ebook img

Radio spectral study of the cluster of galaxies Abell 2255 PDF

21 Pages·2009·2.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radio spectral study of the cluster of galaxies Abell 2255

A&A507,639–659(2009) Astronomy DOI:10.1051/0004-6361/200912465 & (cid:2)c ESO2009 Astrophysics Radio spectral study of the cluster of galaxies Abell 2255 R.F.Pizzo1 andA.G.deBruyn1,2 1 KapteynInstitute,Postbus800,9700AVGroningen,TheNetherlands e-mail:[email protected] 2 ASTRON,Postbus2,7990AADwingeloo,TheNetherlands Received11May2009/Accepted31August2009 ABSTRACT Context.Thestudyofthenonthermalcomponentsassociatedwiththeintraclustermedium(ICM)ingalaxyclustersisimportantin understandingthehistoryandevolutionofclusters. Aims.Spectralindexstudiesofhalos,relics,andradiogalaxiesprovideusefulinformationontheiroriginandconnectionwithmerger processes.Moreover,theyrevealtheenergyspectrumoftherelativisticparticlesandthemagneticfielddistributioningalaxyclusters. Methods.WepresentWSRTmulti-wavelengthobservationsofthegalaxyclusterAbell2255at25cm,85cm,and2m.Thespectral indeximagesallowedustostudytheintegratedspectrumofhaloandrelicandtoinvestigatethephysicalpropertiesoftheBeaver head-tailradiogalaxybelongingtothecluster. Results.Intheradiohalo,thespectralindexissteeperatthecenterandflatteratthelocationsoftheradiofilaments,clearlydetected at25cm.Intherelics,thespectralindexflattens,movingawayfromtheclustercenter.FortheBeaverradiogalaxy,thespectrum severelysteepensfromtheheadtowardstheendofthetail,becauseoftheenergylossessufferedbytherelativisticparticles.Inthe 2mmap, which isthefirsthigh-sensitivity imagepresented intheliteratureat such along wavelength, anew Mpc-size emission regionisdetectedbetweentheknownradiohaloandtheNWrelic.Notdetectingthisfeatureinthemoresensitive85cmobservations impliesthatitmusthaveaverysteepspectrum(α≤−2.6). Conclusions.Theobservationalpropertiesoftheradiohalosuggestthateitherwearelookingatasuperpositionofdifferentstructures (filamentsintheforegroundplusrealhalointhebackground)seeninprojectionacrosstheclustercenterorthatthehaloisintrinsically peculiar.ThenewlydetectedextendedregiontotheNWofthehalocouldbeconsideredasanasymmetricextensionofthehaloitself. However,sinceradiohalosareknownintheliteratureasstructuresshowingaregularmorphology,thenewfeaturecouldrepresent thefirstexampleofsteepMpc-sizediffusestructures(MDS),detectedaroundclustersatverylowfrequencies.Thespectrumofthe initialpartofthetailoftheBeaver,detectedatthethreewavelengths,iswell-fittedbyasingleinjectionmodel. Keywords.galaxies:clusters:general–galaxies:clusters:individual:Abell2255–galaxies:intergalacticmedium 1. Introduction opticalandX-raydomains,theseextendedfeaturesaredirectly connected to the cluster history and evolution. Moreover, they Galaxy clusters, which contains up to a few thousand galaxies provideasignificanttestforseveraltheoriesconcerningtheori- andconsiderableamountsofgas,arethemostmassivegravita- gin of relativistic particlesin the ICM andparticle propagation tionallyboundobjectsintheuniverse.Cosmologicalsimulations inastrophysicalplasmas. (Navarro et al. 1995) show that they are not static, but instead grow and still form at the present epoch, as the result of sev- The origin of halos and relics is still matter of debate. It is eralmergerevents(e.g.Evrard&Gioia2002). suggestedthatrelicsrelicsarerelatedtoshockseitherbyFermi-I diffuseaccelerationofICMelectrons(Enßlinetal.1998;Keshet Inanincreasingnumberofmassive,merging,andX-raylu- minous galaxy clusters, large diffuse radio sources associated etal.2004b)orbyadiabaticenergizationoftherelativisticelec- trons confined in fossil radio plasma (“ghosts”), released by a withtheICMhavebeendetected.Theyrepresentthemostspec- former active radio galaxy (Enßlin & Gopal-Krishna 2001). In tacular aspectofcluster radioemission, andtheycannotbe as- sociated with any individualgalaxy. These diffuse synchrotron the case of radio halos, it is required that the electrons are ei- therre-accelerated(primarymodels:e.g.Tribble1993;Brunetti radiosourcesarecharacterizedbyatypicalsizeofabout1Mpc, lowsurfacebrightness(∼1μJyarcsec−2at20cm),andsteepra- et al. 2001; Petrosian 2001; Brunetti et al. 2004; Fujita et al. dio spectrum(α ≤ −1, S(ν) ∝ να). Theyare classified (Feretti 2003; Cassano & Brunetti 2005) or continuouslyinjected over theentireclustervolumebyhadroniccollisions(secondarymod- & Giovannini 1996) as radio halos, if located at the center of els:e.g.Dennison1980;Blasi&Colafrancesco1999;Dolag& the cluster and not significantly polarized, and radio relics, if Enßlin2000). lying at the cluster periphery and showing high polarization percentages (∼10%−30%). The synchrotron nature of their ra- Spectral index studies of halos and relics provide impor- dio emission indicates cluster-wide magnetic fields of approx- tant information on their formation and their connection to imately 0.1−1 μG, and of a population of relativistic electrons cluster merger processes. Given their large angular size and withLorentzfactorγ(cid:6)1000. steep spectra, low-frequency radio observations are suitable Theknowledgeofthephysicalconditionsinhalosandrelics for such investigations. There are only a few clusters for is important for a comprehensive physical description of the whichspectralindexmapsofhaloshavebeenpublished:Coma ICM. Since they are related to other cluster properties in the (Giovannini et al. 1993), A2163, A665 (Feretti et al. 2004), ArticlepublishedbyEDPSciences 640 R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 A3562(Giacintuccietal.2005),A2744,andA2219(Orrúetal. Table1.Thefluxcalibratorsusedduringthedatareduction. 2007). In agreement with primary models, in all these objects the spectral index maps show a patchy structure with, in some Wavelength Name Flux α cases, a steepening of the spectrum with increasing distance (Jy) from the center to the edge. The detailed spectral index distri- 25cm CTD93 5.2 –0.5 butionisknownfortherelicsofA3667(Rottgeringetal.1997), 85cm 3C295 63 –0.6 theComacluster(Giovanninietal.1991),S753(Subrahmanyan 2m 3C295 95 –0.6 etal.2003),A2744andA2219(Orrúetal.2007),andA2345and A1240(Bonafedeetal.2009).Apartfromoneofthetworelics ofA2345,inalltheotherexamplesthespectralindexflattensgo- ingfromtheregionsclosertotheclustercentertotheouterrim. 2. Observationsanddatareduction This is consistent with the presence of electron re-acceleration TheobservationswerecarriedoutwiththeWSRTinthreebroad inanexpandingmergershock. frequency ranges with central wavelengths of about 25 cm, Other important members of clusters in the radio domain 85 cm, and 2 m. The array consists of fourteen 25 m dishes aretheradiogalaxies.Theiremissionoftenextendswellbeyond onaneast-westbaselineandusesearthrotationtofullysynthe- the opticalboundariesof the radiogalaxies,outto hundredsof sizetheuv-plane.Tenofthetelescopesareonfixedmountings, kilo-parsec,andhenceitis expectedthattheICM wouldaffect 144 m apart; the four remaining dishes are movable along two theirstructure.Thisinteractionisprovedbytheexistenceofra- railtracks.Theinterferometercanobserveindifferentconfigu- diogalaxiesshowingdistortedstructures(tailedradiosources). rations that differ from each other in the distance between the Spectralstudiesofradiogalaxieswithdifferentmorphologiesat lastfixedtelescopeandthefirstmovableone(RT9−RTA).Inthe differentfrequenciesprovideanexcellentopportunitytotestthe array,thebaselinescanextendfrom36mto2.7km.Atthehigh ageingoftheelectrons,undersomestandardassumptions. declinationofA2255thearraydoesnotsufferfromshadowing. A2255is a nearby(z = 0.0806,Struble & Rood 1999)and The pointing center of the telescope, as well as the phase rich cluster, which has been studied in several bands. ROSAT center of the array, was directed towards RA = 17h13m00s, X-rayobservationsindicatethatA2255hasrecentlyundergone Dec = +64◦07(cid:7)59(cid:7)(cid:7), which is the center of A2255. The time a merger (Burns et al. 1995; Feretti et al. 1997; Davis et al. samplingis 30sin the 25cm and85cm datasets,and10 sfor 2003).RecentXMM-Newtonobservationsrevealedtemperature the 2 m observations.Thisis generallysufficientto sample the asymmetries of the ICM suggesting that the merger happened phase fluctuationsof the ionosphereand to avoid the smearing ∼0.15 Gyr ago, probablyalong the E −W direction(Sakelliou of sources at the outer edge of the field. During each observa- & Ponman 2006). Optical studies of A2255 revealed the pres- tion,twopairsofcalibrators,onepolarizedandoneunpolarized, enceofkinematicsubstructuresintheformofseveralassociated have been observed for 30 min each. Table 2 summarizes the groups(Yuanetal.2003).Thisresult,togetherwiththelargera- observationalparameters. tioofvelocitydispersiontoX-raytemperature(6.3keV;Horner The technical details about the datasets will be discussed 2001)indicatesanon-relaxedsystem. in the next sub sections. Here we give a short overview about Whenstudiedatradiowavelengths,A2255showsthepres- ence of a diffuse radio halo (located at the center of the clus- the mainstepstakenforthedatareduction.Thedatawere pro- cessed with the WSRT-tailored NEWSTAR reduction package ter) and of a relic (at the cluster periphery), together with a following mostly standard procedures: automatic interference largenumberofembeddedhead-tailradiogalaxies(Harrisetal. flagging, self calibration, fast Fourier transform imaging, and 1980).High resolution radio observationsat 21 cm shown that CLEANdeconvolution(Högbom1974).Furtherflaggingbased the radio halo has a rectangular shape and a surface bright- on the residual data after self calibration and model subtrac- nessincreasingfromthecentertotheedge(Ferettietal.1997). At this location 3 highly polarized (∼20%−40%) bright fila- tion was done after each self calibration iteration. An on-line Hammingtaperwasusedtolowerthedistantspectralsidelobe ments perpendicular to each other are detected (Govoni et al. level(Harris1978).Thefinalanalysiswas doneusing onlythe 2005).Sensitivelow-frequencyobservationscarriedoutwiththe oddchannels,becauseeachHammingtaperedoutputchannelis Westerbork synthesisradiotelescope (WSRT) at 85 cm proved alinearcombinationofitsdirectneighborsanditself. the presence of a large number of low-surface brightness ex- At 85 cm and 2 m, the data were flux-calibrated using tendedfeaturesaroundthecluster,thatarelikelyrelatedtoLarge 3C295,forwhichweadoptedafluxof63Jyand95Jyatcentral ScaleStructure(LSS)shocks(Pizzoetal.2008).Inthisworkwe frequenciesof 346 MHz and 148 MHz, respectively.At 25 cm combinethesedatawithobservationsat25cmandat2minorder the flux scales have been set using the flux calibrator CTD93, tostudythespectralindexpropertiesofthestructuresbelonging for which we adopted a flux of 5.2 Jy at 1220 MHz. The flux toA2255. scale at 2 m is still uncertainto a levelthatwe estimate of 5% This paper is organizedas follows. Section 1 describes the and1%at25cmand85cm.Wecomputedthefluxdensitiesof main steps of the data reductionand discusses a few issues re- thecalibratorsacrosstheentirebandsassumingaspectralindex latedtolow-frequencyradioobservations.InSect.3,wepresent ofα = −0.5andα = −0.6forCTD93and3C295respectively thefinalmapsofA2255atthethreewavelengthsandinSect.4 (seeTable1). weshowthespectralindexanalysisforthehaloandtherelics.In Sect. 5, we analyze the physicalpropertiesof the Beaver radio galaxy and we test the ageing processes of the radiating elec- 2.1.25cmdataset tronsalongthetail.Wediscusstheimplicationsofourresultsin Sect.6andsummarizeourworkinSect.7. At25cm,weobservedA2255for4×12hwith4differentcon- ThroughoutthispaperweassumeaΛcosmologywithH = figurationsoftheWSRT.Bysteppingthe4movabletelescopes 0 71 kms−1Mpc−1, Ωm = 0.3, and ΩΛ = 0.7. All positions are at 18 m increments, from 36 m to 90 m, we pushed the grat- given in J2000 coordinates. The resolutions are expressed in inglobedueto theregular18mbaselineincrementtoa radius RA×Dec.AtthedistanceofA2255,1(cid:7)correspondsto90kpc. of∼1◦. R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 641 Table2.Observationsoverview. Wavelength Frequencyrange Calibrators ObservationID RT9–RTA Startdate(UTC) Enddate(UTC) (MHz) (m) 10702691 36 2007/06/1817:00:15 2007/06/1904:58:50 3C286,CTD93 10702898 54 2007/06/2816:20:55 2007/06/2904:19:25 25cm 1159–1298MHz 3C147,3C138 10702958 72 2007/07/0316:01:15 2007/07/0403:59:45 10703066 90 2007/07/1015:33:45 2007/07/1103:10:35 10602227 36 2006/05/0919:36:20 2006/05/1007:35:20 10602239 48 2006/05/1019:32:20 2006/05/1007:31:20 DA240,3C295, 10602259 60 2006/05/1119:28:20 2006/05/1207:27:20 85cm 310–380MHz PSR1937+21, 10602224 72 2006/05/1619:08:40 2006/05/1707:07:40 3C48 10602372 84 2006/05/1918:57:00 2006/05/2006:56:00 10602340 96 2006/05/2218:45:10 2006/05/2306:44:10 10702727 36 2007/06/2116:48:15 2007/06/2204:47:05 10703226 48 2007/07/1914:58:05 2007/07/2002:56:55 DA240,3C295, 10703186 60 2007/07/1715:05:55 2007/07/1803:04:45 2m 115–175MHz PSR1937+21, 10703004 72 2007/07/0515:53:15 2007/07/0603:52:05 3C48 10703056 84 2007/07/0915:37:25 2007/07/1003:36:15 10703099 96 2007/07/1215:25:35 2007/07/1303:24:25 Atthiswavelength,thereceivingbandisdividedinto8con- disturbances in low-frequency observations (e.g. Cotton et al. tiguous slightly overlapping sub-bands of 20 MHz centered at 2004;Intema2007),butitcanbealsoappliedathigherfrequen- 1169,1186,1203,1220,1237,1254,1271,and1288MHz.Each cies, when phase errors due to the differential tropospheric ef- sub-bandiscoveredby64channelsin4cross-correlationstore- fectsarealsopresentinhighdynamicrangeimages. coverallStokesparameters. The peeling scheme involves self calibration on individual Becauseoflimitationsofthesoftwareinhandlingfileslarger brightsources.It producesphase correctionsper arrayelement than 2.15 GB, the data reduction was done for each frequency for several viewing directions, repeatedly using the following bandindependently.Thus,theoriginaldatasethasbeensplitin recipe: 8 sub-datasets,eachcontainingthe4×12h ofdata,butjustin onefrequencyband. BecauseofstrongRFI,2outoftheoriginal8frequencysub- – subtractionofallbutthebrightestsourcefromUVdata,us- bandshave notbeen used for imaging.Moreover,the presence ingthebest modelandcalibrationavailable; ofastrongoff-axissourcecausedphaseerrorsaffectingthecen- – severalroundsofphaseonlyselfcalibrationandimagingon tralfieldofthefinalimage.Thepeelingprocedurethatweused thebrightestsource; to solve for those problems was successful only in the lower – subtractionofthebrightestsourcefromtheoriginalUVdata, 3frequencybands,wheretheproblematicsourceisbrighter(see usingmodelandcalibrationfromthepreviousstep. Sect.2.2).Therefore,thetotalamountofdatathatwecoulduse forimagingwas∼35%.At25cm,theresolutionis14(cid:7)(cid:7)×15(cid:7)(cid:7). Weappliedthisalgorithmtothe25cmdataset,whichistheonly oneaffectedbyoffaxiserrorsthataffecttheanalysisatthecen- 2.2.Off-axiserrorsin25cmmaps ter of the maps. Also our maps at 85 cm and at 2 m showed off axis errors, but they were confined in areas far away from High dynamic range imaging is seriously limited by the phase the field center. Therefore no peeling procedurewas needed at stabilityoftheatmosphere(troposphereandionosphere),which these wavelengths. At 25 cm the phase errors were associated causes the presence of spiky patternssurroundingthe brightest off-axis sources within the field of view of the interferometer. withtheoffaxissource4C+64.21,locatedatRA=17h19m59s, This pattern is due to the instantaneous fan beam response of Dec = +64◦04(cid:7)40(cid:7)(cid:7). In Fig. 1, we show the resultof the proce- the WSRT, which rotates clockwise from position angle +90◦ dure.Withoutpeeling,4C+64.21showsadistortedshape,with to+270◦duringthe12hsynthesistime. a positive spike going towards east and a long negative spike directedtowardstheoppositedirection,wherethecenterofthe The selfcal algorithm tries to minimize the time variations cluster is located. The source is also surroundedby ring struc- between data and the model of the sky, applying only one av- eragedtime-dependentcorrectionintheuvplane.Ifinthefield tures,whichwereleftafterthedeconvolution.Afterpeeling,the ofviewtherearebrightoff-axissourcesthatseemtomovedur- source is basically removed.The flux below which the sources ingtheobservation,duetodifferentialtroposphericrefractionor havebeensubtractedforthisprocedureis∼1Jy. rapidionosphericphaseinstabilities,theselfcalwillnotbeable Thepeelingprocedurehasbeenappliedineachofthe6fre- to correct simultaneously for the phase errors associated with quencybandswecoulduseat25cm(Sect.2.1).Unfortunately, them.Thus,thefinalmapwillshowartefactsaroundthesources, it turned out to be satisfactory just for the three lower fre- assecondarylobes,orinthesourceitself,whichwillappeardis- quencybands, where the selfcal correctionsfor the steep spec- torted. The only way to removethe off-axis errorsin the maps trum4C+64.21canbebetterdetermined,giventhehighersig- is to “peel” each problematic source out of the dataset, using nal to noise ratio of the data. Thus, we decided to use only its own direction-dependentselfcal corrections. This technique these3frequencybandstomakethefinalimageforthefurther has been recentlydevelopedto solve for the ionosphericphase analysis. 642 R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 Fig.1. Grey scale images of 4C +64.21 at 25 cm before (left panel) and after (right panel) applying the peeling procedure. The resolution is 14(cid:7)(cid:7)×15(cid:7)(cid:7).Leftpanel:thesourceshowsphase-relatederrors,likeringstructuresandanegativeandapositivespikealongtheeast-westdirection. Rightpanel:justasmallresidualisleftatthesourcelocation. 2.3.85cmdataset selfcalibrated.Attheend,theimageswerecombined,weighting themfortheinputnumberofvisibilities. Tofullyimagetheprimarybeam,sixarrayconfigurationswere Due to serious problems with the correlators of the WSRT used for the observations, with the four movable telescopes during the nightbetween the 17th July and the 18th July 2007 steppedat12mincrements(i.e.halfthedishdiameter)andthe (RT9−RTA = 60 m), the final data reduction was done using shortestspacingrunningfrom36mto96m.Thisprovidescon- 5 × 12 h of observation. Moreover, given serious ionospheric tinuousuv-coveragewithinterferometerbaselinesrangingfrom instabilities during the last night of observations(RT9−RTA = 36mto2760m. 96 m),we decidedto notincludethis12hoursrunin imaging. The receiving band is covered by 8 sub-bands of 10 MHz Thetotalamountofflaggeddatawas∼35%.At2m,theresolu- centered at 315, 324, 332, 341, 350, 359, 367, and 376 MHz. tionis163(cid:7)(cid:7)×181(cid:7)(cid:7). Eachsub-bandiscoveredby128channelsin4cross-correlations torecoverallStokesparameters.The85cmdatasetwassplitin 16sub-datasets,eachcontaining6×12hofobservation,butin 2.5.Afewissuesrelatedtolow-frequencyobservations onefrequencyhalf-bandonly. The low-frequency radio sky is very bright and populated by The imaging was done using 5 out of the 6 nights of ob- strong radio sources, such as Cas A, Cyg A, Vir A and Tau A, servation,becauseofthepoorphasestabilityofthe ionosphere whose flux densitiesvaryfrom 1000−10000 Jy. Evenfar from duringthethirdnight(RT9–RTA= 60m).Thetotalamountof thefieldcenter,the(relatively)highdistantsidelobelevelsofthe flaggeddatawas∼25%.At85cmwavelength,theresolutionis primarybeam(“only”−30to−40dB)keepsthesesourcesvery 54(cid:7)(cid:7)×64(cid:7)(cid:7). bright, giving rise to significant side lobes in the final images. Solarflarescanalsoaffectthedata,causinginterferencesinthe shortbaselinesand/orgratingringsintheimagedcentralfield. 2.4.2mdataset(LFFE-bandobservations) Duringtheeditingandimagingprocessesatlowfrequency, we had to take care of Cas A, Cyg A and the Sun. Cas A lies At 2 m, A2255 was observed for 6 × 12 h to fully image the ataprojecteddistanceof∼40◦ fromthecluster,CygAat∼30◦ primarybeam. and the Sun at ∼85◦. At 85 cm and at 2 m, we used modelsof TheLFFE(Low-FrequencyFrontEnd)attheWSRTiscov- CasAandCygAandwesubtractedthemfromthedataduring eredby8frequencysub-bandsof2.5MHzcenteredat116,121, imaging. To remove the interferences generated by the Sun in 129,139,141,146,156,and162MHz.Eachsub-bandisdivided the 85 cm dataset, we flagged the short baselines in the hour in512channels. anglesinwhichtheSunwasabovethehorizon(+30◦ ≤ HA ≤ Given the large size of the final dataset (∼250GB) andthe +90◦).At2m,theSunwashighintheskyformostpartofthe limitationsinthemaximumsizeofaNEWSTARdataset,theob- observation.Inthiscase,weproduceddifferentcleaningmodels servations have been split in 240 sub-datasets, each containing of this source for the different nights and we subtracted them dataforasinglenightofobservationandwithalimitednumber duringthefinalimaging. of channels. Therefore, for a single spacing and for each sub- band,weworkedwith5datasets.Toproducethefinalmap,we 2.6.Fluxscaleat2mwavelength processedthe240sub datasetsseparately,self calibratingthem with differentmodels and doing the imaging and the deconvo- The flux scale at low frequencies is not very accurately deter- lutionsteps240times.Wedidnotobtainagoodimagethrough mined. Until a more definitive flux scale is in place (this is thenormalselfcalprocedure.Thebestimagehasbeenobtained being developed for LOFAR) we use the radio source 3C295 usingasimplifiedselfcalibrationwhereweonlysolvedforthe as the primary WSRT flux calibrator at low frequencies. We phase slope acrossthearray.Inthis case, onlythe phaseswere have adopted a flux density at 150 MHz of 95 Jy for 3C295 R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 643 Table3.Parametersoftheobservationsandofthefinalfullresolutionmaps. Wavelength Fullresolution Largestdetectablestructure σ a σ b σ c σ d (cid:7)(cid:7) (cid:7) F mJy/tbheam mJcyon/fbceentaerm mJoybs/cbenetearm 2m 163×181 191 5% 0.85 3 3.1 85cm 54×64 81 1% 0.05 0.25 0.25 25cm 14×15 24 1% 0.010 0.008 0.012 aFluxscaleuncertainty. bThermalnoise,constantoverthemaps. cConfusionnoise. dObservednoiseatthepointingposition. and a power-law spectral index of −0.6 in the frequencyrange observeasource,thelatter isalwaysthesamefora givenPSF, from 115−175MHz. We believe this numberto be accurate to i.e.itrepeatsitselfeverytimeweobservethesamefield. about5%. In Table 3, we list the estimated σ andσ for the three th conf A majorcomponentofthe system noise (receiver+ sky)at observingwavelengths.Reliable estimates ofthe thermalnoise low frequencies is due to our Galaxy. The System Equivalent havebeenobtainedfrompolarizationimages(Q,U,V)andnar- Flux Density (SEFD) of the telescopes at 150 MHz is about rowspectralbands.TheconfusionlimitforWSRTat21cmwas 8000 Jy in the Galactic areas where 3C295 happens to be lo- determined by Garrett et al. (2000) to be ∼5 μJy. Because the cated, but it rises to well over 10000 Jy in the Galactic plane. PSF of the WSRT dependson the declination,this valuerefers Because the WSRT receivers operate with an automatic gain toDec=+6◦.Atadifferentwavelength(λ )itisgivenby 2 control (AGC) system before the analog-to-digitalconverter,it (cid:2) (cid:3) λ 2.75 cthoentvianruioabulselyinmpueatsleuvreeslst.hUentfootratlupnoawteelyr,tmooasltloowftchoerrtiemcteiotnhseftoor- σλ2 =σλ1 λ2 , (1) 1 tal powersdetectors(whichintegratethepoweroverthe whole 2.5MHzsub-band)arecorruptedbyRFIsowecannotautomat- wnehnetre(−σ2λ.715is) ttahkeecsoinnftuosiaocncoliumntitthateλs1pe=ctr2a1l icnmdeaxnddetpheendexenpcoe- icallycorrectthecorrelationcoefficientsforthevariationsinsys- (−0.75)andthedifferentsynthesizedbeam(−2). temnoise.TheLFFEbandisfullofmostlyimpulsiveandnarrow Assuming thatσ and σ are uncorrelated,the observed bandRFIcomingfromairplanes,satellites,andmobileusersas th conf noiseinthefinalmapasafunctionofthedistancefromthecen- wellaselectronichardwarewithinthebuildingwhichislocated terofthefieldisgivenby: halfwaythearray.Atthehighspectralresolution(10kHz)pro- (cid:4) videdbythebackendmostofthisRFIcanbeexcised.However, σ (r)= σ2 +σ2 (r). (2) the total power data must be manually inspected for suitable obs th conf stretchesofpowerlevelmeasurements.Thesedataformtheba- InFig.2,weplottheobservednoiselevels,uncorrectedforthe sisforamanualcorrectionofthefluxscale. primarybeam,asafunctionofthedistancefromthefieldcenter For A2255 the total power ratio between the cluster region forthefinal2m,85cm,and25cmfullresolutionmaps.Because and the 3C295field is 1.15±0.05at 141 MHz. Followingthe the classical confusionnoise will be attenuated by the primary transfer of the complex gain correction determined for 3C295 beam,theobservednoisedecreasesfromthecentertotheedges we have therefore applied an additional correction of a factor of the field, where it approaches the thermal noise level. This 1.15tothevisibilitydata. trend,moreclearinthelow-frequencymaps,isaproblemwhen tryingtoassessthesignificanceofthecentralextendedfeatures in the contour maps. In principle, we should consider as de- 2.7.Errorsandnoiseinthefinalimages tection limit the noise observed at the center of the field and Knowingthevalueoftheerrorinanimageisessentialindeter- plotthecontoursstartingfrom,forexample,3timesthisvalue. miningthereliabilityoftheimageandofthederivedparameters. However, it is worth noting that in this area we are confusion Theobservederrors(σ )inamapmainlyconsistof: limited (this is a situation similar to that found in deep optical obs imagesofgalaxies,wherethecentralfluctuationsareoftendom- – thethermalnoise(σth),whichisduetothestochasticerrors, inatedbythelargenumberofstarswithinaresolutionelement). comingfromtheGalaxy,receiversandotherelectronicsused Therefore,inordertoshowthesignificanceofthefeaturesinour inthearray; final contourmaps, we startplotting the contoursfrom 3 times – theconfusionnoise(σconf),whichactuallyconsistsofthree the noiseobservedat the edgeof the fully imagedfield. To as- contributions: sess the significance of the detected structures with respect to 1. the “normal”sidelobenoise,whicharisesfromthesum the background fluctuations, we advice the reader to compare of all the sidelobes responses to the very large number thecontourmapsat25cm,85cm,and2mwiththeirgreyscale ofsourcesvisiblewithinthefieldofview.Thisnoisecan versioninFig.3. beminimizedbydeconvolution; 2. the “classical” source confusion, which is associated withthenumberofsourceswithinthesamebeam; 2.8.Fluxmeasurementuncertainties 3. the“error”sidelobenoise,whichresultsfromcalibration Because of the errors present in the final images, the flux and errorsandnon-isoplanaticity. spectralindexestimatesareaffectedbyuncertainties.Theerror associatedwiththefluxdependson: Itisimportanttoappreciatethedifferencebetweenthermaland confusion noise. While the former is different every time we – theobservednoiseinthefinalmaps(σ ); obs 644 R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 Fig.2.Observednoiseleveluncorrectedfortheprimarybeamasafunctionofdistancefromthefieldcenterforthe2m(leftpanel),85cm(middle panel),and25cm(rightpanel)maps.Thedashedlinerepresentstheestimatedthermalnoiselevel,againuncorrectedfortheprimarybeam. – the error due to the negativebowl, which arises aroundthe 3.1.25cmmap extended structures because of the missing short spacings (σ ). This severely affects the non full resolution maps The 25 cm map is presented in Fig. 4. The image, which has bowl only(see Sect.2.9).Inourcase,itsvaluewasestimatedby a noise level of 11 μJy at the edge of the field, shows the well determiningthemeanvalueofthenegativebowlaroundthe knownextendedhalo,locatedattheclustercenter,therelic,that centralmaximumintheantennapattern; lies 10(cid:7) to the northeast from it, and 3 extended radio galax- – the uncertainty related with the flux of the calibrator (σ ). ies at a very large distance from the center of the cluster: the c Thisisascaleerrorwhichapplytothewholemap. Embryo and the Beaver lie at ∼1.6 Mpc from the cluster cen- ter,whiletheBeanliesatmorethan3.5Mpc(quotednamesare Undertheassumptionthatthesethreeuncertaintiesareuncorre- takenfromHarrisetal.1980).Sincemorerelicfeaturesarede- lated,thefinalerroronthefluxis (cid:4) tectedatlowfrequencyaroundA2255(Sect.3.2),fromnowon wewillrefertotherelicasNE(north-east)relic.Zoominginto σ = σ2+σ2 +σ2 . (3) F c obs bowl the central region of A2255,we notice the presence of 4 addi- Theuncertaintyonthespectralindexisgivenby tionalextendedclusterradiogalaxies:theGoldfish,theDouble, (cid:5) the original TRG, and the Sidekick. The positions of the 7 ra- (cid:2) (cid:3) (cid:2) (cid:3) 1 σ 2 σ 2 dio galaxies are listed in Table 4. Each of them has an optical σα = ln(ν /ν ) FF1 + FF2 , (4) counterpartthatbelongstothecluster(Miller&Owen2003). 2 1 1 2 The halo has a rectangular shape and shows a filamentary whereF ±σ andF ±σ arethefluxdensitiesandthecor- 1 F1 2 F2 structure,whichisinagreementwithprevious21cmVLAob- respondingerrorsatfrequencyν andν ,respectively. 1 2 servations (Govoni et al. 2005). Given the high sensitivity of our new observations, halo and NE relic look more extended 2.9.Makingmapsat25cm,85cm,and2mforaspectral anddirectlyconnectedbyaradiobridge,whichextendstowards indexanalysis the north-eastand seems associated with two features; the for- mer is located at RA = 17h13m13s, Dec = +64◦12(cid:7)54(cid:7)(cid:7) and Tomakethefinalspectralindexmaps,wetaperedthedatatothe belongs to the NE relic, the latter lies at RA = 17h14m18s, samelowresolutionofthe2mdataset(163(cid:7)(cid:7)×181(cid:7)(cid:7)),andwecut Dec = +64◦16(cid:7)10(cid:7)(cid:7). They are labeled respectively C1 and C2 theuvdatawiththesameminimumuvcoverage(144λ),which in Fig. 4. The physicalparametersof halo and NE relic are re- isdeterminedbythe25cmdata. portedinTable5. The missing short spacings in the low resolution 2 m and We detect a very low surface brightness feature at location 85 cm maps created a negative bowl around the central radio RA = 17h12m12s, Dec = +64◦30(cid:7)08(cid:7)(cid:7), that is associated with halo. To remove as much as possible of the negative bowl, we one of the two filaments of the NW relic detected at 85 cm cleanedverydeepthehaloemission.At2m,thefinalmapwas (Sect.3.2).Sinceitliesinaprettyemptyregionoftheradiosky, obtained including in imaging only the three frequency bands a possible association of this feature with a collection of point leastaffectedbyRFI.Finally,themapshavebeencorrectedfor sourcesorwithacentralradiogalaxyseemsunlikely. the total power primary beam of the WSRT, which can be ap- proximatedby G(ν,r)=cos6(cνr), (5) 3.2.85cmmap where c is a constant ∼0.064, ν is the observing frequency The85cmmapofA2255ispresentedinFig.6.Withnoiselevels inMHzandristheradiusfromthepointingcenterindegrees. ranging between 0.08 mJy/beam to 0.25 mJy/beam,limited by classicalconfusionnoise(seeSect.2.7andTable3),itimproves over previousimaging at close wavelength(Feretti et al. 1997) 3. Results byafactorof20.Theoverlayoftheradiomapwiththeredband A greyscale versionof thefinalfullresolutionmapsat25 cm, DigitizedSkySurvey(DSS)opticalimageispresentedinFig.5. 85cmand2misshowninFig.3.Inthefollowingsubsections, This image clearly shows the extension of the radio emission wedescribethefeaturesdetectedateachwavelength. comparedtotheopticalgalaxies. R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 645 Fig.3.GreyscaleimagesofA2255at25cm(topleftpanel),85cm(toprightpanel),and2m(bottompanel).Allimagescoverthesameareaof thesky.Theresolutionsare14(cid:7)(cid:7)×15(cid:7)(cid:7)(25cm),54(cid:7)(cid:7)×64(cid:7)(cid:7)(at85cm)and163(cid:7)(cid:7)×181(cid:7)(cid:7)(at2m).Themapsarenotcorrectedfortheprimarybeam. The halo, the NE relic, and the radio galaxies belongingto NW relichasa morecomplexmorphology.We candistinguish theclusteraredetected.Thecentralradiohalolooksmuchmore 2 filaments, labeled NW1 and NW2 in Fig. 6. NW1 points to- complexthaninpreviousimagesatthesamefrequency(Feretti wardstheclustercenterandhasalengthof∼8(cid:7)×1(cid:7),whileNW2 etal.1997)anditismoreextendedthanat25cm,inparticular is∼13(cid:7)×1(cid:7)andisperpendiculartoNW1.TheSWandNWrelics towardstheSandSW.Wenoticethatthesouthernregionofthe haveintegratedfluxdensitiesof∼17mJyand∼61mJy,respec- haloisdirectlyconnected,inprojection,tothetailoftheBeaver tively. The physicalpropertiesof the newly detected structures radiogalaxy,whichhasdoubleditslengthtoalmost1Mpcbe- and their origin have been investigated by Pizzo et al. (2008), tween25cmand85cm.FeatureC2inthe25cmmap(seeFig.4) whosuggestedaconnectionwithLSSshocks. isnowmoreprominentanditlooksdirectlyassociatedtotheNE Other extended diffuse low surface brightness features are relic.ThephysicalparametersofhaloandNErelicat85cmare detectedtotheeast(RA = 17h16m57s,Dec = +64◦18(cid:7)45(cid:7)(cid:7))and listedinTable5. tothewest(RA=17h07m08s,Dec=+63◦59(cid:7)36(cid:7)(cid:7))ofthecluster center. Their nature is still unclear. Moreover, the map shows The high sensitivity of our observations allow us to detect positiveandnegativefluctuationsona scale of0.5to 1degree, twonewextendedfeaturesataprojecteddistanceof2Mpcfrom whicharelikelyduetoourGalaxy. theclustercenter.Thenew“relics”arelocatedNWandSWof thecenteroftheclusterandprevious21cmimagesofA2255re- vealedthattheyaregenuinefeaturesandnotacollectionofdis- 3.3.2mmap crete sources(Pizzo & de Bruyn2008).From now on, we will call them the NW (north-west) and SW (south-west) relic, re- The2mmapisshowninFig.7.Thenoiserangesbetween2mJy spectively.Theyhavedifferentshapes.TheSWrelicappearslike and3mJyandislimitedbyclassicalconfusionnoiseintheinner afilamentofabout8(cid:7) inlengthand2(cid:7) inwidth.Ithasthesame partofthemap(seeSect.2.7andTable3). orientationoftheknownNErelic,butislocatedontheopposite Aroundthecentralradiohalo,theknownradiogalaxiesbe- sidefromtheclustercenterandatadoubledistancefromit.The longing to the cluster are still detected. The diffuse emission 646 R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 Bean B A Embryo Beaver A B NE Relic C2 Halo C1 Bridge Fig.4.Toppanel:bigfieldgreyscaleimageofA2255at25cm.TheradiogalaxiesBean,Embryo,andBeaverarevisible,atlargedistancefrom theclustercenter.Theresolutionis14(cid:7)(cid:7)×15(cid:7)(cid:7).Thenoiselevelattheedgeofthefullyimagedfieldis11μJy/beam(seeFig.2).Bottomleftpanel: zoomintothecentralclusterregion.Wecandistinguishhalo,NErelic,bridgeconnectionbetweenthemandtheradiogalaxiesGoldfish,Double, TheoriginalTRG,andSidekick.C1andC2seemtobeanextensionoftheradiobridge(seetext).Thecontoursare–0.03,0.03,0.06,0.12,0.24, 0.48,0.96,2,4,8,16,32mJy/beam.Bottomrightpanel:zoomintotheregionoftheclusterwherethenewNWrelichasbeendetectedat85cm (Sect.3.2).At25cm,theonlyfilamentpointingtowardstheclustercenter(NW1)isdetected,butatverylowlevel(1σ).Herethecontoursare –0.01(grey),0.01,0.02,0.04,0.06,0.08,0.16,0.32,0.64,1.2,2.4mJy/beam.Themapsarenotcorrectedfortheprimarybeam. Table4.TheextendedradiogalaxiesofA2255. Thelargestdetectablestructureinour85cmobservationsis∼1◦, which meansthat nondetecting this extendedfeatureat 85 cm Name RA(J2000) Dec(J2000) cannot be due to uv plane coverageissues. Instead, it supports Bean 17h15m31s +64◦39(cid:7)28(cid:7)(cid:7) themorelikelyhypothesisthatthenewemissionregionisasteep Beaver 17h13m19s +63◦48(cid:7)16(cid:7)(cid:7) spectrum feature, whose nature is differentfrom the NW relic. Double 17h13m28s +64◦02(cid:7)50(cid:7)(cid:7) We note that point sources might make an important contribu- Embryo 17h15m05s +64◦03(cid:7)42(cid:7)(cid:7) tiontothenewextendedemissionfeature.Totestitsnature,we Goldfish 17h13m04s +64◦06(cid:7)56(cid:7)(cid:7) removedthe contributionofpointsourcesdetectedat 25cm in TRG 17h12m23s +64◦01(cid:7)46(cid:7)(cid:7) this area, assuming a nominalspectral indexof α = −0.7. The Sidekick 17h12m16s +64◦02(cid:7)14(cid:7)(cid:7) totalfluxsubtractedintheregionis635mJy.Theresult,shown in Fig. 8, confirms the genuine diffuse nature of the feature. The source at location RA = 17h10m37s, Dec = +64◦30(cid:7)24(cid:7)(cid:7) associated with A2255 seems to be rather complex. The radio isduetoablendof2pointsources,ascanbeseenathigherfre- haloisextendedtowardsNWandisconnectedtotheNWrelic. quency(Fig.6). Giventheir steep spectrum(α ∼ −1),they are R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 647 Fig.5.CompositeimagesofA2255obtainedfromsuperposingtheradioandopticalimages.TheWSRT85cmradiomap(ingrey)forthetotal field(centralpanel),NWrelic(bottomleftpanel),andSWrelic(bottomrightpanel)areshownoverlaidontheredbandDigitizedSkySurvey image(blackandwhite).Theradioimagehasaresolutionof54(cid:7)(cid:7)×64(cid:7)(cid:7)anditisnotcorrectedfortheprimarybeam. still visible after the subtraction. We computed the upper limit ThephysicalparametersofhaloandNErelicat2marelisted for the spectral index of this feature using maps at 2 m and at in Table 5.We notethatitis difficulttodeterminetherealsize 85 cm restored with the same resolution (163(cid:7)(cid:7) × 181(cid:7)(cid:7)), cov- andthebordersofthehaloandtheNErelic,thereforetheinte- ering the same uv range and in which we subtracted the point gratedfluxdensitiesreportedinthetablealsoreflectthisuncer- sourcesdetectedat25cm.Inthe2mmap,thefeaturehasapeak tainty.Theangularsizesofthetwostructuresareassumedtobe brightnessof28mJy/beam,whileinthe85cmmapwecanonly thesamethanat85cm. give an upper limit, considering 3 times the noise of this map TheNWrelicisvisibleat2m,whiletheSWone,whichhas (σobs = 1 mJy/beam), i.e. 3 mJy/beam. As a result, we obtain a surface brightness lower than the NW relic at 85 cm, is not that the newly detected featureshould have a spectrum steeper detected (S < 6 mJy). This is mainly due to the confu- SWrelic than−2.6. sion limit in the central area of the map, where the noise level Because of the low resolution of the image, the NE relic is3mJy. seems to be embedded in the halo emission. The feature as- Otherextendedfeaturesare detectedto the E,NWandSW sociated with it, already detected at 85 cm and tentatively at oftheclustercenterandatverylargeprojecteddistancefromit. 25 cm (C2 in Fig. 4, bottom left panel), is now more promi- ThefirstoneislocatedatRA=17h17m25s,Dec=+64◦05(cid:7)15(cid:7)(cid:7), nent. However, we notice that, in this case, part of it could be thesecondoneatRA= 17h09m29s,Dec= +64◦36(cid:7)44(cid:7)(cid:7) andthe due to the radio source located at RA = 17h14m04s, Dec = third oneat RA = 17h06m10s, Dec = +63◦18(cid:7)42(cid:7)(cid:7). Comparing +64◦16(cid:7)10(cid:7)(cid:7),clearlydetectedatboth25cmand85cm. the2mmapwiththefullresolution85cmand25cmimages,it 648 R.F.PizzoandA.G.deBruyn:RadiospectralstudyoftheclusterofgalaxiesAbell2255 NW1 NW NE NW2 Relic Halo Fig.6. Contour map of A2255 at 85 cm. SW The resolution is 54(cid:7)(cid:7) ×64(cid:7)(cid:7). The noise level at the edge of the fully imaged field is ∼0.1mJy/beam (seeFig.2). Thecontours are –0.3(grey),0.3,0.6,1.2,2.4,4.8,9.6,20, 40, 80,160mJy/beam.Thedottedellipsesindicate thestructuresalreadyknownthroughprevious 1 Mpc studies,asthehaloandtheNErelic,whilethe solidellipsesrefertothenewlydetectedrelics. Werefertothetextfor adiscussionabout the positivefeatures at theeast sideof the cluster center.Themapisnotcorrectedfortheprimary beam. NW NE Relic Halo Fig.7.ContourmapofA2255at2m.Theres- olutionis163(cid:7)(cid:7) ×181(cid:7)(cid:7).Thenoiselevel at the edgeofthefullyimagedfieldis∼2mJy/beam (see Fig. 2). The contours are –0.007 (grey), 0.007, 0.014, 0.028, 0.056, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 Jy/beam. The radio halo is more ex- tended towards NW than at 85 cm and is di- rectly connected to the NW relic. The dot- 1 Mpc tedlinesindicatethestructuresalreadyknown through previous studies, as the halo and the NErelic,whilethesolidlinesrefertothenewly detectedrelics.Themapisnotcorrectedforthe primarybeam.

Description:
We present WSRT multi-wavelength observations of the galaxy cluster Abell Key words. galaxies: clusters: general – galaxies: clusters: individual: Abell 2255 tral index for the head of the radio galaxy, but the low resolution.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.