Rail Vehicle Mechatronics Ground Vehicle Engineering Dr. Vladimir V. Vantsevich Professor and Director Program of Master of Science in Mechatronic Systems Engineering Lawrence Technological University, Michigan Road Vehicle Dynamics Fundamentals and Modeling Theory and Design, Second Edition Georg Rill and Abel Arrieta Castro Driveline Systems of Ground Vehicles Theory and Design Alexandr F. Andreev, Viachaslau Kabanau, Vladimir Vantsevich Road Vehicle Dynamics Fundamentals and Modeling Georg Rill Dynamics of Wheel-Soil Systems A Soil Stress and Deformation-Based Approach Jaroslaw A. Pytka Design and Simulation of Heavy Haul Locomotives and Trains Maksym Spiryagin, Peter Wolfs, Colin Cole, Valentyn Spiryagin, Yan Quan Sun, Tim McSweeney Automotive Accident Reconstruction: Practices and Principles Donald E. Struble Design and Simulation of Rail Vehicles Maksym Spiryagin, Colin Cole, Yan Quan Sun, Mitchell McClanachan, Valentyn Spiryagin, Tim McSweeney Control Applications of Vehicle Dynamics Jingsheng Yu and Vladimir Vantsevich Rail Vehicle Mechatronics Maksym Spiryagin, Stefano Bruni, Christopher Bosomworth, Peter Wolfs, Colin Cole For more information about this series, please visit: https://www.crcpress.com/ Ground-Vehicle-Engineering/book-series/CRCGROVEHENG Rail Vehicle Mechatronics Maksym Spiryagin, Stefano Bruni, Christopher Bosomworth, Peter Wolfs, and Colin Cole MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a par- ticular pedagogical approach or particular use of the MATLAB® software. First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2022 Maksym Spiryagin, Stefano Bruni, Christopher Bosomworth, Peter Wolfs, and Colin Cole CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the authors and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here- after invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978- 750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Spiryagin, Maksym, author. | Bruni, Stefano, author. | Bosomworth, Christopher, author. | Wolfs, Peter, author. | Cole, Colin, author. Title: Rail vehicle mechatronics / Maksym Spiryagin, Stefano Bruni, Christopher Bosomworth, Peter Wolfs and Colin Cole. Description: First edition. | Boca Raton, FL : CRC Press, 2022. | Series: Ground vehicle engineering | Includes bibliographical references and index. Identifiers: LCCN 2021029755 (print) | LCCN 2021029756 (ebook) | ISBN 9780367464738 (hbk) | ISBN 9781032148601 (pbk) | ISBN 9781003028994 (ebk) Subjects: LCSH: Railroad cars–Equipment and supplies. | Mechatronics. | Railroads–Electronic equipment. Classification: LCC TF375 .S6955 2022 (print) | LCC TF375 (ebook) | DDC 625.2–dc23 LC record available at https://lccn.loc.gov/2021029755 LC ebook record available at https://lccn.loc.gov/2021029756 ISBN: 978-0-367-46473-8 (hbk) ISBN: 978-1-032-14860-1 (pbk) ISBN: 978-1-003-02899-4 (ebk) DOI: 10.1201/9781003028994 Typeset in Times by KnowledgeWorks Global Ltd. Contents Preface......................................................................................................................xv Acknowledgments ..................................................................................................xvii Authors ....................................................................................................................xix Chapter 1 Introduction to Rail Vehicle Mechatronics ..........................................1 1.1 Historical Review ......................................................................1 1.2 Theoretical Aspects for the Application of Mechatronic System .......................................................................................2 1.2.1 Stability and Curving ...................................................3 1.2.1.1 Running Stability of a Railway Vehicle ..........................................................3 1.2.1.2 Curving Behavior of a Railway Vehicle ..........................................................4 1.2.2 Damage and Wear of Wheels and Rails .......................5 1.2.2.1 Wear of Wheels and Rails ............................5 1.2.2.2 Rolling Contact Fatigue ................................6 1.2.2.3 Metal Fatigue in Wheels, Axles, Rails, and Other Types of Damage .........................7 1.2.3 Ride Comfort ................................................................7 1.3 Structure of this Book ...............................................................8 References ..........................................................................................11 Chapter 2 Modeling of Mechanical Systems for Rail Vehicles ..........................15 2.1 Introduction .............................................................................15 2.2 Classification for Theoretical and Experimental-Based Modeling Approaches .............................................................16 2.2.1 Physical-Based Models ...............................................17 2.2.2 Black-Box Models ......................................................19 2.3 Model of Wheel/Rail Contact .................................................20 2.3.1 Geometric Analysis of Wheel/Rail Contact, Equivalent Conicity ....................................................22 2.3.2 The Normal Contact Analysis: Normal Force, Contact Patch, and Normal Stresses ..........................23 2.3.3 The Tangential Contact Analysis: Creepage versus Creep Force Relationship ................................25 2.3.3.1 Kalker’s Linear Theory ..............................27 2.3.3.2 Heuristic Saturation Laws ..........................27 2.3.3.3 The Fastsim Method ...................................29 2.3.3.4 Kalker’s CONTACT Algorithm .................29 2.3.3.5 Use of Lookup Tables .................................30 v vi Contents 2.3.4 Wheel/Rail Creep Force Models for Traction and Brake Studies..............................................................30 2.3.4.1 Polach Model ..............................................31 2.3.4.2 Modified Fastsim ........................................32 2.3.4.3 Example of Identification of Creep Force Model Parameters from Measured Data ............................................33 2.4 Modeling of Track and Track Irregularities ............................34 2.4.1 The Track System .......................................................34 2.4.2 Nominal Track Geometry ..........................................35 2.4.3 Track Irregularity .......................................................37 2.4.4 Track Models for Vehicle Dynamics Simulation .......38 2.4.4.1 Rigid Track Model ......................................39 2.4.4.2 Co-Following Sectional Models .................39 2.4.4.3 Finite Element Models ................................39 2.4.4.4 Model of Switches and Crossings ...............40 2.5 Model of Suspension Components ..........................................40 2.5.1 Primary and Secondary Suspensions in Railway Vehicles ......................................................................40 2.5.2 Coil Springs, Rubber Springs, and Bushings .............42 2.5.3 Friction-Based Suspension Components ....................43 2.5.4 Hydraulic Dampers ....................................................44 2.5.5 Air Spring Suspension ................................................45 2.6 Pantograph-Catenary Interaction ............................................47 2.7 Traction and Braking Dynamics, Control and Modeling ..................................................................................49 2.7.1 Principles of Traction Braking Dynamics ..................49 2.7.2 Design Principles of Traction and Braking Control ........................................................................51 2.7.3 Modeling of the Traction Systems .............................54 2.8 Train Dynamics .......................................................................55 2.8.1 Train Dynamics for a Single Vehicle .........................55 2.8.2 Longitudinal Train Dynamics ....................................55 2.9 Pneumatic Brake Models .........................................................58 2.10 Modeling of Inter-Car Forces ..................................................60 References ..........................................................................................62 Chapter 3 Modeling of Electrical Systems for Rail Vehicles .............................67 3.1 Electrical Topologies ...............................................................67 3.1.1 Diesel Electric Locomotives ......................................67 3.1.2 Electric Locomotives..................................................67 3.1.3 Hybrids .......................................................................69 3.1.3.1 Principles of Hybridization for Rail Vehicles .......................................................69 3.1.3.2 Hybrid Topologies .......................................70 Contents vii 3.2 Traction Power Supplies ..........................................................71 3.2.1 Alternators and Generators ........................................71 3.2.2 Rectifiers.....................................................................71 3.2.2.1 Thyristor Rectifiers .....................................72 3.2.2.2 PWM Rectifiers ..........................................73 3.2.3 Energy Storage ...........................................................74 3.2.3.1 Batteries ......................................................74 3.2.3.2 Flywheels ....................................................75 3.2.3.3 Super Capacitors .........................................76 3.2.4 Dynamic Braking Energy Management ....................76 3.3 Traction Motors and Power Electronics ..................................77 3.3.1 DC Motors ..................................................................77 3.3.1.1 Machine Models .........................................78 3.3.1.2 Case Studies ................................................79 3.3.2 Induction Machines ....................................................80 3.3.2.1 Machine Models .........................................80 3.3.2.2 Field-Oriented Control................................81 3.3.2.3 Direct Torque Control .................................86 3.3.2.4 Case Studies ................................................89 3.3.3 Synchronous Machines ..............................................91 3.3.3.1 Machine Models .........................................91 3.3.3.2 Machine-Commutated Converters .............93 3.3.3.3 Field-Oriented Control................................93 3.3.3.4 Case Studies ................................................94 3.3.4 Brushless DC ..............................................................94 3.3.4.1 Machine Models .........................................96 3.3.4.2 Field-Oriented Control................................96 3.3.4.3 Case Studies ................................................97 3.3.5 Slip Control ................................................................97 3.3.5.1 Case Studies ................................................98 References ..........................................................................................99 Chapter 4 Control Systems................................................................................103 4.1 Introduction ...........................................................................103 4.2 Open-Loop and Closed-Loop Control Systems ....................103 4.3 Classical Control ...................................................................105 4.3.1 Closed-Loop Transfer Function ...............................105 4.3.2 PID Feedback Control ..............................................107 4.4 Modern Control Approach ....................................................108 4.4.1 State Space Representation ......................................108 4.4.2 Pole Placement Method ............................................109 4.4.3 Observer Design Technique .....................................110 4.4.4 Optimal Control .......................................................112 4.4.4.1 Linear–Quadratic Regulator .....................113 4.4.4.2 Kalman Filter ............................................113 viii Contents 4.4.4.3 Linear–Quadratic–Gaussian Control .....115 4.4.4.4 H and H Methods ...................................115 2 ∞ 4.4.4.5 Model Predictive Control..........................117 4.5 Non-Classical Control Methods ............................................118 4.5.1 Fuzzy Control ...........................................................118 4.5.2 Neural Network-Based Control ................................120 References ........................................................................................121 Chapter 5 Actuators ..........................................................................................127 5.1 Introduction ...........................................................................127 5.2 Electro-Mechanical Actuators ...............................................128 5.2.1 Direct Current Motors ..............................................129 5.2.2 Alternating Current Motors......................................132 5.2.2.1 Induction Motors ......................................133 5.2.2.2 Synchronous Motors .................................134 5.2.3 Mechanical Transmission .........................................137 5.2.3.1 Gear Trains ...............................................137 5.2.3.2 Ball Screw Transmission ..........................138 5.2.4 Model of an Electromechanical Actuator with Brushless AC Motor .................................................139 5.3 Hydraulic Actuators ...............................................................141 5.3.1 Fluid Power System Basics .......................................141 5.3.2 Hydraulic Fluids Properties .....................................143 5.3.3 Managing Hydraulic Fluids ......................................144 5.3.4 Hydraulic Cylinders .................................................145 5.3.5 Hydraulic Motors .....................................................148 5.3.6 Modeling Control Valves .........................................150 5.3.7 Closed-Loop Circuits ...............................................153 5.3.8 Dynamic Performance Modeling of Actuator Systems .....................................................................155 5.3.9 Applications ..............................................................159 5.3.10 Overall Summary .....................................................164 5.4 Pneumatic Actuators .............................................................164 5.4.1 Pneumatic Power System Basics ..............................164 5.4.2 Air Properties ...........................................................166 5.4.3 Pneumatic Cylinders ................................................167 5.4.4 Air Motors ................................................................170 5.4.5 Control Valves ..........................................................172 5.4.6 Restrictions and Chokes ...........................................174 5.4.7 Applications ..............................................................176 5.4.7.1 Railway Air Braking ................................176 5.4.7.2 Railway Air Suspensions ..........................179 5.4.8 Overall Summary .....................................................182 References ........................................................................................182 Contents ix Chapter 6 Sensors .............................................................................................185 6.1 Introduction ...........................................................................185 6.2 Displacement Sensors ............................................................186 6.2.1 Resistive Sensors ......................................................186 6.2.2 Capacitive Sensors ....................................................187 6.2.3 Linear Variable Differential Transformers ............................................................187 6.3 Encoders ................................................................................189 6.4 Speed Sensors ........................................................................191 6.5 Accelerometers ......................................................................192 6.5.1 Piezoelectric Accelerometers ...................................194 6.5.2 Capacitive Accelerometers .......................................196 6.6 Pressure Sensors ....................................................................196 6.7 Measurement of Force and Torque in Mechatronic Railway Vehicles ...................................................................196 References ........................................................................................198 Chapter 7 Modeling of Complex Systems ........................................................199 7.1 Basic Principle of Complex System Design ..........................199 7.2 Introduction of Co-simulation ...............................................202 7.3 Co-simulation Techniques .....................................................203 7.4 Review of the Existing Multi-Body Software Packages and Their Co-simulation Functionalities ...............................204 7.4.1 Gensys and Matlab®/Simulink .................................204 7.4.2 Simpack and Simulink .............................................211 7.4.3 VI-Rail (ADAMS/Rail) and Simulink .....................213 7.4.4 Vampire and Simulink .............................................214 7.4.5 Universal Mechanism and Simulink ........................215 7.5 Design of Co-simulation Interfaces .......................................215 7.5.1 Design of the Simple Simulink Model and Generation of the Shared Library ............................215 7.5.2 Shared Library Integration in the Code ...................218 7.5.3 Compilation and Execution of the Code ..................222 7.6 Case Studies...........................................................................223 7.6.1 Co-simulation for a Locomotive Traction Control Study ...........................................................223 7.6.1.1 Multi-body Model of a Heavy Haul Locomotive in Gensys ..............................224 7.6.1.2 Model of a Locomotive Simplified Traction System ........................................226 7.6.1.3 Dynamic Response Test to Variations of Adhesion Conditions at the Wheel- Rail Interface ............................................231