ebook img

Raman Specroscopic Imaging Analysis of Signaling Proteins and protein Cofactors in Living Cells PDF

236 Pages·2017·18.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Raman Specroscopic Imaging Analysis of Signaling Proteins and protein Cofactors in Living Cells

RAMAN SPECTROSCOPIC IMAGING ANALYSIS OF SIGNALING PROTEINS AND PROTEIN COFACTORS IN LIVING CELLS Achut P Silwal A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2018 Committee: H Peter Lu, Adviser Anita Simic Graduate Faculty Representative John R Cable Alexey T Zayak ii ABSTRACT H Peter Lu, Advisor, Proteins play a central role in biological processes. Broad classes of protein types are involved in the innumerable functions of living systems, such as catalysis of the biochemical reactions, transportation of the essential molecules, defense of the immune system, and the transmission of messages from cells to cells. In our projects, we have combined the analytical approaches including surface-enhanced Raman scattering (SERS), fluorescence microscopy, electrochemistry, and computational methods to investigate the structures and functions of the proteins and signaling molecules in the living cells. In our research, we have studied the interactions and functions of dopamine transporters (DAT), dopamine receptors (DARs), and several signaling molecules such as dopamine (DA), amphetamine (AMP), methamphetamine (MAMP), and methylenedioxypyrovalerone (MDPV) in living cells. The interactions between signaling molecules and DAT or DARs are crucial for the functioning of dopaminergic pathways. In our project, we have probed interactions of signaling proteins including DAT and DARs and investigated the changes that happen in signaling proteins, other interacting compounds or intracellular contents of the second messenger such as cyclic adenosine monophosphate (cAMP). The second messenger like cAMP is important in many biological processes which are produced due to interactions of the signaling protein in living cells. Our studies on DA-DAT or DA-DARs interactions mainly utilize the Raman spectroscopy to characterize the selectivity and efficacy of psychopharmaceutic drugs. In addition, we have also studied the redox states and mechanism of protein cofactors in different experimental conditions. We have probed and characterized the redox states and mechanisms of FMN cofactors in iii biological and non-biological environments using electrochemistry, SERS measurements, and computational measurements. The results obtained from our research could be useful in the diagnosis of abnormalities or diseases originated from malfunctioning of proteins or protein- ligand interactions. iv To my friends and family v ACKNOWLEDGMENTS Firstly, I would like to express my deepest gratitude to my advisor Prof. Dr. H. Peter Lu for being a caring person and constant source of support, ideas, and inspiration throughout my Ph.D. research. Besides my advisor, I would like to thank my committee members: Dr. John R. Cable, Dr. Alexey T. Zayak, and Dr. Anita Simic for their valuable time, insightful comments, and encouragement. I would also like to thank Dr. Jon E. Sprague, Director of the Ohio Attorney General’s Center for the Future of Forensic Science at BGSU for his help and collaboration. I would also like to thank Dr. Andrew Torreli for the stimulating discussion on protein biology. My sincere thanks go to present and past members of my research group; especially Dr. Yufan He and Dr. Takashige Fujiwara for their helpfulness and teaching. I would also like to thank Dr. Bharat Dhital, Dr. Dibeyndu K. Sasmal, Dr. Rajeev Yadav, Dr. Nibedita Pal, Dr. Vishal Govind Rao, Dr. Zijian Wang, Dr. Qing Guo, Dr. Maolin Lu, and Min Gu for all research techniques and ideas they taught me. I am grateful to my fellow friends Meiling Wu, Susovan Roy Chowdhury, Sunidhi Jaiswal, and Lorena Alvarez for their friendship, supports, and stimulating discussions. I am thankful to the Bowling Green State University (BGSU); Department of Chemistry and Center for Photochemical Sciences; the Ohio Eminent Scholar endowment fund, and the Ohio Attorney General’s center for the future of Forensic Science for funding. vi I am thankful to all my professors at BGSU for providing me the best education. I am also thankful to staffs at the Center for Photochemical Sciences and the Department of Chemistry particularly Nora R. Cassidy, Alita Frater, Hilda E. Miranda, Mary Toth, Charles Codding, and Doug Martin for their kind help. Last but not the least, I would like to thank my family: my parents and siblings for their love and support. I am very thankful to my beloved wife, Rakshya Khatiwada, for being such a wonderful person and supporting me all the time with love and understanding. I am thankful to all who helped me unconditionally to make this work possible and enjoyable. v TABLE OF CONTENTS Page CHAPTER 1. INTRODUCTION ......................................................................................... 1 1.1. Biological significances of proteins .................................................................... 1 1.2 Signaling proteins ................................................................................................ 2 1.3. Dopamine in the central nervous system (CNS) ................................................. 3 1.3.1 Mechanism of dopaminergic signaling ................................................. 5 1.3.2 Dopamine transporter ............................................................................ 7 1.3.3 Dysfunction of dopamine transporter and neurodegenerative diseases 11 1.3.4 Dopamine receptors .............................................................................. 11 1.4 Flavoproteins ........................................................................................................ 13 1.4.1 Flavin cofactors ..................................................................................... 15 1.4.2 Electron transfer process in Flavin coenzymes ..................................... 16 1.5 Raman spectroscopy ............................................................................................ 18 1.5.1 Surface-enhanced Raman spectroscopy (SERS) .................................. 19 1.5.2 Electromagnetic mechanism ................................................................. 20 1.5.3 Chemical enhancement mechanism ...................................................... 24 1.6 References ............................................................................................................ 25 CHAPTER 2. EXPERIMENTAL SECTION ........................................................................ 43 2.1 Theoretical background ....................................................................................... 43 2.1.1 Raman spectroscopy ............................................................................. 43 2.1.2 Resonance Raman spectroscopy ........................................................... 45 2.1.3 Surface-enhanced Raman spectroscopy ................................................ 46 vi 2.1.4 Two-photon excited (2PE) fluorescence microscopy ........................... 48 2.1.5 Transmission electron microscopy (TEM) ........................................... 50 2.1.6 Confocal microscopy ............................................................................ 53 2.2 Experimental set-ups ............................................................................................ 54 2.2.1 Raman measurements and optical imaging ........................................... 54 2.2.2 Electrochemical control and Raman measurement ............................... 55 2.2.3 Two-photon excitation (2PE) fluorescence imaging ............................ 57 2.2.4 Two-photon excited (2PE) fluorescence microscopy ........................... 58 2.3 Density functional theory calculations ................................................................. 59 2.4 Materials and sample preparation ........................................................................ 60 2.4.1 Synthesis of silver nanoparticles ........................................................... 60 2.4.2 Fabrication of silica shell on silver NP ................................................. 61 2.4.3 Preparation of Britton-Robinson (B-R) buffer ...................................... 62 2.4.4 HEK293 cell culture ............................................................................. 62 2.4.5 Preparation of hDAT inducible HEK293 cells ..................................... 62 2.4.6 Bacteria growth and Plasmid amplification .......................................... 63 2.4.7 Transfection of pcDNA3.1-hDAT in HEK293 cell .............................. 64 2.5 References ............................................................................................................ 65 CHAPTER 3. RAMAN SPECTROSCOPIC SIGNATURE MARKER OF DOPAMINE- HUMAN DOPAMINE TRANSPORTER INTERACTION IN LIVING CELLS ................ 75 3.1 Introduction .......................................................................................................... 76 3.2 Experimental sections .......................................................................................... 83 3.2.1 Synthesis of silver nanoparticles and sample preparation .................... 83 vii 3.2.2 Surface-enhanced Raman measurements .............................................. 84 3.2.3 Two-dimensional SERS plot vs relative signal peak intensity ............. 84 3.2.4 Density functional theory calculations .................................................. 85 3.3 Results and discussion ......................................................................................... 85 3.4 Summary ............................................................................................................ 95 3.5 References ........................................................................................................... 96 CHAPTER 4. MODE-SELECTIVE RAMAN IMAGING OF DOPAMINE-HUMAN DOPAMINE INTERACTION IN LIVE CELLS .................................................................. 109 4.1 Introduction .......................................................................................................... 110 4.2 Experimental sections .......................................................................................... 114 4.2.1 Synthesis of silica-coated silver nanoparticles ..................................... 114 4.2.2 HEK293 cells culture ............................................................................ 115 4.2.3 Preparation of hDAT inducible HEK293 cells ..................................... 115 4.2.4 Transfection of pcDNA3.1-hDAT in HEK293 cell .............................. 116 4.2.5 Two photons excited (2PE) fluorescence imaging ............................... 116 4.2.6. Surface-enhanced Raman measurements ............................................. 116 4.2.7 Mode-selective Raman measurement ................................................... 117 4.2.8 Density functional theory calculations .................................................. 117 4.3 Results and discussion ......................................................................................... 118 4.3.1 Conventional and mode-selective Raman measurement ...................... 118 4.3.2 Two-photon excited (2PE) fluorescence imaging approach ................. 124 4.3.3 Correlation between mode-selective Raman image and spectra ........... 128 4.4 Summary ............................................................................................................ 130 viii 4.5 References ............................................................................................................ 131 CHAPTER 5. RAMAN SPECTROSCOPIC ANALYSIS OF SIGNALING MOLECULES- DOPAMINE RECEPTORS INTERACTIONS IN LIVING CELLS ................................... 139 5.1 Introduction .......................................................................................................... 140 5.2 Experimental section ............................................................................................ 145 5.2.1 Transfection of DRD1 and DRD2 DNA in live cells ........................... 145 5.2.2 Synthesis of silica-coated silver nanoparticles ..................................... 147 5.2.3 Density functional theory calculations .................................................. 147 5.3 Results and discussion ......................................................................................... 148 5.3.1 Internalization of silver nanoparticles ................................................... 148 5.3.2 Probing of intracellular cAMP in HEK293 cells .................................. 150 5.3.3 Probing of intracellular cAMP in HT22 cells ....................................... 153 5.3.4 Raman peaks assignment of cAMP ...................................................... 160 5.3.5 Raman peaks assignment of DRD1-HEK293 cells .............................. 165 5.4 Summary ............................................................................................................ 166 5.5 References ............................................................................................................ 167 CHAPTER 6. RAMAN SPECTROSCOPY PROBING OF REDOX STATES AND MECHANISM OF FLAVIN COENZYME .......................................................................... 179 6.1 Introduction .......................................................................................................... 179 6.2 Experimental section ............................................................................................ 189 6.2.1 Synthesis of silver nanoparticles and sample preparation .................... 189 6.2.2 Density functional theory calculations .................................................. 189 6.2.3 Surface-enhanced Raman measurements and electrochemical control 190

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.