ebook img

Radio to gamma-ray variability study of blazar S5 0716+714 PDF

2.1 MB·English
by  B. Rani
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radio to gamma-ray variability study of blazar S5 0716+714

Astronomy&Astrophysicsmanuscriptno.ms (cid:13)c ESO2013 January31,2013 Radio to gamma-ray variability study of blazar S5 0716+714 B.Rani1,⋆,T.P.Krichbaum1,L.Fuhrmann1,M.Bo¨ttcher2,3,B.Lott4,H.D.Aller5,M.F.Aller5,E.Angelakis1,U. Bach1,D.Bastieri6,7,A.D.Falcone8,Y.Fukazawa9,K.E.Gabanyi10,11,A.C.Gupta12,M.Gurwell13,R.Itoh9,K.S. Kawabata14,M.Krips15,A.A.La¨hteenma¨ki16,X.Liu17,N.Marchili1,7,W.Max-Moerbeck18,I.Nestoras1,E. Nieppola16,G.Quintana-Lacaci19,20,A.C.S.Readhead18,J.L.Richards21,M.Sasada14,22,A.Sievers19,K. Sokolovsky1,23,M.Stroh8,J.Tammi16,M.Tornikoski16,M.Uemura14,H.Ungerechts19,T.Urano9,andJ.A.Zensus1 1 Max-Planck-Institutfu¨rRadioastronomie(MPIfR),AufdemHu¨gel69,D-53121Bonn,Germany 3 2 AstrophysicalInstitute,DepartmentofPhysicsandAstronomy,OhioUniversityAthens,OH45701,USA 1 3 CentreforSpaceResearch,North-WestUniversity,PotchefstroomCampus,Potchefstroom,2531,SouthAfrica 0 4 Universite´Bordeaux1,CNRS/IN2p3,Centred’EtudesNucla´iresdeBordeauxGradignan,33175Gradignan,France 2 5 AstronomyDepartment,UniversityofMichigan,AnnArbor,MI48109-1042,USA n 6 IstitutoNazionalediFisicaNucleare,SezionediPadova,I-35131Padova,Italy a 7 DipartimentodiFisicaeAstronomia,Universita`diPadova,I-35131Padova,Italy J 8 Dept.ofAstronomyandAstrophysics,PennStateUniversity,UniversityPark,PA16802,USA 9 9 DepartmentofPhysicalSciences,HiroshimaUniversity,1-3-1Kagamiyama,Higashi-Hiroshima,Hiroshima739-8526 2 10 FO¨MISatelliteGeodeticObservatory,POBox585,1592Budapest,Hungary 11 KonkolyObservatory, ResearchCentreforAstronomyandEarthSciences,HungarianAcademyofSciences,H-1121Budapest, ] Hungary E 12 AryabhattaResearchInstituteofObservationalSciences(ARIES),ManoraPeak,Nainital,263129,India H 13 Harvard-SmithsonianCenterforAstrophysics,Cambridge,MA02138USA 14 HiroshimaAstrophysicalScienceCenter,HiroshimaUniversity,1-3-1Kagamiyama,Higashi-Hiroshima,Hiroshima739-8526 . h 15 IRAM,300ruedelapiscine,F-38406Saint-Martind’He´res,France p 16 AaltoUniversityMetsa¨hoviRadioObservatory,Kylma¨la¨,Finland - 17 XinjiangAstronomicalObservatory,ChineseAcademyofSciences,150Science1-Street,Urumqi830011,P.R.China o 18 CahillCenterforAstronomyandAstrophysics,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA r t 19 InstitutodeRadioastronom´ıaMilime´trica(IRAM),AvenidaDivinaPastora7,Local20,18012Granada,Spain s 20 CAB,INTA-CSIC,Ctra.deTorrejo´naAjalvir,km4,E-28850,Torrejo´ndeArdoz,Madrid,Spain a 21 PurdueUniversity,DepartmentofPhysics,525NorthwesternAve,WestLafayette,IN47907,USA [ 22 DepartmentofAstronomy,KyotoUniversity,Kitashirakawa-Oiwake-cho,Sakyo-ku,Kyoto606-8502 1 23 AstroSpaceCenterofLebedevPhysicalInstitute,Profsoyuznaya84/32,117997Moscow,Russia v Received———;accepted———- 7 8 ABSTRACT 0 7 Wepresenttheresultsofaseriesofradio,optical,X-rayandγ-rayobservationsoftheBLLacobjectS50716+714carriedoutbetween . 1 April2007andJanuary2011.Themulti-frequencyobservationswereobtainedusingseveralgroundandspacebasedfacilities.The 0 intenseopticalmonitoringofthesourcerevealsfasterrepetitivevariationssuperimposed onalong-termvariabilitytrendatatime 3 scaleof∼ 350 days. Episodesoffast variabilityrecurontimescalesof∼ 60–70days. Theintenseandsimultaneous activityat 1 optical and γ-rayfrequencies favorstheSSC mechanism forthe production of thehigh-energy emission. Twomajor low-peaking : radioflareswereobservedduringthishighoptical/γ-rayactivityperiod.Theradioflaresarecharacterizedbyarisingandadecaying v stageandareinagreementwiththeformationofashockanditsevolution.Wefoundthattheevolutionoftheradioflaresrequires i X ageometrical variationinadditiontointrinsicvariationsofthesource.Differentestimatesyieldarobustandself-consistentlower limitsofδ≥20andequipartitionmagneticfieldB ≥0.36G.Causalityargumentsconstrainthesizeofemissionregionθ ≤0.004 r eq a mas.Wefoundasignificantcorrelationbetweenfluxvariationsatradiofrequencieswiththoseatopticalandγ-rays.Theoptical/GeV fluxvariationsleadtheradiovariabilityby∼65days.Thelongertimedelaysbetweenlow-peakingradiooutburstsandopticalflares implythatopticalflaresaretheprecursorsofradioones.An orphanX-rayflarechallengesthesimple,one-zone emission models, rendering them too simple. Herewe alsodescribe thespectral energy distributionmodeling of the source fromsimultaneous data takenthroughdifferentactivityperiods. Key words. galaxies: active – BLLacertae objects: individual: S50716+714 – Gammarays: galaxies –X-rays: galaxies– radio continuum:galaxies 1. Introduction ⋆ MemberoftheInternationalMaxPlanckResearchSchool(IMPRS) The BL Lac objectS5 0716+714is amongthe mostextremely for Astronomy and Astrophysics at the Universities of Bonn and variableblazars.Theopticalcontinuumofthe sourceissofea- Cologne tureless that it is hard to estimate its redshift. Nilssonetal. 1 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 (2008) claimeda value ofz = 0.31±0.08basedon the photo- tical emissions. This source is also among the bright blazars metricdetectionofthehostgalaxy.Veryrecently,thedetection in the Fermi/LAT (LargeArea Telescope)Bright AGN Sample of intervening Lyα systems in the ultra-violet spectrum of the (LBAS) (Abdoetal., 2010a), whose GeV spectra are governed sourceconfirmstheearlierestimateswitharedshiftvalue0.2315 byabrokenpowerlaw.ThecombinedGeV–TeVspectrumof < z<0.3407(Danforthetal.,2012).Thissourcehasbeenclas- thesourcedisplaysabsorption-likefeaturesin10–100GeVen- sified as an intermediate-peakedblazar(IBL) by Giommietal. ergyrange(Senturketal.,2011). (1999),asthefrequencyofthefirstspectralenergydistribution The broadbandflaring behaviorof the source is even more (SED)peakvariesbetween1014and1015Hz,andthusdoesnot complex. A literature study reveals that the broadband flar- fallintothewavebandsspecifiedbytheusualdefinitionsoflow ing activity of the source is not simultaneous at all frequen- andhighenergypeakedblazars(i.e.LBLsandHBLs). cies(Chenetal.,2008;Villataetal.,2008;Vittorinietal.,2009; S5 0716+714isoneof thebrightestBL Lacsin theoptical Ostoreroetal., 2006). Also, it is hard to explain both the slow bandsandhasanopticalintradayvariability(IDV)dutycycleof modes of variability at radio and hard X-ray bands and the nearlyone(Wagner&Witzel,1995).Unsurprisingly,thissource rapid variability observed in the optical, soft X-ray, and γ-ray hasbeenthesubjectofseveralopticalmonitoringcampaignson bands using a single component SSC model (see Villataetal., intraday(IDV)timescales(e.g.Wagneretal.,1996; Ranietal., 2008; Giommietal., 2008; Chenetal., 2008; Vittorinietal., 2011;Montagnietal.,2006;Guptaetal.,2009,2012,andrefer- 2009). The X-ray spectrum of the source contains contribu- encestherein).Thesourcehasshownfivemajoropticaloutbursts tions from both synchrotron and IC emission (Foschinietal., separatedroughlyby∼3.0±0.3years(Raiterietal.,2003).High 2006; Ferreroetal., 2006) and the simultaneous optical-GeV opticalpolarization∼20%–29%hasalsobeenobservedinthe variationsfavoranSSCemissionmechanism(Chenetal.,2008; source(Takaloetal.,1994;Fanetal.,1997).Guptaetal.(2009) Vittorinietal.,2009). analyzedtheexcellentintradayopticallightcurvesofthesource Despite of several efforts to understandthe broadbandflar- observedbyMontagnietal.(2006)andreportedgoodevidence ingactivityofthesource,westilldonothaveaclearknowledge ofnearlyperiodicoscillationsrangingbetween25and73min- oftheemissionmechanismsresponsibleforitsorigin.Inpartic- utesonseveraldifferentnights.Goodevidenceforthepresence ular, the location and the mechanism responsible for the high- of∼15-minperiodicoscillationsatopticalfrequencieshasbeen energyemission and the relationbetween the variabilityat dif- reportedbyRanietal.(2010a).Adetailedmultibandshort-term ferentwavelengthsare notyetwellunderstood.Therefore, itis opticalfluxandcolorvariabilitystudyofthesourceisreported importanttoinvestigatewhetheracorrelationexistsbetweenop- inRanietal.(2010b).Therewefoundthattheopticalspectraof ticalandradioemissions,whicharebothascribedtosynchrotron thesourcetendtobebluerwithincreasingbrightness. radiationfromrelativisticelectronsin a plasmajet. Ifthe same There is a series of papers covering flux variability studies photonsareup-scatteredtohighenergies,simultaneousvariabil- (Quirrenbachetal., 1991; Wagneretal., 1996, and references ityfeaturescouldbeexpectedatoptical–GeVfrequencies.But therein) and morphological/kinematicstudies at radio frequen- theobservedvariabilityoftenchallengessuchscenarios.Toex- cies (Witzeletal., 1988; Jorstadetal., 2001; Antonuccietal., plore the broadband variability features and to understand the 1986;Bachetal.,2005;Rastorguevaetal.,2011,andreferences underlying emission mechanism, an investigation of long-term therein).Intradayvariabilityatradiowavelengthsislikelytobe variability over several decades of frequencies is crucial. The a mixture of intrinsic and extrinsic (due to interstellar scintil- aim of the broadbandvariabilitystudyreportedin this paperis lation)mechanisms.Asignificantcorrelationbetweenoptical– to provide a general physical scenario which allows us to put radiofluxvariationsatday-to-daytimescaleshasbeenreported eachobservedvariationofthesourceacrossseveraldecadesof byWagneretal.(1996).Thefrequencydependenceofthevari- frequenciesinacoherentcontext. ability index at radio bands is not found to be consistent with Here, we report on a broadband variability study of the interstellar scintillation (Fuhrmannetal., 2008), which implies source spanning a time period of April 2007 to January 2011. the presence of very small emitting regions within the source. Themulti-frequencyobservationscompriseGeVmonitoringby However, the IDV time scale does show evidence in favor of Fermi/LAT, X-ray observationsby Swift-XRT, as well as opti- anannualmodulation,suggestingthattheIDVofS50716+714 cal and radio monitoring by several ground based telescopes. couldbedominatedbyinterstellarscintillation(Liuetal.,2012). More explicitly, we investigate the correlation of γ-ray activ- EGRET on board the Compton Gamma-ray Observatory itywiththeemissionatlowerfrequencies,focusingontheindi- (CGRO)detectedhigh-energyγ-ray(>100MeV)emissionfrom vidualflaresobservedbetweenAugust2008andJanuary2011. S5 0716+714severaltimesfrom1991to 1996(Hartmanetal., The evolution of radio (cm and mm) spectra is tested in the 1999; Linetal., 1995). Two strong γ-ray flares on September context of a standard shock-in-jet model. The broadband SED and October 2007 were detected in the source with AGILE ofthesourceisinvestigatedusingaone-zonesynchrotronself- (Chenetal., 2008). These authors have also carried out Compton(SSC)modelandalsowithahybridSSCplusexternal SED modeling of the source with two synchrotron self- radiationComptonmodel.Inshort,thisstudyallowsustoshed Compton(SSC)emittingcomponents,representativeofaslowly lightonthebroadbandradio-to-γ-rayfluxandspectralvariabil- and a rapidly variable component, respectively. Observations ityduringaflaringactivityphaseofthesourceoverthisperiod. by BeppoSAX (Tagliaferrietal., 2003) and XMM-Newton Thispaperisstructuredasfollows.Section2providesabrief (Foschinietal., 2006) provide evidence for a concave X-ray descriptionofthemulti-frequencydataweemployed.InSection spectrum in the 0.1 – 10 keV band, a signature of the pres- 3,wereportthestatisticalanalysisanditsresults.Ourdiscussion ence of both the steep tail of the synchrotronemission and the isgiveninSection4andwepresentourconclusionsinSection flat part of the Inverse Compton (IC) spectrum. Recently, the 5. MAGICcollaborationreportedthefirstdetectionofVHEγ-rays fromthe sourceat the 5.8σsignificancelevel(Anderhubetal., 2. Multi-frequencyData 2009). The discovery of S5 0716+714 as a VHE γ-ray BL Lac object was triggered by its very high optical state, sug- FromApril2007toFebruary2011,S50716+714wasobserved gesting a possible correlation between VHE γ-ray and the op- using both ground and space based observing facilities. These 2 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 Table1. Groundbasedradioobservatories 2.2.Opticaldata Observatory Tel.dia. Frequency(GHz) Optical V passband data of the source were obtained from the Effelsberg,Germany 100m 2.7,4.8,6.7 observationsatthe1.5-mKanataTelescopelocatedonHigashi- 8.3,10.7,15,23 Hiroshima Observatory over a time period of February 14, 32,43 2009 to June 01, 2010 (JD’ = 877 to 1349). The Triple Range UMRAO,USA 26m 4.8,8,14.5 ImagerandSPECtrograph(Watanabeetal.,2005)wasusedfor NOTO,Italy 32m 5,8,22,43 the observations from JD’ = 612 to 1228. Then, the HOWPol Urumqi,China 25m 4.8 (Hiroshima One-shot Wide-field Polarimeter, Kawabataetal., OVRO,USA 40m 15 2008) was used from JD’ 1434 to 2233 with the V-band filter. Metsahovi,Finland 14m 37 Exposuretimesforanimagerangedfrom10to80s,depending PdBI,France 6×15m 86,143,230 PicoVeleta,Spain 30m 86,143,230 onthemagnitudeoftheobjectandtheconditionofsky.Thepho- SMA,USA 8×6m 230,345 tometryontheCCDimageswasperformedinastandardproce- dure:afterbiassubtractionandflat-fielddivision,themagnitudes werecalculatedusingtheaperturephotometrytechnique. Additionaloptical V-passbanddata were obtainedfrom the 2.3 m Bok Telescope of Steward Observatory from April 28, 2009 through June 2, 2010 (JD’ = 950–1350). These data are multi-frequency observations of the source extend over a fre- from the public data archive that provides the results of po- quency range between radio and γ-rays including optical and larization and flux monitoring of bright γ-ray blazars selected X-rays. In the following subsections, we summarize the obser- from the Fermi/LAT-monitored blazar list3. We have also in- vationsanddatareduction. cluded optical V passband archival data extracted from the American Association of Variable Star Observers (AAVSO; see http://www.aavso.org/for more information) over a period 2.1.Radioandmmdata September2008to January2011(JD’ = 710–1600).The com- Wecollected2.7to230GHzradiowavelengthdataofthesource bined optical V passband flux light curve of S5 0716+714 is overa time period of April 2007 to January 2011 (JD’1 = 200 showninFigure2(c). to 1600) using the 9 radio telescopes listed in Table 1. The cm/mm radio light curves of the source were observed as a 2.3.X-raydata part of observations within the framework of F-GAMMA pro- gram(Fermi-GSTrelatedmonitoringprogramof γ-rayblazars, The X-ray (0.3 – 10 keV) data were obtained by Swift-XRT Fuhrmannetal., 2007; Angelakisetal., 2008). The overallfre- overa time period of September 2008 to January 2011 (JD’ = quency range spans from 2.7 GHz to 230 GHz using the 710–1600).TheSwift-XRTdatawereprocessedusingthemost Effelsberg100mtelescope(2.7to43GHz)andtheIRAM30m recent versions of the standard Swift tools: Swift Software ver- TelescopeatthePicoVeleta(PV)Observatory(86to230GHz). sion3.8,FTOOLSversion6.11andXSPECversion12.7.0(see Thesefluxmeasurementswereperformedquasi-simultaneously Kalberlaetal.,2005,andreferencestherein). using the cross-scan method slewing over the source position, All of the observations were obtained in photon counting inazimuthandelevationdirectionwithadaptivenumberofsub- (PC) mode. Circular and annular regions are used to describe scans for reaching the desired sensitivity. Subsequently, atmo- the source and background areas, respectively, and the radii sphericopacitycorrection,pointingoff-setcorrection,gaincor- of both regions depend on the measured count rate using the rectionandsensitivitycorrectionhavebeenappliedtothedata. FTOOLS script xrtgrblc. Spectral fitting was done with an ab- This source is also a part of an ongoing blazar mon- sorbedpower-lawwithNH =0.31×1021cm−2settotheGalactic itoring program at 15 GHz at the Owens Valley Radio valuefoundbyKalberlaetal.(2005).Forthreeofthe observa- Observatory(OVRO) 40-m radio telescope which providesthe tions,thereweremorethan100countsinthesourceregion,and radio data sampled at 15 GHz. We have also used the com- a chi-squared statistic is used with a minimum bin size of 20 bined data from the University of Michigan Radio Astronomy cts/bin.ForthebincenteredonJD’=1214,only62countswere Observatory(UMRAO;4.8,8and14.5GHz,Alleretal.,1985) foundinthesourceregion,andtheunbinneddataarefitted us- and the Metsa¨hovi Radio Observatory (MRO; 22 and 37 GHz; ing C-statistics as described by Cash (1979). One sigma errors Tera¨srantaetal.,1998,2004),whichprovideuswithradiolight inthede-absorbedfluxwerecalculatedassumingthattheyshare curves at 5, 8, 15 and 37 GHz. Additional flux monitoring at thesamepercentageerrorsastheabsorbedfluxforthesametime 5, 8, 22 and 43 GHz radio bands is obtained using 32 m tele- andenergyrange.TheX-raylightcurveofthesourceisshown scopeatNOTOradioobservatory.TheUrumqi25mradiotele- inFig.2(b). scope monitors the source at 5 GHz. The 230 and 345 GHz dataareprovidedbytheSubmillimeterArray(SMA)Observer 2.4.γ-raydata Center2database(Gurwelletal.,2007),complementedbysome measurementsfromPV andthePlateaudeBureInterferometer We employ γ-ray (100 MeV – 300 GeV) data collected be- (PdBI). The radio light curves of the source are shown in Fig tween a time period August 08, 2008 to January 30, 2011 1. The mm observationsare closely coordinatedwith the more (JD’=686–1592)insurveymodebyFermi/LAT.TheLATdata general flux density monitoring conducted by IRAM, and data areanalyzedusingthestandardScienceTools(softwareversion frombothprogramsarealsoincluded. v9.23.1)and the instrument response function P7V64. Photons in the Source event class are selected for this analysis. We se- 1 JD’=JD−2454000 3 http://james.as.arizona.edu/∼psmith/Fermi 2 http://sma1.sma.hawaii.edu/callist/callist.html 4 http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/overview.html 3 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 Fig.1.RadiotommwavelengthlightcurvesofS50716+714observedoverthepast∼3years.Forclarity,thelightcurvesatdifferent frequenciesareshownwitharbitraryoffsets(indicatedbya“Frequency+xJy”label).Themajorradioflaresarelabeledas“R0”, “R6”and“R8”(seeFig.2forthedetailsoflabeling). lect γ-rays with zenith angles less than 100 deg to avoid con- (isotropic p7v6source.txt)withbothfluxandspectralphotonin- tamination from γ-rays producedby cosmic ray interactionsin dexleftfreein themodelfit. Thedataanalysisisdonewith an theupperatmosphere.ThediffuseemissionfromourGalaxyis unbinned maximum likelihood technique (Mattoxetal., 1996) modeled using a spatial model5 (gal 2yearp7v6 v0.fits) which using the publicly available tools6. We analyzed a Region of was derived with Fermi/LAT data taken during the first two Interest (RoI) of 10◦ in radius, centered on the position of the years of operation. The extragalactic diffuse and residual in- γ-raysourceassociatedwithS50716+714,usingthemaximum- strumentalbackgroundsaremodeledasanisotropiccomponent likelihood algorithm implemented in gtlike. In the RoI model, 5 http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html 6 http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/likelihood tutorial.html 4 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 AAuugguusstt 22000088 JJaannuuaarryy 22001111 ((aa)) ((bb)) ((cc)) ((dd)) JJDD [[22445544000000 ++]] Fig.2. Light curvesof 0716+714from γ-ray to radio wavelengths(a):GeV light curveat E>100MeV, (b): X-ray light curveat 0.3−10KeV, (c):opticalV passbandlightcurveand(d):5 to 230GHz radiolightcurves.Verticaldottedlinesare markedw.r.t. differentopticalflareslabelingthebroadbandflaresas“G”for γ-rays,“X”forX-rays,“O”foropticaland“R”forRadiofollowed bythenumberclosetoflare.TheyellowarearepresentstheperiodforwhichweconstructthebroadbandSEDsofthesource(see Section3.5fordetails). we include all the 24 sources within 10◦ with their model pa- ismuchsmallerthanthestatisticalerrorsreportedforthe source rameters fixed to their 2FGL catalog values, as none of these (Ackermannetal.,2012). sourcesarereportedtobevariable(seeNolanetal.,2012,forde- Source variability is investigated by producing the light tails).Thecontributionofthese24sourceswithintheRoImodel curves(E >100MeV)bylikelihoodanalysiswithtimebinsof to the observed variability of the source is negligible as they 1,7and30days.Thebin-to-binexposuretimevariationisless areveryfaintcomparedtoS50716+714.TheLATinstrument- than 7%. The light curvesare producedby modeling the spec- inducedvariabilityistestedwithbrightpulsarsandis ∼2%and traovereachbinbyasimplepowerlawwhichprovideagoodfit 5 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 Table2.Variabilitytimescalesatradiowavelengths Frequency β1∗ t (days) β2 t (days) 223300 GGHHzz var1 var2 8866 GGHHzz 15GHz 0.95±0.03 100±5 1.32±0.04 195±5 37GHz 1.50±0.13 100±5 1.64±0.10 200±5 43GHz 0.99±0.02 90±5 1.23±0.04 180±5 86GHz 1.60±0.10 90±5 0.89±0.02 180±5 230GHz 1.04±0.03 90±5 1.31±0.03 180±5 ∗:P(f)∼ fβ,βistheslopeofthepowerlawfit. 3377 GGHHzz 4433 GGHHzz overthesesmallbinsoftime.Here,wesetboththephotonindex andintegralfluxasfreeparameters.Wewillusetheweeklyav- eragedlightcurvesforthemulti-frequencyanalysis,asthedaily 1100 GGHHzz 1155 GGHHzz averagedfluxpointshavea lowTS(TestStatistics) value(<9). In a similar way,we constructthe GeV spectrumofthe source overdifferenttimeperiods(seeSection3.5fordetails).Wesplit the 0.1 to 100 GeV spectra into 5 different energy bins : 0.1 – 0.3,0.3–1.0,1.0–3.0,3.0–10.0and10.0–100.0GeV.Asim- 55 GGHHzz 88 GGHHzz ple power law with constant photon index Γ (the best fit value obtained for the entire energy range) providesa good estimate ofintegralfluxovereachenergybin.TheGeVspectrumofthe sourceisinvestigatedoverfourdifferenttimeperiods,whichrep- 1100 110000 resentdifferentbrightnessstates of thesourceandwill beused in broadband spectral modeling. The details of the broadband spectralanalysisaregiveninSection3.5. VV ppaassssbbaanndd 3. AnalysisandResults 3.1.LightCurveAnalysis 3.1.1. Radiofrequencies Fig.1displaysthe2.7–230GHzradiobandlightcurvesofthe sourceobservedoverthepast∼3years.Thesourceexhibitssig- 110000 MMeeVV -- 330000 GGeeVV nificant variability, being more rapid and pronounced towards higher frequencies over this period with two major outbursts. Towardslowerfrequencies(<10GHz) the individualflaresap- pearlesspronouncedandbroadenintime. To quantifythestrengthof variabilityat differentradiofre- quencies,we extractthetimescale ofvariability(t )fromthe var observedlightcurves.Weemployedthestructurefunction(SF) (Simonettietal., 1985) analysis method following Ranietal. Fig.3. Top: Structure functions at radio frequencies. The solid (2009).TheradioSFcurvesareshowninFig.3. curves represent the best fitted power laws. The dotted lines At 15 GHz and higher radio frequencies, the SF curve fol- in each plot indicate the timescale of variability (t ). Bottom: var lowacontinuousrisingtrendshowingapeakattvar1,following Structurefunctionsatopticalandγ-rayfrequencies. a plateauand againreachinga maximumat t . However,the var2 SFcurveat10GHzandlowerfrequenciesdonotrevealasharp break in the slope as the variability features seem to be milled differenttime lags.In fig. 4, we show theSF vsfrequencyplot outatthesefrequencies.Wedonotconsidervariabilityfeatures atatimelagof100days.Thesourcedisplaysmorepronounced attimelagslongerthanhalfofthelengthoftheobservationsdue and faster variability at higher radio frequencies compared totheincreasingstatisticaluncertaintyoftheSFvaluesinthisre- to lower ones, peaking at a frequency of 43 GHz, and have gion.Toextractthevariabilitytimescales,wefittedapowerlaw similar amplitudeat higherfrequencies.It seems thatthe radio (P(f)∼ fβ)tothetworisingpartsoftheSFcurves.Thevariabil- variability saturates above this frequency. We notice a similar ity timescale is given by a break in the slope of the power-law trendat50and200daytimelags. Thus,fordifferenttime lags fits.InFig.3(top),theredcurvesrepresentthefittedpower-law thevariabilitystrengthexhibitsasimilarfrequencydependence. torisingtrendofSFcurvesandtheverticaldottedlinesstandfor t andt .Thebestfittedvaluesofthepower-lawslopesand var1 var2 theestimatedtimescaleofvariabilityaregiveninTable2.Thus, 3.1.2. Opticalfrequencies the SF curve reveals two different variability time scales, one which reflects the short-term variability (t ) while the other Thesourceexhibitsmulti-flaringbehavioratopticalfrequencies var1 onereferstothelong-termvariability(t ). witheachflareroughlyseparatedby60–70days(seeFig.2(c)). var2 TheSF valueisproportionaltothesquareoftheamplitude The optical V band SF curve in Fig. 3 (bottom) shows rapid of variability, so to compare the strength of the variability at variability with multiple cycles of rises and declines. The first different frequencies, we produce SF vs frequency plots at peak in SF curve appears at a timescale t ∼ 30 days which var 6 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 Fig.4.SFvsfrequencyatGHzfrequenciesforastructurefunc- tiontime=100days. Fig.6.OpticalVpassbandlightcurveofS50716+714withdif- ferenttime binning.The lightcurve appearsas a superposition offastflaresonamodulatedbaselevelvaryingona(350±9)day timescale.Theseslowervariationscanbeclearlyseenin75days binnedlightcurve(errorbarrepresentsvariationsinfluxoverthe binnedperiod).Thedashedlinerepresentsasplineinterpolation throughthe75daybinnedlightcurve.Dottedlinesareobtained byshiftingthesplineby±0.65mag. It is for this reason that we further inspect the significance of this frequencywith the PowerSpectralDensity (PSD) analysis method(Vaughan,2005) whichisa powerfultooltosearchfor periodicsignalsintimeseries,includingthosecontaminatedby whitenoiseand/orrednoise.Toachieveauniformsamplingin theopticaldata,weadoptatime-averagebinningof3days.We foundthatthe significanceoftheperiodat ∼ 60daysisonly2 σ.Wethereforecannotclaimasignificantdetectionofaquasi- periodicvariabilityfeatureatthisfrequency. Wealsonoticethatduringthecourseofouropticalmonitor- ing,thepeak-to-peakamplitudeoftheshort-termvariationsre- mainsalmostconstant,∼1.3magnitudes.Hence,thevariability trendtracedbytheminimaisverysimilartothatbythemaxima of the light curve during the course of ∼ 2 years of our moni- Fig.5.LSPanalysiscurveshowingapeakataperiodof63and toring. The constant variability trend is displayed in Fig. 6. In 359days. thisfigure,thedashedlinedenotesasplinethroughthe75-days binnedlightcurveandthe dottedlinesareobtainedby shifting thesplineby±0.65mag.So,theobservedvariationsfallwithina isfollowedbyadipat∼ 60days.Thispeakcorrespondstothe constantvariationarea.Aconstantvariabilityamplitudeinmag- fastestvariabilitytimescale.ThepeaksintheopticalSFcurveat nitudesimpliesthatthefluxvariationamplitudeisproportional t = 90, 180, 240 and 300 days representthe long-termvari- tothefluxlevelitself(followingm −m2∝log (f1/f2)).This var 1 10 ability timescales. This indicates a possible superposition of a can be easily interpreted in terms of variations of the Doppler short 30-40 day time scale variability with the long-term vari- boostingfactor,δ = [Γ(1−βcosθ)]−1(Raiterietal.,2003).In abilitytrend. such a scenario, the observedflux is relativistically boostedby Multiple cyclesin theopticalSF curverepresentthe nearly afactorofδ3 andrequiresavariationin δbyafactorof ∼ 1.2. periodic variations at ∼60 days timescale. We used the Lomb- Suchachangeinδcanbeduetoeitheraviewingangle(θ)vari- Scargle Periodogram (LSP) (Lomb, 1976; Ranietal., 2009) ation or a change of the bulk Lorentz factor (Γ) or may be a method to test the presence of this harmonic. The LSP analy- combination of both. A change in δ by a factor of 1.2 can be sisofthewholedatasetisdisplayedinFig.5.TheLSPanalysis easilyinterpretedasafewdegreevariationinθwhileitrequires reveals two significant (>99.9999% confidence level) peaks at a noticeable change of the bulk Lorentz factor. Therefore, it is 359 and 63 days. The peak at 359 days is close to half of the more likely that the long-term flux base-level modulations are duration of observations, so it is hard to claim this frequency dominatedbyageometricaleffectthanbyanenergeticone. due to limited numberof cycles. The nearly annualperiodicity Hence, we consider that the optical variability amplitude could also be effected by systematic effects due to annual ob- remains almost constant during our observations. A similar servingcycle.A visualinspectionofthelightcurveindicatesa variabilitytrendwasalsoobservedinthissourcebyRaiterietal. totalof7rapidflaresseparatedby60–70days.Also,theLSPis (2003).Theyalsonoticedapossibilityofnearlyperiodicoscil- onlysensitiveforadominantwhite-noiseprocess(P (f)∝ f0). lations at a timescale of 3.0±0.3 years, but due to the limited N 7 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 timecoveragethisremainsuncertain.Theopticallightcurveof the source also displays fast flares with a rising timescales of ∼ 30day.However,therisingtimescaleoftheradioflaresisof theorderof∼60days(seeTable5).Thus,theopticalvariability featuresareveryrapidcomparedtothoseatradiowavelengths. 3.1.3. X-rayfrequencies Fig.2(b)displaysthe0.3—10keVlightcurveofS50716+714. Althoughthe X-raylightcurveis notas wellsampled as those at other frequencies, the data indicate a flare at keV energies betweenJD’=1122to1165.Duetolargegapinthedatatrain, it is not possible to locate the exact peak time of this flare. Still, it is interesting to note that this orphan X-ray flare is not simultaneous with any of the GeV flares nor with the optical flares.Itsoccurrencecoincideswiththeoptical–GeVminimum afterthemajorflaresatthesefrequencies(O5/G5,seeFig.2). Fig.7. Gamma-ray flux and photon index light curve of S5 0716+714 measured with the Fermi/LAT for a time period betweenAugust04,2008toFebruary07,2011.Thebluesym- 3.1.4. Gamma-rayfrequencies bolsshowtheweeklyaveragedfluxwhilemonthlyaveragedval- The GeV light curve observed by Fermi/LAT is extracted over uesareplottedin red.Differentactivitystatesofthesourceare separatedbyverticalgreenlines.Amarginalsofteningofspec- thetimeperiodofAugust2008toFebruary2011.Fig.7shows trumoverthequiescentstatecanbeseenhere. the weekly and monthlyaveraged γ-ray light curvesintegrated overthe energyrange 100 MeV to 300 GeV. There is a signif- icant enhancement in the weekly averaged γ-ray flux over the timeperiodofJD’=900to1110,peakingatJD’ ∼1110,with activity. The source displayed multiple flares across the whole a peakfluxvalueof(0.57±0.05)×10−6 phcm−2s−1, whichis electromagnetic spectrum over this period, which we label as ∼6timesbrighterthantheminimumfluxand∼3timesbrighter follows.Wemarktheverticaldottedlinesw.r.t.differentoptical thantheaveragefluxvalue.Lateritdecays,reachingaminimum flares,labelingthebroadbandflaresas“G”forγ-rays,“X”forX- atJD’=1150,andthenitremainsinaquiescentstateuntilJD’ rays,“O”foropticaland“R”forradiofollowedbythenumber =1200.Thequiescentstateisfollowedbyanothersequenceof adjacenttothem.Forexample,theopticalflaresshouldberead flares.Thesourcedisplayssimilarvariabilityfeaturesinthecon- as“O1”to“O9”. stantuncertaintylightcurveobtainedusingtheadaptivebinning Tosearchforpossibletimelagsandtoquantifythecorrela- analysis method following Lottetal. (2012). A more detailed tion among the multi-frequency light curves of the source, we discussionofGeVvariabilityisgiveninRanietal.(2012). computeddiscretecross-correlationfunctions(DCFs)following Thesourceexhibitsamarginalspectralsofteningduringthe themethoddescribedby(Edelson&Krolik, 1988).Thedetails quiescent state in the monthly averaged light curve. The γ-ray of this method are also discussed by Ranietal. (2009). In the photonindex(Γ)changesfrom∼2.08±0.03(II)to2.16±0.02 followingsections, we will discuss in detail the correlationbe- (III),thenagainto 2.04±0.04(IV).Differentactivitystates of tweentheobservedlightcurves. thesourceareseparatedbyverticallinesinFig.7.Wenoticeno clear spectral variation in the weekly averaged light curve due 3.2.1. Radiocorrelation tolargeuncertaintyandscatterofindividualdatapoints. At radio wavelengths, the source exhibits significant flux vari- TheSF curveofthe sourceatGeV frequenciesisshownin ability, being more rapid and pronounced towards higher fre- Fig. 3 (bottom). The variability timescales are extracted using quencies. We label the two major outbursts as “R6” and “R8” thepower-lawfittingmethodasdescribedabove,whichgivesa (seeFig.2).Apparently,themmflaresareobservedafewdays breakat ∼ 30 and 180days. We notice thatthe variability fea- earlierthanthecmflares. Ourdensefrequencycoveragefacili- turesatt ∼ 180daysare also observedatradioandoptical tatesacross-correlationanalysisbetweenthedifferentobserving var frequencies.However,thefastervariability(t ∼ 30days)ob- bands. Owing to its better time sampling, we have chosen the var servedatopticalandγ-rayfrequenciesdoesnotextendtoradio 15GHzlightcurveasareference.Fig.8showstheDCFcurves wavelengths.Asimilarlong-termvariabilitytimescaleatγ-ray, adoptingabinningof10days. optical and radio frequencies provides a possible hint of a co- WeusedaGaussianprofilefittingtechniquetoestimatethe spatialorigin.Inthefollowingsections,wewillsearchforsuch timelagandrespectivecross-correlationcoefficientvalueforthe possiblecorrelations. DCF curves. Around the peak, the DCF curve as a functionof time lag t can be reasonably well described by a Gaussian of theform:DCF(t) = a× exp[−(t−b)2],whereaisthepeakvalue 3.2.CorrelationAnalysis 2c2 of the DCF, b is the time lag at which the DCF peaks and c Themulti-frequencylightcurvesofS50716+714arepresented characterizesthewidthoftheGaussianfunction.Thecalculated in Figure 2. The analysis presented in this section is focused parameter (a, b and c) values for each frequency are listed in ona timeperiodbetweenJD’ = 800to 1400,whichcoversthe Table3.ThesolidcurverepresentsthefittedGaussianfunction twomajorradioflaresandtherespectiveoptical-to–γ-rayflaring inFig.8. 8 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 Fig.8.TheDCFcurvesamongthedifferentradiofrequencylightcurves.Thesolidcurvesrepresentthebest-fitGaussianfunction. Table3. Correlationanalysisresultsamongradiofrequencies belesscorrelatedwiththoseat15GHz,whichisobviousasthe flaringbehaviorisnotclearlyvisiblebelow15GHz. Frq.(GHz) a b(days) c(days) The long term radio light curve shows three major radio 230vs15 1.56±0.15 7.96±2.23 19.81±2.24 flares, labeled as R0, R6 and R8 in Fig. 1. In the correlation 86vs15 0.94±0.13 6.65±3.28 25.80±4.28 analysis of the entire light curves, these flares are blended and 43vs15 1.04±0.11 5.95±2.08 23.86±3.09 37vs15 1.13±0.09 4.95±2.21 29.39±2.81 folded into a single DCF. In order to separate the flares from 23vs15 1.17±0.10 3.74±1.50 25.00±2.50 each other, we performeda correlation analysis overthree dif- 10vs15 0.89±0.09 -1.01±1.09 35.07±4.49 ferent time bins which cover the time ranges of the individual 8vs15 0.84±0.08 -1.09±1.01 35.96±4.10 radio flares: JD’ = 500 to 750 (R0 flare), JD’ = 1000 to 1210 5vs15 0.84±0.10 -1.23±1.25 33.13±4.15 (R6 flare) and JD’ = 1210to 1400(R8 flare). Thetime lagsof 2.72vs15 0.59±0.12 -78.75±12.39 53.54±13.86 these flaresrelativeto the15 GHz dataare estimatedas above. a:peakvalueoftheDCF, Howeverduetosparsedatasampling,itwasnotpossibletoes- b:timelagatwhichtheDCFpeaks,and timatethetimelagsforR8directlyusingtheDCFmethod.So, c:widthoftheGaussianfunction(seetextfordetails) forthisflare,wefirstinterpolatethedatathroughasplinefunc- tionand thenperformthe DCF analysis,exceptat23 GHz and 33GHz(duetolongdatagaps).Thecalculatedtimelagsofeach flarearegiveninTable4. Our analysis confirms the existence of a significant corre- lation across all observed radio-band light curves till 15 GHz In Fig. 9, we report the calculated time lags as a function withformaldelayslistedinTable3(parameterb).However,no of frequency with 15 GHz as the reference frequency. The pronounceddelayedfluxvariationsareobservedat10GHzand estimated time lag using the entire light curves are shown lowerfrequencies.Also,thefluxvariationsat2.7GHzseemto with blue circles. As we see in Fig. 9, the time lag increases 9 B.Ranietal.:Radiotogamma-rayvariabilitystudyofblazarS50716+714 Table4. Radiocorrelationanalysisresultsforindividualflares Frequency Timelag∗(days) (GHz) R0Flare R6Flare R8Flare 23 2.9±1.4 4.06±1.6 — 33 2.1±1.0 5.88±2.1 — 37 4.2±2.6 3.15±2.1 4.0±1.0 86 4.2±1.0 6.15±2.6 5.0±1.8 143 5.8±1.8 6.82±2.5 7.0±1.5 230 6.0±2.4 8.54±1.9 9.0±2.0 ∗:relativetotherespectiveflaresat15GHz Fig.10. The modeled radio flare, R6. The blue points are the observeddatawhiletheredcurverepresentthefit. Table5. FittedmodelparametersforR6flare Frq. f∗0 fmax tr td t0 GHz JD’[JD–2454000] 15 0.02±0.07 4.15±0.14 61.4±6.2 37.9±3.5 1191.4±0.9 23 0.71±0.23 5.30±0.15 32.3±4.8 17.3±2.1 1190.2±0.1 37 0.58±0.11 8.20±0.59 55.5±11.0 18.6±3.2 1189.1±0.7 43 0.45±0.35 9.50±0.62 60.5±9.4 20.1±2.9 1188.0±0.8 86 0.64±0.18 10.6±2.48 60.9±28.8 25.1±25.6 1186.0±0.5 230 0.72±0.11 12.64±0.29 50.3±2.4 9.9±0.6 1184.2±0.4 ∗:seetextfortheextensionoflabels. vstimelagsresultsobtainedbytheDCFmethod.Astheflaring Fig.9. Theplotof timelag vsfrequency,using15GHz asthe behaviorisnotclearlyvisiblebelow15GHz,sowerestrictthis referencefrequency.Timelagvsfrequencycurvesforindividual analysistofrequenciesabove15GHz.Asthereisnoobservation flaresareshownwithdifferentcolors.Thesolidlinesrepresent availableduringtheflaringepochat23and86GHz,wefixt and r thebestfittedpowerlawineachcase. t using the fit parameters from the adjacent frequencies. The d best fit of the functionf(t) for the R6 flare is shown in Fig. 10 andtheparametersaregiveninTable5.Theestimatedtimeshift with an increase in frequency and seems to follow a power aroundtheR6flareateachfrequencyw.r.t.15GHzareshownin law. Consequently, we fitted a power law, P(f) = Nfα to Fig.9(redsymbols)andthefittedpowerlawparametersareN = the time lag vs frequency curve. The best fitted parameters 1.17±0.13,α=−0.31±0.03.Thus,thisalternativeestimateof are N = 1.71 ± 0.43, α = 0.30 ± 0.08. For the individual thepowerlawslopeusingthemodelfittingtechniqueconfirms flares, we find: N = 1.07±0.06, α = 0.32±0.01 for the R0, theresultsobtainedbytheDCFanalysis. N = 1.45±0.61,α = 0.32±0.08forR6,andN = 1.33±0.01, α=0.29±0.03forR8.Weconcludethatacommontrendinthe timelag(with15GHzasthereferencefrequency)vs.frequency 3.2.2. RadiovsOpticalcorrelation curveisseenforallthethreeradioflares(R0,R6andR8)with S50716+714exhibitsmultipleflaresatopticalfrequencies.The anaverageslopeof0.30. flaresareroughlyseparatedby60–70days.Welabeledthedif- ferentopticalflaresasO1–O9asshowninFig.2.Duringthis Wealsofollowedanalternativeapproachtoestimatethetime multi-flaringactivityperiodtwomajorflaresareobservedatra- shift of the radio flares at each frequency w.r.t. 15 GHz. The diowavelengths.TheradioflareR6apparentlycoincidesintime flaresateachfrequencycanbemodeledwithanexponentialrise withO6andR8withO8.Toinvestigatethepossiblecorrelation anddecayoftheform: among the flux variations at optical and radio frequencies, we f(t)= f + f exp[(t−t )/t ], fort<t ,and (1) performaDCFanalysisusingthe2-year-longsimultaneousop- 0 max 0 r 0 ticalandradiodatatrainsbetweenJD’ = 680to 1600(see Fig. = f + f exp[−(t−t )/t ] fort>t 2). Note that the strength of flux variability increases towards 0 max 0 d 0 higherfrequencies,peaking at 43 GHz (see Fig. 3). Therefore, wheref isthebackgroundfluxlevelthatstaysconstantoverthe wechoosetworadiofrequencies,37GHzand230GHz,inorder 0 correspondinginterval,f istheamplitudeoftheflare,t isthe tocomparethestrengthofradio–opticalcorrelationaboveand max 0 epochofthepeak,andt andt aretheriseanddecaytimescales, below the saturation frequency(43 GHz). The optical vs radio r d respectively.SinceR6isthemostpronouncedandbestsampled DCFanalysiscurvesareshowninFig.11(a).Multiplepeaksin flare, we modelthis flare in orderto cross-checkthe frequency theDCFmayreflectaQPObehavioratopticalfrequencies.As 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.