10 0.6 Examples............................................................ 15 0.7 Partitions ............................................................ 18 0.8 q-analoguesofsineandcosine..................................... 21 0.9 Ramanujan’sdifferentialequations ................................ 25 0.10 Ramanujan’ssummationformula.................................. 32 0.11 SpecialcasesofRamanujan’ssummationformula................ 37 0.12 Notes................................................................. 42 0.13 Exercises ............................................................ 44 1 EllipticFunctions........................................................... 59 1.1 IntroductionandtheWeierstrassellipticfunction................. 59 1.2 Generalpropertiesofellipticfunctions............................ 63 1.3 Ellipticfunctionidentities.......................................... 65 1.4 ExplicitformsofHalphen’sidentity............................... 69 1.5 ExplicitformsofWeierstrass’identity............................. 74 1.6 ExplicitformsofTheorems1.8,1.10,and1.11................... 76 1.7 Examples............................................................ 78 1.8 Jacobianellipticfunctions.......................................... 84 1.9 Differentialequationsandadditionformulas...................... 92 1.10 Dixon’sellipticfunctions........................................... 102 1.11 Dixon’sellipticfunctions:specialcase(cid:5) D1..................... 110 1.12 Dixon’sellipticfunctions:specialcase(cid:5) D0..................... 110 1.13 Notes................................................................. 113 1.14 Exercises ............................................................ 115 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.