ebook img

Radiofrequency fields in hyperthermia and MRI PDF

152 Pages·2006·13.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radiofrequency fields in hyperthermia and MRI

Radiofrequency fields in hyperthermia and MRI Exploiting their similarities for mutual benefit Nico van den Berg ii Colofon: This text was set using the freely available LATEX2ε typesetting and text format- ting system. My garden and its inhabitants are gratefully acknowledged for their contribution in the cover design. ISBN: 90-9020994-8 Druk: PrintPartners Ipskamp, Enschede Copyright: Chapter 2,3,4,5 by IOP Publishing Ltd. Radiofrequency fields in hyperthermia and MRI. Exploiting their similarities for mutual benefit. “Radiogolven in hyperthermie en MRI.” Wederzijds profijt van hun electromagnetische overeenkomsten. (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. dr. W.H. Gispen ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op dinsdag 26 september 2006 des middags te 2:30 uur door Cornelis Antonius Theodorus van den Berg geboren op 15 juli 1975 te IJsselmuiden. promotor: Prof. dr. ir. J.J.W. Lagendijk Faculteit der Geneeskunde, Universiteit Utrecht co-promotor: dr. ir. L.W. Bartels UMC Utrecht co-promotor: dr. J.B. van de Kamer AMC Amsterdam Het beschreven werk werd verricht op de afdeling Radiotherapie van het Univer- sitair Medisch Centrum Utrecht, participerend in het Image Sciences Institute en deonderzoekschool voor biomedische beeldwetenschappen, ImagO, in eendoor de NederlandseKankerbestrijdinggefinancierdproject(UU2001-2462).Dezeuitgave is tot stand gekomen met financi¨ele steun van de Nederlandse Kankerbestrijding, het ImagO en Philips Medical Systems BV, Best, the Netherlands. Contents 1 Introduction 3 1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Regional Hyperthermia Treatment Planning . . . . . . . . . . . . . 5 1.3 Quality assurance in regional hyperthermia . . . . . . . . . . . . . 8 1.4 Quality assurance of radiofrequency fields with MRI . . . . . . . . 8 1.5 Optimizing radiofrequency fields in MR imaging . . . . . . . . . . 10 1.6 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Feasibility and accuracy of 3D quantitative blood flow mapping of the prostate using dynamic contrast-enhanced multi-slice CT 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 DCE-CT imaging and analysis . . . . . . . . . . . . . . . . 18 2.2.3 Determination of the confidence intervals . . . . . . . . . . 20 2.2.4 Calculation and analysis of the parameter maps. . . . . . . 21 2.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Determination of the confidence intervals . . . . . . . . . . 22 2.3.2 DCE-CT imaging . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.3 DCE-data analysis . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Analysis of the parameter maps . . . . . . . . . . . . . . . . 28 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Patient Specific Thermal Modelling of the Prostate. 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 Dynamic Contrast Imaging . . . . . . . . . . . . . . . . . . 37 3.2.2 Discrete Vessel Model of Pelvis . . . . . . . . . . . . . . . . 38 3.2.3 Computation of Power Density . . . . . . . . . . . . . . . . 40 3.2.4 Thermal Modelling . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.5 Comparison with Clinical Data . . . . . . . . . . . . . . . . 42 v vi Contents 3.2.6 Discrete Vessel Model of Prostate Vasculature. . . . . . . . 42 3.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 Perfusion Maps . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.2 Temperature Calculations . . . . . . . . . . . . . . . . . . . 45 3.3.3 Comparison with Clinical Data . . . . . . . . . . . . . . . . 45 3.3.4 Pre-heating in Prostate Vessels . . . . . . . . . . . . . . . . 46 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.1 Prostate and Tumour Perfusion . . . . . . . . . . . . . . . . 48 3.4.2 Impact of Perfusion Maps on Thermal Calculations. . . . . 48 3.4.3 Pre-heating: An issue or not? . . . . . . . . . . . . . . . . . 49 3.4.4 Comparison with Clinical data . . . . . . . . . . . . . . . . 52 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Experimental validation of hyperthermia SAR treatment plan- + ning using MR B imaging 55 1 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.2 MR measurements . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.3 FDTD model of the transmit coil . . . . . . . . . . . . . . . 61 4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.3 Comparison measurements and simulations . . . . . . . . . 67 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4.1 Comparison Measurements and Simulations . . . . . . . . . 68 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 + 5 The use of MR B imaging for validation of FDTD electromag- 1 netic simulations of human anatomies. 71 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2.2 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.3 FDTD model of transmit coil.. . . . . . . . . . . . . . . . . 75 5.2.4 Generation of dielectric patient model . . . . . . . . . . . . 76 5.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 + 5.4.1 B measurement . . . . . . . . . . . . . . . . . . . . . . . . 79 1 5.4.2 Comparison the measurements and simulations . . . . . . . 81 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Contents 1 6 The design of a fully integrated regional hyperthermia - 3 Tesla MRI system for the treatment of pelvic tumours. 85 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2.1 Design proposal and FDTD simulations . . . . . . . . . . . 88 6.2.2 Evaluation of hyperthermia performance . . . . . . . . . . . 89 6.2.3 Evaluation of the MRI performance . . . . . . . . . . . . . 89 6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.1 Hyperthermia performance . . . . . . . . . . . . . . . . . . 92 6.3.2 MRI performance. . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 + 7 Simultaneous B homogenization and SAR hotspot suppression 1 using an MR phased array transmit coil. 97 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.2.1 Coil simulation . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.2.2 Elliptical Phantoms . . . . . . . . . . . . . . . . . . . . . . 100 7.2.3 Patient Model . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.3.1 Elliptical Phantoms . . . . . . . . . . . . . . . . . . . . . . 102 7.3.2 Human Anatomies . . . . . . . . . . . . . . . . . . . . . . . 105 7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.4.1 Field patterns for quadrature excitation . . . . . . . . . . . 107 7.4.2 Phase/amplitude optimization. . . . . . . . . . . . . . . . . 109 7.4.3 Applying elliptical settings as generic settings . . . . . . . . 111 7.4.4 Combination and comparison with other techniques . . . . 112 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8 Summary and general discussion 115 8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.2 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9 Samenvatting 123 10 Publications 129 11 Dankwoord 133 12 Curriculum Vitae 135 References 137 Chapter 1 Introduction 1.1 General introduction Hyperthermia aims to elevate the temperature of malignant tissue to the range of 40 to 44 oC. It is being applied as an adjuvant therapy to radiotherapy and chemotherapy. The biological rationale was established by several investigations in the eighties that demonstrated that heat leads to a sensitisation of tumours to radiation and chemotherapeutic drugs (Dahl, 1988; Dewhirst et al., 1983). In addition, it was shown that hyperthermia above 41-42 oC has a direct cell-killing effect (Dewey, 1994). The beneficial effects of hyperthermia were confirmed by several clinical trials (Overgaard et al., 1995; Vernon et al., 1996; Van der Zee et al., 2000). Deep-seated pelvic tumours such as prostatic and cervical tumours are treated by radiofrequency (RF) waves in the frequency range of 70 to 150 MHz (Wust etal.,1995).Thistypeofhyperthermiaisreferredtoasregionalhyperthermia.In regional hyperthermia the goal is to concentrate the heat deposition in the target, while keeping the energy deposition in healthy tissue under control. A popular applicator design with good performance in this respect is the annular phased array antenna (Turner, 1984; Sullivan et al., 1992; Wust et al., 1996; Paulsen et al., 1999). See Figure 1.1 for an example. It allows conformal heating patterns by maximizing the constructive interference of the antenna electric fields with amplitude and phase control. In this way target temperatures up to 43 oC can be reached (Kroeze et al., 2001). In the clinical practice a temperature goal of 43 oC is rarely achieved and realis- tic temperatures vary mostly in the range of 40 to 41 oC (Hand et al., 1997). A fundamentalandmajorcauseforthistemperatureunderdosageisthatinregional hyperthermiaarterialbloodentering theheatedvolume isatarelatively low tem- perature of 38 to 39 oC (Van Vulpen et al., 2003). This leads to the creation of coldtractsinthetargetvolumearoundnon-thermallyequilibrateddiscretevessels 3 4 Chapter 1. Introduction (Crezee and Lagendijk, 1992; Lagendijk et al., 1995). A further cause of tempera- ture heterogeneity is the heterogeneous power absorption by the anatomy due to the large contrast in dielectric tissue properties (Wust et al., 1999; Van de Kamer et al., 2002a) To gain insight into the complex electromagnetic and thermal processes that gov- ern the temperature distribution in the target volume, hyperthermia treatment planning has been developed (Lagendijk, 2000; Wust et al., 1996). The planning comprises of electromagnetic and thermal modelling techniques which are used to calculatethespecificabsorptionrate(SAR)andtemperaturedistribution(Vande Kamer et al., 2001a). The planning determines in individual patient cases the set of antenna amplitudes and phases that maximizes the thermal dose in the target andminimizes toxicity (Kroezeetal.,2001). Themostimportant difficulty ofthis concept is that it assumes that a whole range of technical factors and clinical un- certainties can be verified and controlled accurately during treatment. In practice such an ideal control is nearly impossible to accomplish with the current limited quality assurance techniques. Another application of hyperthermia treatment planning is the electromagnetic and thermal analysis of MR imaging. Due to technical challenges high field MR imaging faces with respect to RF field inhomogeneities and RF safety, this matter has become a lively research topic (Jin et al., 1996; Ibrahim et al., 2000a; Collins et al., 2004). In development of novel excitation and detection techniques to over- cometheseRFrelatedproblemselectromagneticandthermalmodellingtechniques play a prominent role (Weiger et al., 2001; Katscher et al., 2004; Vaughan et al., 2004; Van den Berg et al., 2006c). This thesis addresses several electromagnetic and thermal aspects of regional hy- perthermiaandMRimaging.Extensivedataacquistiontechniquesweredeveloped to investigate the temperature heterogeneity of the prostate during regional hy- perthermia treatment. Furthermore, a unique technique able to visualize RF field patterns in MR imaging was employed to validate hyperthermia treatment plan- ning. To facilitate a successful application of hyperthermia treatment planning in the clinical practice, a new type of hybrid MRI/hyperthermia applicator is pro- posed which cannot only provide image feedback on the anatomy, physiology and temperature during treatment, but also on the electromagnetic field within the patient.Suchadesignwillimprovequalityassurancetoanextentthatitbecomes possible to profit from the merits of hyperthermia treatment planning and maxi- mize target temperatures with planning based optimizations. In the final chapter hyperthermiatreatmentplanningisappliedtoanalyzeRFfieldpatternsforwhole body MR imaging at 3 Tesla. A method is presented which can reduce simultane- ously RF field inhomogeneities and RF power deposition.

Description:
Ampl. Phase. Ampl. Phase. Ampl. Phase Vaughan J T, Adriany G, Snyder C J, Tain J, Thiel J, Bolinger L, Liu H, DelaBarre L and. Ugurbil K 2004
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.