RADIO WAVE PROPAGATION AND PARABOLIC EQUATION MODELING GÖKHAN APAYDIN LEVENT SEVGI Copyright © 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. Library of Congress Cataloging-in-Publication Data is available. ISBN: 978-1-119-43211-1 PrintedintheUnitedStatesofAmerica. Contents Preface ix Acronyms xi MatlabCodes xiii Chapter1 INTRODUCTION 1 1.1 ElectromagneticProblemsandClassification 1 1.2 MaxwellEquations 3 1.3 GuidedWavesandTransverse/LongitudinalDecomposition 4 1.4 TwoDimensionalHelmholtz’sEquation 5 1.5 Validation,Verification,andCalibrationProcedure 6 1.6 FourierTransform,DFTandFFT 7 Chapter2 WAVEPROPAGATIONOVERFLATEARTH 15 2.1 FlatEarthandGOTwo-RayModel 15 2.2 SingleKnifeEdgeProblemandFour-RayModel 16 2.3 VerticalLinearRefractivityProfileandModeSummation 19 Chapter3 PARABOLICEQUATIONMODELING 23 3.1 Introduction 23 3.2 ParabolicWaveEquationForm 24 3.3 Dirichlet,Neumann,andCauchyBoundaryConditions 27 3.4 Antenna/SourceInjection 28 3.5 Split-StepParabolicEquation(SSPE)Model 29 3.5.1 Narrow-AngleandWide-AngleSSPE 30 3.5.2 AMATLAB-BasedSimpleSSPECode 30 3.6 FEM-BasedParabolicEquationModel 32 3.7 AtmosphericRefractivityEffects 40 Chapter4 WAVEPROPAGATIONATSHORTRANGES 43 4.1 Introduction 43 4.2 AccurateSourceModeling 44 4.3 WavePropagatorsinTwoDimensions 47 4.3.1 FlatEarthandTwo-RayModel 47 4.3.2 FEM-BasedPEWavePropagator 49 4.3.3 SSPE-BasedPEWavePropagator 49 4.3.4 MethodofMomentsModeling 49 4.4 KnifeEdgeandFourRayModel 49 4.5 CanonicalTestsandCalibration 50 Chapter5 PEANDTERRAINMODELING 53 5.1 IrregularPECTerrain 53 5.2 PEandImpedanceBoundaryModeling 54 5.2.1 DiscreteMixedFourierTransform(DMFT) 56 5.3 NumericalResultsandComparison 57 Chapter6 ANALYTICALEXACTANDAPPROXIMATEMODELS 65 6.1 WavePropagationinaParallelPlateWaveguide 65 6.2 Green’sFunctioninTermsofModeSummation 68 6.3 ModeSummationforaTiltedGaussianSource 70 6.4 AHybridRay+ImageMethod 71 6.5 NumericalModels 73 6.5.1 ParabolicEquationModels: SSPEandFEMPE 73 6.5.2 MethodofMoments 75 Chapter7 WAVEPROPAGATIONINSIDETHREE-DIMENSIONAL RECTANGULARWAVEGUIDE 79 7.1 Introduction 79 7.2 Three-DimensionalRectangularWaveguideModel 80 7.3 Three-DimensionalParabolicEquationModels 81 7.3.1 SSPEModel 81 7.3.2 FEMPEModel 82 7.3.3 ADIPEModel 82 7.4 TestsandCalibration 83 Chapter8 TWOWAYPEMODELS 89 8.1 FormulationofTwoWayFEMPEMethod 89 8.2 FormulationofTwoWaySSPEMethod 91 8.3 FlatEarthwithInfiniteWall 91 8.4 FlatEarthwithSingleandDoubleKnifeEdges 91 8.5 TwoWayPropagationModelinginWaveguides 96 8.6 Three-Dimensional Split-Step- and Finite-Element-Based ParabolicEquationModels 96 8.7 TestsandCalibration 97 Chapter9 PETOOLVIRTUALPROPAGATIONPACKAGE 101 9.1 Introduction 101 9.2 PETOOLSoftware 103 9.3 CharacteristicExamples 107 Chapter10 FEMIXVIRTUALPROPAGATIONPACKAGE 113 10.1 Introduction 113 10.2 AnalyticalSurface-WaveModel 115 10.2.1 PathLoss 115 10.2.2 Norton’sModel 115 10.2.3 Wait’sModel 116 10.2.4 Millington’sCurveFittingApproach 117 10.3 NumericalSurface-WaveModel 118 10.4 FEMIXPackage 119 10.5 CharacteristicExamples 122 References 127 Index 135 PREFACE Wavepropagationinandthroughcomplexenvironmentshaslongbeenahottopic. Oneneedstounderstand/model/simulateelectromagneticwavepropagationinorder toestablishareliablecommunicationlink,toearlydetecttargetsinradarsystems,to continuouslycoveranoperationalgroundandairareas,etc.Thesameisalsotruefor underwateracousticwaves. Establishingacommunicationlinkbetweenashipanda submarine,betweentwosubmarines,etc.,andearlydetectingnuclearsubmarinesin deepaswellasshallowwaters,etc.,isachallenge. Thesearealsocriticalinoptical wavepropagationthroughfibercablesandtheatmosphere. Realisticelectromagnetic/acoustic/opticalwavepropagationmodelsinandthrough complexenvironmentshavelongbeeninvestigatedanddeveloped. Oneoftheear- liest and the most effective models, used in electromagnetic/acoustic/optical wave propagation,istheparabolicequationmethod. Thisbookisacontinuationofbook ParabolicEquationMethodsforElectromagneticWavePropagationwrittenbyLevy in 2000 and presents the application of analytical and numerical methods for wave propagation. The powerful numerical methods are given with several scenarios arounduswhileconsideringtheeffectsofenvironmentonradiowavepropagation. This book is written for electrical, electronics, communication, computer engi- neersinindustry,aswellasforuniversitystudents,researchers,andprofessors. The goalistodiscussfundamentalsofelectromagneticwavepropagation,especiallyon radio wave propagation, groundwave propagation, maritime communication, inte- gratedmaritimesurveillancesystems, submarinecommunication, defenseindustry, radar applications, etc. The topics listed in the contents are re-visited in terms of radiowaveengineering.ThebookalsointroducessomesimpleMATLABscriptsfor severalwell-knownelectromagneticpropagationproblems. Thefirstchapterintroducessomefundamentalconceptsofelectromagneticprob- lems. Maxwell equations, transverse electric and magnetic models in guided wave representation, Fourier transform, validation, verification, and calibration are re- viewedbriefly. Thesecondchapterpresentsthesimplestpropagationscenarioused in analytical modeling to investigate wave propagation over flat Earth. The part is importantforvalidation, verification, andcalibration. Chapter3presentsparabolic equation modeling based on the Fourier split-step and the finite-element methods. SimpleMATLAB-basedpropagationtoolsareintroduced. Systematiccomparisons on some canonical test scenarios are performed, and the propagation tools are cal- ibratedagainstthemathematicallyexactsolutions. Atmosphericrefractivityeffects arealsodiscussedattheendofthispart. Accuratesourcemodelingandvalidation, verification,andcalibrationofdifferentpropagatorsarediscussedinChapter4. The SSPE, FEMPE, and MoM propagators are validated and calibrated at short ranges against the two-ray model over flat Earth and the single knife edge problem with the four-ray model. Irregular terrain modeling and impedance boundary modeling arepresentedinChapter5. Wavepropagationinsideasimplecanonicalstructure,a parallelplatewaveguide,isinvestigatedinChapter6. Analyticalsolutionsinterms of mode summation as well as image method are discussed and simple MATLAB scripts are developed. In Chapter 7, the classical rectangular waveguide problem ischosenforthree-dimensionalparabolicequationpropagation. Propagationinside thiswaveguidecanbeexactlymodeledintermsofmodalsummationandanygiven sourcedistributioncanbeanalyticallyrepresentedasaccuratelyasdesired. Theal- gorithms are developed, tested against analytically exact data, and calibrated here. Chapter 8 improves parabolic equation modeling with backward propagation, con- sideredastwo-wayparabolicequationmodeling. SimpleMATLAB-basedpropaga- tiontoolswhichusetwo-wayparabolicequationaredevelopedandtested. Chapter 9 presents a novel software tool (PETOOL), developed in MATLAB with graphi- cal user interface (GUI), for the analysis and visualization of radio wave propaga- tion through the homogeneous and inhomogeneous atmosphere, by incorporating variable terrain effects with the aid of the two-way split-step algorithm employing wide-angle propagator. The last chapter presents a novel MATLAB software tool (FEMIX)fortheanalysisandvisualizationofsurface-wavepropagationovertheir- regularEarth’ssurfacethroughahomogeneousandaninhomogeneousatmosphere. SomeofthecontentsofthisbookhavebeenpublishedinIEEEpublicationssuch asIEEETransactionsonAntennasandPropagation,andIEEEAntennasandProp- agationMagazineforthelastcoupleofyears. This book uses a MATLAB license under the MathWorks Book Program in de- velopingbookmaterials. GÖKHAN APAYDIN, LEVENT SEVGI ACRONYMS ADIPE alternatedirectionimplicitparabolicequation BC boundarycondition CBC Cauchyboundarycondition DBC Dirichletboundarycondition DCT discretecosinetransform DFT discreteFouriertransform DMFT discretemixedFouriertransform DST discretesinetransform EM electromagnetic FDTD finite-differencetimedomain FEM finite-elementmethod FEMIX FEM-basedPEalgorithmwithmixedpaths FEMPE FEM-basedparabolicequation GO geometricoptics GTD geometrictheoryofdiffraction GUI graphicaluserinterface HFA high-frequencyasymptotics FFT fastFouriertransform IM imagemethod ITU InternationalTelecommunicationUnion LOS lineofsight MODSIM modelingandsimulation MoM methodofmoments NBC Neumannboundarycondition PDE partialdifferentialequation PE parabolicequation PEC perfectelectricconductor PF propagationfactor PL pathloss PO physicaloptics PWE parabolicwaveequation PTD physicaltheoryofdiffraction RCS radarcross-section SSPE split-stepparabolicequation TE transverseelectric TEM transverseelectromagnetic TM transversemagnetic TLM transmissionlinematrix UTD uniformtheoryofdiffraction VV&C validation,verification,andcalibration 1D one-dimensional 2D two-dimensional 3D three-dimensional MATLAB CODES Page CodeName Purpose 9 dft_sin.m ComputesdiscreteFouriertransformoftwosinusoids 10 fft_sin.m ComputesfastFouriertransformoftwosinusoids 12 Fseries.m ComputesFourierseriesrepresentationofagivenfunction 14 fft_dst_dct.m ComparesdiscreteFouriertransformanddiscretesine/cosine transformofaGaussianfieldprofile 16 Ray2.m Computesfieldsover2Dflatgroundusingtwo-raymodel 16 Ray2PF.m Computespropagationfactorover2Dflatground 19 Ray4.m Computespropagationfactorover2Dflatground usingfour-raymodel 22 Linear.m Computesfieldsusingmodesummationover2Dflatground forlinearlydecreasingrefractivity 34 sspe.m Computesfieldsover2DflatgroundusingSSPEmodel 34 fempe.m Computesfieldsover2DflatgroundusingFEMPEmodel 48 Fearth1.m Computesfieldsover2DflatEarthusingtwo-raymodel withrayexcitationcoefficients