ebook img

Radio Properties of the $\gamma$-ray Emitting CSO Candidate 2234+282 PDF

0.18 MB·
by  T. An
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radio Properties of the $\gamma$-ray Emitting CSO Candidate 2234+282

Astron. Nachr./AN?,No.?,789–792(2015)/DOIpleasesetDOI! Radio Properties of the γ-ray Emitting CSO Candidate 2234+282 T.An1,2,4,⋆,Y.-Z.Cui1,2,K.É.Gabányi3,5⋆⋆,S.Frey3,W.A.Baan2,andW.Zhao2 1 SchoolofElectricalandElectronicEngineering,ShanghaiInstituteofTechnology,201418,Shanghai,China 2 ShanghaiAstronomicalObservatory,ChineseAcademyofSciences,NandanRoad80,Shanghai200030,China 6 3 FÖMISatelliteGeodeticObservatory,POBox585,H-1592Budapest,Hungary 1 4 KeyLaboratoryofRadioAstronomy,ChineseAcademyofSciences,Nanjing210008,China 0 5 KonkolyObservatory,MTAResearchCentreforAstronomyandEarthSciences,POBox67,1525Budapest,Hungary 2 v Received2015Oct19,accepted2015Oct21 o Publishedonline N Keywords galaxies: active –galaxies: individual (2234+282) –gamma rays: galaxies–radiocontinuum: galaxies– 0 1 techniques:interferometric Mostoftheγ-rayemittingactivegalacticnuclei(AGN)areblazars,althoughthereisstillasmallfractionofnon-blazar ] E AGNintheFermi/LATcatalog.Amongthesemisalignedγ-ray-emittingAGN,afewcanbeclassifiedasCompactSym- metricObjects(CSOs).Incontrasttoblazarsinwhichγ-rayemissionisgenerallythoughttooriginatefromhighlybeamed H relativisticjets,thesourceofγ-rayemissioninunbeamedCSOsremainsanopenquestion.Therarityoftheγ-rayemitting . CSOsisamysteryaswell.Herewepresenttheradiopropertiesoftheγ-rayCSOcandidate2234+282. h p (cid:13)c 2015WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim - o r st 1 Introduction as young radio galaxies (reviewed by Fanti, 2009; O’Dea, a 1998). Theoretical models have predicted γ-ray emission [ One of the intriguingdiscoveriesof the Fermi Large Area fromCSOs(Kinoetal.,2009;Migliorietal.,2014;Stawarzetal., 2 Telescope (LAT) survey is the overwhelmingmajority (98 2008). However there are only two γ-ray CSO candidates v %)oftheFermi-detectedAGNclassifiedasblazars known to date, 4C +55.17 (McConvilleetal., 2011) and 9 (Ackermannetal., 2015). In leptonic models, γ-ray radia- PMN J1603−4904 (Mülleretal., 2014). In this paper, we 5 tion fromblazarsis mostly explainedby Comptonscatter- reportanewγ-rayCSOcandidate2234+282. 8 ing of low-energy synchrotron photons by the same rela- 3 0 tivisticelectronsinthejetsproducingthesynchrotronemis- 2 Sampleselection anddata reduction . sion at lowerfrequencies(e.g.,Bloom&Marscher, 1996); 1 0 inhadronicmodels,thehigh-energyemissionisdominated In order to increase the sample size of γ-ray CSOs, we 6 by relativistic protons (e.g., Böttcher, 2010). Besides the looked into the archival MOJAVE1 (MonitoringOf Jets in 1 blazars,therearedozensofmisalignedAGNdetectedbythe ActivegalacticnucleiwithVLBAExperiments,Listeretal., : v Fermi(e.g.,Abdoetal.,2010a;Ackermannetal.,2015). 2009)databasetosearchfornewcandidates. i Thesamplesizeisstillsmall,thoughtheyconstituteavery X Thecriteriaofsampleselectionare: interestingclassofγ-rayemitters.CenA(NGC5128),Per r 1. thesourcehasbeenidentifiedbyFermiwithhighstatis- A (NGC 1275) and M87 (3C 274) are three well-studied a ticalsignificance; nearbyradiogalaxiesinwhichγ-rayemissionwasobserved 2. theradiomorphologyisofCSOtype,characterisedwith inthecore.Asingle-zonesynchrotronself-Compton(SSC) compactdoublelobeswithorwithoutacentralcore; jetmodelwassuccessfullyappliedtofittheLATγ-rayspec- 3. thetotalfluxdensitywhichisintegratedoverthewhole trum of these radio galaxies, although other explanations source in each VLBI image shows a steep or GHz in- exist(e.g.Abdoetal.,2009).Thesenon-blazargamma-ray verted(GPStype)spectrum. AGN generally have moderate jet beaming, with Doppler boostingfactorof2–4.Extendedγ-rayemissionwasalso Intotal,344AGNarecross-matchedbetweentheMO- detected from Cen A lobes (Abdoetal., 2010b), and it is JAVE and Fermi catalogues. Among them, we found only interpretedastheinverseComptonscatteringofthecosmic one source, 2234+282 matching the above three criteria. microwavebackgroundphotonsbytherelativisticelectrons Such a low percentage (0.3%) is consistent with the rarity inthelobes. oftheγ-rayCSOsingeneral.Detailsoftheradioemission AmongthemisalignedAGN,thereisasub-classnamed propertiesaregiveninthenextSection,includingthespec- Compact Symmetric Objects (CSOs), which are regarded tralindexα(definedasSν ∝ να),thebrightnesstempera- tureTbofthecore,andhotspotadvancespeed(βadv). ⋆ Correspondingauthor:e-mail:[email protected] ⋆⋆ speakerattheconference. 1 http://www.physics.purdue.edu/astro/MOJAVE/index.html (cid:13)c 2015WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 790 Anetal.:γ-rayCSOs 3 CSO identification of2234+282 2234+282(alsonamedasCTD135)hasaredshiftz =0.79. Its optical spectrum was described by Shawetal. (2012) as transitional between flat-spectrum quasars and BL Lac NE C typeobjects.ItwasdetectedbyFermiwithastatisticalsig- nificance of 52.1σ, corresponding to 3FGL J2236.3+2829 and 2FGL J2236.4+2828 (Aceroetal., 2015), but not de- tectedbytheEnergeticGammaRayExperimentTelescope (EGRET;Hartmanetal.,1999)oftheComptonGammaRay Observatory,probablyduetoinsufficientsensitivity. Theradiospectrumofthetotalfluxdensityiscomplex SW above1GHzduetothevariabilityofthenon-simultaneous data points (Figure 2)2. Except for that, there is a signifi- 10 pc cantdecreaseinthefluxdensityat408MHz,suggestinga lowfrequencyturnoveraround1GHzinthespectrum.The VeryLargeArray(VLA)observationperformedat1.5GHz in 1984 revealed a bright compactcomponentand a weak featureabout4.9′′tothesouthwest(Murphyetal.,1993). Fig.1 Overlaid VLBI images of 2234+282 at 8.4 GHz The Very Long Baseline Array (VLBA) images at 2.3 (red contours)and 15 GHz (blackcontours).The8.4-GHz GHz show a single compactcomponentwhich is resolved image was made from the VLBA data on 1996 May 15 alongthenortheast-southwestdirectionatfrequencieshigher (projectcode:BB023),therestoringbeam(shownasa red than5GHz.Figure1showsthe15-GHzimage(blackcon- ellipse in the bottom left corner) is 2.05 mas × 0.87 mas tours) overlaid on the 8.4-GHz one (red contours). At 15 atPA = −12.8◦.Thepeakbrightnessis0.708Jybeam−1. GHz, the emissionstructure can be fitted with three Gaus- Thecontourlevelsincreasebyafactorof2,andthelowest sian components,NE,C andSW. ComponentC isthe most contouris1.5mJybeam−1(3σ).The15-GHzdatawereob- compact,andaccountsfor65%ofthetotalfluxdensity.We tainedon1996May16(projectcode:BK037).Therestor- usedcircularGaussiansinthefittingtogetthepeaklocation ingbeamis1.17mas×0.49masatPA= −23.4◦ (shown andthesizeofthemodels,inordertosimplifythecompari- asablackellipseinthebottomleftcorner).Thepeakbright- sonandtodecreasethenumberoffreeparameters.Onefifth nessis0.421Jybeam−1,andthelowestcontouris1.1mJy ofthebeamsizeistakenastheerroroftheposition.Compo- beam−1(3σ). nentsNEandCarestillblendedat8.4GHz.Thecombined NE+C component shows a somewhat steep spectrum with a spectral index of α = −0.43 ± 0.07 (Figure 3-a). The details of the VLBI observationsused here to describe the spectralindexofthesourcearegiveninTable1.Theweaker SWcomponentshowsaninvertedspectrumwithaturnover around4GHz.Thespectrumoftheopticallythinsectionis rathersteep,showingα=−2.50±0.18. y) Since 2009 the MOJAVE program observations of the y (J 100 source were performed in full polarization. According to sit thosethepolarizedemissionisconcentratedincomponents n e d NEandC.ComponentCdoesnotshowevidentvariationin x Flu polarization,butNEshowssignificantvariabilityinthepo- larizedintensityat15GHzonatimescaleofafewmonths. ComponentsCandNEcanberesolvedonlyat15GHz andfrequenciesabove.Since therehasbeennosimultane- 10-1 100 101 102 ous observationat 15 and 24 GHz, and the source is vari- Frequency (GHz) able (see below),an accurateestimationof thespectralin- Fig.2 Radio flux density versus frequency. The data dexofcomponentCisnotpossible.Eventhough,thecen- points,obtainedfromthesingledishorVLAmeasurements, tral component C is the brightest and most compact one arecollectedfromtheNED.Theradiospectrumiscomplex among the three. The brightness temperature of C ranges above 1 GHz due to variability. A significant decrease of from 3.4×1010 K to 1.5×1012 K at 15 GHz. Thus C is fluxdensityat408MHzsuggestsalowfrequencyturnover mostlikelythecore. around1GHz. 2 http://ned.ipac.caltech.edu/ (cid:13)c 2015WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2015) 791 a) C+NE b) 2.3 GHz c) SW 2.0 81.54 GGHHzz s) 1.5 a Flux density (Jy)1100-10 alpha = −0.43 alpha = −2.50 Flux Density (Jy) 1.0 SW separation (m 1.0 E- N 0.5 10-2 100 101 102 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015 Frequency (GHz) Epoch (year) Epoch (yr) Fig.3 Panela)showstheradiospectraoftheVLBIcomponentsin2245+282.Thedashedlineindicatesthepowerlaw fittothespectrumofthecomponentC+NE.ThedottedlinerepresentsthemodelfittothespectrumofSWbyusingapower lawtogetherwiththefree-freeabsorption.Wenotethatthespectrumcanalsobefittedwithasynchrotronself-absorption model.Panelb)displaysthelightcurvesat2.3,8.4and15GHz.Panelc)showstheseparationofcomponentsNE-SWasa functionoftime.Thedashedlinedenotestheleast-squaresfittotheobserveddata. Figure3-b showsthe lightcurvesof thetotalfluxden- Table1 Interferometricobservationsusedtodescribethe sity at 15,8.4and 2.3GHz. 2.3 and8.4 GHz observations spectralindexofthesource(Figure3Panela)). were performed in the framework of the VLBA calibrator survey3.Thefluxdensitiesatallthreefrequencieswerecal- Epoch ν Projectid SC+NE SSW (GHz) (Jy) (Jy) culated by summing up the CLEANed components. The 1996May15 2.3 BB023 1.49±0.15 0.02±0.002 sourceexhibitsvariabilityatallthreefrequencieswithaper- 1996Jun5 5 BH019 1.04±0.10 0.18±0.02 centagefluctuationindexdefinedas 1996May15 8.4 BB023 0.89±0.09 0.07±0.01 σ 1996May16 15 BK037 0.64±0.06 0.02±0.002 u=100 (1) hSi (Heeschenetal., 1987), in whichhSi is the meanandσ is 4 Discussion the standard deviation. That gives u = 25.1% (15 GHz), 25.9% (8.4 GHz) and 30.6% (2.3 GHz). Since the central The location and the radiation mechanism of γ-ray emis- componentCcontributesthemajorityofthetotalfluxden- sionfromCSOsremainopenquestions.Asingle-zoneSSC sity, the variability may in fact represent the flux density emission model well fits the broadband SEDs from radio variationinC. up to GeV energy bands in blazars and also in some mis- We investigated the position change of component NE alignedAGN(e.g.,M87:Abdoetal.,2009).Theone-zone with respectto the assumed coreC, andfoundthatNE ap- SSC model requires relativistic beaming. However, unlike parently moves toward the core C. This is actually indica- theblazarjets,theCSOjetsareingeneralmildlyrelativis- tive that the componentC is a mixture of the core and an ticandunbeamed(An&Baan,2012).Itisobviousthatthis innerfast-movingjet(notresolvableat15GHz)whichwas SSCmodelcannotreproducetheγ-rayemissionfromCSOs. ejected toward the northeast.We then used SW component Someothermodelshavebeeninvestigatedtointerprettheγ- as the referenceto calculate the hot spotseparation speed. rayradiationfromCSOs.Forexample,Stawarzetal.(2008) TheangularseparationbetweencomponentsNEandSWas proposedthattherelativisticelectronsinjectedfromthehot a function of time is depicted in Figure 3-c. The separa- spotstotheCSOlobescanup-scattertheultravioletphotons tion rate is estimated as β = 0.014±0.004 mas yr−1, sep from the disk to GeV energy range. Migliorietal. (2014) corresponding to a projected hot spot separation speed of proposedatwo-zoneSSCjetmodelfortheγ-rayemission 0.6 ± 0.2c. Assuming that the jet and counterjet have an fromGPSandCSSquasars,inwhichtheseedsynchrotron equalspeed,theaveragehotspotadvancespeedis∼ 0.3c. photonswhicharefromaninnerblazar-likejetknotareup- ThishotspotspeedisatypicalvalueforCSOs(An&Baan, scatteredbytheelectronsinanouterslowerjetknot.Inad- 2012),butmuchlowerthanthejetspeedinblazars. dition, bremsstrahlung emission from the shocked plasma Tosummarize,allpiecesofevidences,includingthe in the cocoon of CSO may also have a significant contri- compacttriplestructure,steepspectrum,andlowjetspeed butiontothehigh-energyemission(Kinoetal.,2009).The are consistent with each other to imply that 2234+282 is model predicts γ-ray emission from CSOs that could be a CSO. The brightnesstemperatureandmoderatevariabil- detected by Fermi, since the electron density and temper- ity of the core indicate that the innermost jet is Doppler ature are much higher in the young radio lobes than those boosted. inolderones.Thedifferenceofthesemodelsisthatthefirst 3 thedataarefromtheVLBIarchiveathttp://astrogeo.org two(Migliorietal.,2014;Stawarzetal.,2008)areofnon- www.an-journal.org (cid:13)c 2015WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 792 Anetal.:γ-rayCSOs thermal origin and and the last one (Kinoetal., 2009) is Heeschen, D. S., Krichbaum, T., Schalinski, C. J., & Witzel, A. thermal. 1987,AJ,94,1493 Theobservationalpropertiesof2234+282makeitaγ- KinoM.,Ito,H.,Kawakatu,N.,&Nagai,H.2009,MNRAS,395, ray CSO candidate, increasing the number of γ-ray CSO L43 ListerM.,Homan,D.C.,Kadler,M.,etal.2009,ApJ,696,L22 candidates from 2 to 3. The number of CSOs detected in McConville,W.,Ostorero,L.,Moderski,R.,etal.2011,ApJ,738, GeV energy range so far is significantly lower than pre- 148 dictedbytheoreticalmodels.D’Ammandoetal.(2015) MiglioriG.,Siemiginowska,A.,Kelly,B.C.,etal.2014,ApJ,780, searched 60 CSOs and analyzed 6 years of LAT data but 165 failed to confirm any γ-ray CSO. The theoretical calcula- MüllerC.,Kadler,M.,Ojha,R.,etal.2014,A&A,559,115 tionsshowthatthemodel-predictedγ-rayfluxisnearorbe- Murphy D.W.,BrowneI.W.A.,PerleyR.A.1993, MNRAS,264, lowthecurrentFermidetectionlimit(Migliorietal.,2014). 298 ContinuingsearchofacompleteCSOsamplebasedonthe O’DeaC.P.1998,PASP,110,493 Fermidataatalowerenergyrangeof0.1–10GeVisunder- ShawM.S.,Romani,R.W.,Cotter,G.,etal.2012,ApJ,748,49 way (D’Ammandoetal., 2015) to verifywhetherthe CSO Stawarz,Ł.,Ostorero,L.,Begelman,M.C.,etal.2008,ApJ,680, emissionisintrinsicallydominatedinlowenergyband.On 911 theotherhand,themorphology,spectralpropertiesandkine- maticsofthesethreesourcessuggestmildlyrelativisticjet. VLBI data of γ-ray CSO candidatesprovideimportantin- formationontheradiojetluminosityandjetspeed,placing stringent constraints on the γ-ray emission models. Com- plementary wide-band SED fits of these three sources are crucialforverifyingwhetherthejetplaysanimportantrole ingeneratingγ-rayemissionfromCSOs(themodelof Migliorietal., 2014). If however the γ-ray emission from CSOs is found to be of thermal origin and related to the lobes,thatwouldidentifyanewγ-rayemissionmechanism forAGNasproposedbyKinoetal.(2009). Acknowledgements. The research is supported by the European CommissionSeventhFrameworkProgramme(FP/2007-2013)un- dergrantagreementNo283393(RadioNet3).Thisresearchissup- portedbytheChineseMinistryofScienceandTechnologygrant (2013CB837900), Shanghai Rising-Star Program, the Hungarian ScientificResearchFund(OTKANN110333)andtheChina–Hun- garyCollaborationandExchangeProgrammebytheInternational CooperationBureauoftheChineseAcademyofSciences.Thisre- search has made use of data from the MOJAVE database that is maintainedbytheMOJAVEteam.TheNRAOisafacilityofthe National Science Foundation operated under cooperative agree- mentbyAssociatedUniversities,Inc. References Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.2009,ApJ,707,55 Abdo, A.A.,Ackermann, M., Ajello,M.,et al.2010a, ApJ, 720, 912 Abdo, A.A., Ackermann, M., Ajello, M., et al. 2010b, Science, 328,725 Acero,F.,Ackermann,M.,Ajello,M.,etal.2015,ApJS,218,23 Ackermann,M.,Ajello,M.,Atwood,W.B.,etal.2015,ApJ,810, 14 An,T.,&BaanW.A.2012,ApJ,760,77 Bloom&Marscher1996,ApJ,461,657 Böttcher, M. 2010, in Proc. Fermi Meets Jansky, MPIfR, Bonn, eds.T.Savolainen,E.Ros,R.W.Porcas,&J.A.Zensus,p.41 D’Ammando,F.,Orienti,M.,Giroletti,M.,etal.2015,thesepro- ceedings Fanti,C.,2009,AN,330,120 Hartman, R.C., Bertsch, D.L., Bloom, S.D., et al. 1999, ApJS, 123,79 (cid:13)c 2015WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.