ebook img

Radio Monitoring of Protoplanetary Discs PDF

0.66 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radio Monitoring of Protoplanetary Discs

MNRAS000,1–10(2015) Preprint10January2017 CompiledusingMNRASLATEXstylefilev3.0 Radio Monitoring of Protoplanetary Discs C. Ubach1,2⋆, S. T. Maddison2, C. M. Wright3, D. J. Wilner4, D. J. P. Lommen5, 6 B. Koribalski 1NationalRadioAstronomyObservatory,520EdgemontRoad,CharlottesvilleVA22903-4608,USA 2CentreforAstrophysics&Supercomputing,SwinburneUniversityofTechnology,H30,P.O.Box218,Hawthorn,VIC3122,Australia 3SchoolofPhysical,EnvironmentalandMathematicalSciences,UNSW@ADFA,CanberraACT2600,Australia 4Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,02138Cambridge,MA,USA 7 5HwaChongInstitution,661BukitTimahRoad,Singapore269734 1 6CSIROAstronomy&SpaceScience,AustraliaTelescopeNationalFacility(ATNF),POBox76,EppingNSW1710,Australia 0 2 n a 10January2017 J 9 ABSTRACT ] P Protoplanetarydisc systemsobservedat radiowavelengthsoften show excessemission E abovethatexpectedfroma simple extrapolationof thermaldustemission observedat short . h millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help p disentanglethephysicalmechanismsresponsibleforthisexcess,includingfree-freeemission - froma wind or jet, and chromosphericemission associated with stellar activity. We present o r new results from a radio monitoring survey conducted with Australia Telescope Compact t Arrayoverthecourseofseveralyearswithobservationintervalsspanningdays,monthsand s a years,wherethefluxvariabilityof11TTauristarsintheChamaeleonandLupusstarforming [ regionswasmeasuredat7and15mmand3and6cm.Resultsshowthatformostsources are variabletosomedegreeat7mm,indicatingthepresenceofemissionmechanismsotherthan 1 thermal dust in some sources. Additionally, evidence of grain growth to cm-sized pebbles v 9 wasfoundforsomesourcesthatalsohavesignsofvariablefluxat7mm.We concludethat 4 multiple processes contributing to the emission are common in T Tauri stars at 7 mm and 0 beyond, and that a detection at a single epoch at radio wavelengths should not be used to 2 determineallprocessescontributingtotheemission. 0 . Key words: protoplanetarydiscs, star: variables: T Tauri, radio continuum:planetary sys- 1 tems,radiationmechanisms:thermal,non-thermal 0 7 1 : v 1 INTRODUCTION wavelengths (Rodmannetal. 2006; Lommenetal. 2009, 2010; i X Ubachetal. 2012). This “break" has been attributed to emission Signatures of cm-sized pebbles have been detected in protoplan- r mechanismsrelatedtoionizedplasma,addingtotheemissionfrom a etary discs by extending the relationship between the dust opac- thermaldustinthesediscs.Thisexcessemissionatlongmillimetre ity index, β, and the 1 to 3 mm spectral slope, α, to longer cen- wavelengthscouldbecausedbyeitherthermalfree-freeemission timetre wavelengths (e.g. Testietal. 2003; Rodmannetal. 2006; from an ionised wind or by non-thermal processes such as chro- Wilneretal.2005;Lommenetal.2009).Theresultsfromthisre- mosphericemissionfromtheyoungstar,oracombinationofboth. lationship(β ∼α−2)canindicategraingrowthupto3λ(where At7mm,boththermaldustemissionandthermalfree-freeemis- λistheobservedwavelength)whenβ <1,andlimitedtonograin sionfromanionisedwindhavebeendetectedinyoungstellarob- growth(ISMsizedgrains)forβ>1,aslongasthegrainsize≪λ jects(e.g.Rodmannetal.2006;Lommenetal.2009),whilevari- (Draine2006). ableemissionat3and6cmhasbeenusedtodemonstrateacombi- Thisapproachassumesthatthelongwavelengthemissionfol- nationofallthreeemissionmechanisms(e.g.Lommenetal.2009). lowsthe1to3mmemission, whichisdominatedbythermaldust Temporal monitoring of the disc emission has been used to emissionandisconstantovertime,whichisnotalwaysthecaseat disentanglethesethreeemissionmechanisms(Lommenetal.2009; longerwavelengths(e.g.Lommenetal.2010;Ubachetal.2012). Ubachetal. 2012). Flux originating from thermal dust emission A dozen protoplanetary discs show a “break" in the spec- is generally assumed to be constant over time, whereas the flux tral slope near 7 mm, with a shallower spectral slope at longer from thermal free-free and non-thermal emission may be tem- porally variable. Thermal free-free emission can vary by a fac- ⋆ E-mail:[email protected] tor of ∼ 20–40 per cent over a timescale measured in years (cid:13)c 2015TheAuthors 2 Ubachet al. (Skinner&Brown 1994; González&Cantó 2002; Smithetal. 3 RESULTSANDDISCUSSION 2003; Lommenetal. 2009), while non-thermal emission mecha- A summary of the continuum fluxes for the combined frequency nisms may vary by a factor of 2 or more on timescales of hours pairsarepresentedinTable2,complementedwithfluxesobtained todays(Kuijpers&vanderHulst1985;Phillipsetal.1991,1993; fromliterature.Thedetectionratesforthesourcesobservedinthis Smithetal.2003;Skinner&Brown1994;Chiangetal.1996). studyareasfollows: 9/11sourcesweredetectedat7mm,3/5at HerewepresentcontinuumfluxmonitoringofTTauristarsat 15mm4,and0/3sourcesatboth3cmand6cm.A3σupperlimit 7and15mmand3and6cmovertimescalesofdays,monthsand isprovidedfornon-detections. years. We analyse the data to determine the various contributing Wepresent inFigure1boththespectrum, orradiofluxasa emission mechanisms present in the discs. We further determine functionofwavelength(left),andthe7mmfluxversustime(right) whether it is common for protoplanetary discs to show evidence forthe11sourcesinoursurvey. Detectionsaredenotedbyastar bothofgraingrowthuptocm-sizedpebblesandofmultipleemis- symbolandupperlimitsbyanarrow.Errorbarsincludetheuncer- sionmechanisms. taintyinthefluxfit,aswellastheprimaryfluxcalibrationuncer- taintiesof20percentfor1.2mm,30percentfor3mm,and10per centfor7mm,15mm,3cmand6cm.Inthespectrumplots,the redsolidlinerepresentstheestimatedemissionduetothermaldust, 2 OBSERVATIONSANDDATAREDUCTION which was fit using the least squares method between the 1 mm Thissurvey targeted11T TauristarsintheChamaeleon and Lu- and3mmfluxesandextrapolatingthisspectralslope,α,tolonger pusstarformingregions–seeTable1.Thesourceswereselected wavelengths. Fluxesat1and3mmweretaken fromUbachetal. to overlap with the Lommenetal. (2009, 2010) and Ubachetal. (2012) and references therein. The estimated 7 mm thermal dust (2012)samples,maximisingthenumberofsourcesandincreasing component, F7mm(therm), is denoted by a green diamond. The themonitoringbaselinetoyears–seeTablesA1andA2. greyshaded arearepresentstheregionofuncertaintyinthespec- ContinuumobservationswereconductedwithAustraliaTele- tralslopeusingstandardquadraticerrorpropagation. Ifwetakea scope Compact Array (ATCA) during the winter 2012 season. ‘slice’throughtheradiospectrumat7mm,andploteachobserved Three compact hybrid array configurations were used, providing 44GHzfluxagainsttime(aspresentedinTable2),thisgivesusthe synthesizedbeamsbetween5to15arcsecat7mm,corresponding temporalmonitoringplotsontheright.Herethegreyregionisthe to∼800−2400auassumingadistanceof160pctothesources. sameasinthespectrumplot,andrepresentstheuncertaintyofthe ThetwoCABB1 intermediatefrequency bands weredivided into extrapolation of the 7 mm thermal flux estimate, F7mm(therm), 2048channelsof1MHzwidth. whichisnowrepresentedbyagreenline.Wewillusebothofthese Alltargetswereobservedwithfrequencypairscentredat43+ plotstohelpunderstandtheemissionprocessesineachsystem. 45GHz(7mmband),fivetargets2at17+19GHz(15mmband) andthreetargetsat5.5+9.9GHz(6and3cmbands,respectively). Themmfrequencybandssetupprovideda4GHzwidebandwith 3.1 Temporalmonitoring an expected RMS of 0.1 and 0.03 mJy for 30 minutes on source for the 7 and 15 mm bands, respectively. The 3 and 6 cm bands The aim of our temporal monitoring campaign is to try and dis- were2GHzwidewithanexpectedRMSof0.027and0.034mJy entanglethedifferentphysical processescontributingtotheradio for30minutesonsource,respectively.Intotalthissurveycovered emissioninthissample of TTauri stars. Whileanumber of mil- frequenciesrangingfrom4.5to46GHz. limetreandcentimetresurveysofYSOshavebeenconducted(e.g. QSOB1057-79andQSOB1600-44wereusedasgaincalibra- Henningetal. 1993; Andrews&Williams2007), few monitoring surveyshavebeencarriedoutduetotheirintenseresourcesrequire- torsforChamaeleonandLupus,respectively.Foralltheobserva- tionstheabsolutefluxcalibrationwasperformedusingPKS1934- ment. Given that YSOs are inherently variable (e.g. Herbstetal. 638. Weather conditions were good throughout the observations. 1994),fluxmonitoringontimescalesofaday,weeksandyearsare requiredtounderstandthecontributingprocessestotheiremission. Due to poor u-v coverage at the longer baselines when using the compact hybrid arrays, and given that fluxes rather than images Herewecomparefluxesobtainedfromafewdaysapartto100sof weretherequireddataproducts,antenna6wasnotincludedinthe daysapart,aspresentedinTable2. dataprocessingandanalysis. Fromourpreviousobservations(Ubachetal.2012),oursam- Thedatacalibration followedthestandard CABBprocedure ple could be divided into two distinct groups: (i) those with a described in theATCAuser guide3 for all wavelengths using the constant spectral slope from 1-7 mm (CS Cha, Glass I, SZ Cha, softwarepackageMIRIADversion1.5(Saultetal.1995).Inorder WWCha,MYLup,Sz111,GQLup),and(ii)thosewitha“break” in the mm spectral slope at 7 mm (CR Cha, DI Cha, T Cha and todeterminethesourcefluxes,weusedapointsourcefit.Toensure Sz 32). This “break” is an indication that other forms of emis- thatthiswasappropriate,wecheckedthevisibilityamplitudeswere constantoveru-vdistanceforall11sourcesateachepoch. sionat7mmarepresent inadditiontothermaldust emission. In Ubachetal. (2012) a least squares fit was used to determine the For this analysis, the data from each day at each frequency wascalibratedseparatelyandthenthefrequencypairswerecom- spectralslopebetween1and3mm,α,andextrapolatedto7mm bined.Theflux(fromthepointsourcefit)andRMSvaluesforall to estimate the thermal dust component F7mm(therm). Table 3 presents the estimated thermal dust emission at 7 mm, the maxi- observationswerethenextractedfromthevisibilitiesusingUVFIT andUVRMS. mumobserved 7mmflux,F7mm(max),andthefractional7mm excess,givenby(F7mm(max)−F7mm(therm))/F7mm(therm), forthissampleof11protoplanetarydiscs. 1 CompactArrayBroadbandBackend(Wilsonetal.2011). 2 Onlytwoofthesourceshaveprevious15mmobservations. 3 http://www.narrabri.atnf.csiro.au/observing/users_guide/ 4 SeeTableB1forresultsofsourcesobservedat15mmwithnopreviously html/atug.htmlForspecificdatareductionprocedureseeUbach(2014). reported15mmfluxes. MNRAS000,1–10(2015) RadioMonitoringofProtoplanetaryDiscs 3 Table1.Listofthe11sourcesobservedwithATCAinthissurvey. Source RA DEC Cloud Distances Teff Wavelengths (J2000) (J2000) (pc) (K) (mm) Chamaeleon CRCha 105906.9 -770139.7 ChaI 160 4900 7 CSChaΦ 110224.9 -773335.9 ChaI 160 4205 7,15 DIChaΦ 110721.6 -773812.0 ChaI 160 5860 7 TCha 115713.6 -792131.7 Isolated 100 5600 7,30,60 GlassIΦ 110815.1 -773359.0 ChaI 160 5630 7 SZCha 105816.7 -771717.1 ChaI 160 5250 7,15 Sz32 110953.4 -763425.5 ChaI 160 4350 7,30,60 WWCha 111000.1 -763457.9 ChaI 160 4350 7,30,60 Lupus Sz111 160854.7 -393743.1 Lupus4 200 3573 7,15 MYLup 160044.6 -415529.6 Lupus3 165 5248 7,15 GQLup 154912.1 -353903.9 Lupus1 156 4300 7,15 Distancesandeffectivetemperaturestakenfrom:(1)Whittetetal.(1997),(2)vandenAnckeretal.(1998),(3)Luhman(2004),(4)Hughesetal.(1994), (5)Comerón(2008),(6)Neuhäuseretal.(2008),(7)Donatietal.(2012). ΦBinaryseparationsof61′′,4.6′′,2.5′′forCSCha,DIChaandGlassI,respectively(Guentheretal.2007;Ghezetal.1997;Feigelson&Kriss1989). Usingacombinationofthespectrumandthetemporalmoni- periodareconsistent,thoughthereisvariabilityofafactorof2.4 toringplotsinFigure1,alongwiththedatainTable3,wecanstart injustunder3months.GQLupwasalsoobservedat15mmovera tounderstandthedegreeandpotentialsourceofvariabilityineach periodofalmost1.3years,andallthreefluxesareconsistentwithin system5.Ifwestartwiththe(crude)fractional7mmexcess,wecan thefluxfiterrors–seeFigure2.Whilenotexactlysimultaneous, placethe11sourcesintothreegroups:thosewithhightoextreme thetwo7mmand15mmobservationsthatweremadeabout470 fractionalexcessesabove1.5;thosewithamoderatefractionalex- daysapartgiveconsistent(non-varying)fluxesinbothbands. cessbetween0.5–1.0;andthosewithasmallfractionalexcessless There have been many observations of WW Cha – see Ta- than0.5. bleC1 for asummary. In Table 2we present just the44, 18, 9.9 Of the high to extreme 7 mm fractional excess sources, we and 5.5 GHz observations for the sources in our survey,while as can seethat CR Cha and DI Chahave excesses of order 2above it can be seen in Table C1, WW Cha has been observed at vari- expected thermal dust, while T Cha and Sz 32 have much larger ouswavelengthsinthe7mm,15mmand3&6cmbands.Inthe excesses of order 4–5. Looking at the radio spectrum of the two spectrumofWWChainFigure1wepresentallthedatafromTa- most extreme sources, we can clearly see a break in the spectral bleC1,withtheredinvertedtrianglesrepresentingdetectionsand slopeat7mm,excessemissionandfluxvariabilityinTChaand upperlimitsobtainedbyLommenetal.(2009).The7mmmonitor- Sz32.Their7mmtemporalmonitoringplotsshowfluxeswellin ingdatashowsonlythe44GHzdataforconsistency.Thecm-band excess of that estimated for thermal dust, i.e.theobserved fluxes dataclearlyshowsalotofvariability,byfactorsof2–4,andthetwo areoutsideofthegreyregionsoftheplots.Overthe3yearperiod 7mmfluxestaken3.2yearsapartvarybyafactorof2.3.Withthe oftheobservations,the7mmfluxesofTChaandSz32variedby radiomonitoringdatatodate,itappearsthatSz111andGQLup afactorof∼ 0.4and1.4respectively.The3and6cmfluxmon- aredominatedbythermaldustemission,thoughthereisvariability itoringofbothsourcesalsosuggestsvariablyoverthecourseofa at 7 mm in GQ Lup. WW Cha likely has a mix of thermal dust, year by 30–50 per cent, and detailed analysis of the 15 mm and thermalfree-freeemissionandnon-thermalprocessescontributing 3+6cmintra-epochfluxesbyUbachetal.(2012)showvariability totheradioemission. ofafactorof2onthetimescaleoftensofminutes.Thereisalsoa The sources with low fractional excess include CS Cha and breakinthespectralslopeat7mmseeninCRChaandDICha,and GlassI. Once again, none show a break in their spectral slope at overthe3yearperiodof7mmobservations,bothshowvariablyof 7mm,andtheir7mmfluxesallliewithintheregionofuncertainty afactor of 0.3and3respectively. Theyhaveonlyasingleobser- oftheextrapolated7mmthermaldustestimate.GlassIvarybya vationat15mmandintra-epochanalysisbyUbachetal.(2012)of factorof2.3and2over3.2years.CSChavariesbyaboutafactor CSChashows15mmvariabilityofafactorof2ontimescalesof of3over3months.ThismagnitudeofvariabilityforGlassIand tensofminutes. Forallfoursourcesitseemslikelythatamixof CSChasuggeststhatthenon-thermalemissionaswellasthermal thermaldust,thermalfree-freeemissionandnon-thermalprocesses dustcontributetotheoverallemission. contributetotheradioemission. The sources with moderate fractional excess include Finally,wefindthatjustthreesourcesinoursample,SZCha, WWCha,andGQLup.Noneofthesesourceshaveabreakintheir Sz111andMYLup,havenoobservedvariabilityat7mmovera spectralslopeat7mm,andtheir7mmfluxesallliewithinthere- timescaleof100sofdays,suggestingthatthedetectedcontinuum gionofuncertaintyoftheextrapolated7mmthermaldustemission. flux emission is due to thermal dust emission, whereas all other Threeofthefour7mmfluxesrecordedforGQLupovera2.2year sourcesexhibitfluxvariabilityonthetimescaleofmonthstoyears ofatleast30percentanduptoafactorof3at7mmisobserved, whichprovidesevidenceofthepresenceofexcessemissionfrom 5 Notethatthefractional7mmexcesspresentedinTable3doesnottake mechanismsotherthanthermaldustemission.However,the7mm intoconsiderationtheerrorsintheestimated7mmthermaldustemission, fluxes for these three sources are also lower than expected from andsocanonlybeconsideredaverycrudemeasureofanyemissionexcess spectral fit.Thisperhaps isindicativethat thecalculatedαistoo abovethermaldust. shallow.Thisappearstobesupportedbythelower15mmfluxesin MNRAS000,1–10(2015) 4 Ubachet al. Table2.Summaryofthetemporalmonitoringresultsat7and15mmand3and6cmforoursampleof11TTauristars.(1)Sourcename.(2)Juliandateofthe observation.(3)Timefrompreviousobservationindays.(4)Combinedfrequency.(5)Pointflux(3σupperlimitfornon-detections).(6)RMS.(7)Reference. SeeTableB1fornew15mmobservationsofsourceswithnopreviouslyreported15mmfluxes. (1) (2) (3) (4) (5) (6) (7) Source Julian Timefrom Freq. Flux RMS Reference date prev.obs.(days) (GHz) (mJy) (mJy/Beam) CRCha 2454980 — 44 1.7±0.1 0.1 Ubachetal.(2012) 2456143 1163 44 1.3±0.2 0.1 Thiswork CSCha 2454583 — 44 1.00±0.28 0.129 Lommenetal.(2009) 2454677 94 44 <0.71 0.238 Lommenetal.(2009) 2454678 1 44 1.38±0.26 0.218 Lommenetal.(2009) 2454980 302 44 1.5±0.1 0.1 Ubachetal.(2012) 2456143 1163 44 1.5±0.2 0.1 Thiswork 2456223 81 44 0.6±0.1 0.3 Thiswork 2455753 — 18 <0.3 0.1 Ubachetal.(2012) 2456131 378 18 0.20±0.02 0.03 Thiswork DICha 2454980 — 44 0.9±0.1 0.1 Ubachetal.(2012) 2456143 1163 44 <0.2 0.1 Thiswork TCha 2454980 — 44 3.0±0.1 0.1 Ubachetal.(2012) 2456143 1163 44 4.1±0.2 0.1 Thiswork 2455761 — 9.9 <0.3 0.1 Ubachetal.(2012) 2456123 363 9.9 <0.15 0.05 Thiswork 2455761 — 5.5 0.3±0.1 0.1 Ubachetal.(2012) 2456123 363 5.5 <0.2 0.08 Thiswork GlassI 2454980 — 44 0.6±0.2 0.1 Ubachetal.(2012) 2456143 1163 44 <0.3 0.1 Thiswork SZCha 2454980 — 44 0.7±0.1 0.1 Ubachetal.(2012) 2456143 1163 44 0.6±0.1 0.1 Thiswork 2456223 81 44 <0.3 0.1 Thiswork Sz32 2454558 — 44 0.8±0.1 0.2 Lommenetal.(2009) 2454980 422 44 1.2±0.1 0.2 Ubachetal.(2012) 2456143 1163 44 0.5±0.2 0.1 Thiswork 2455761 — 9.9 <0.3 0.1 Ubachetal.(2012) 2456123 363 9.9 <0.15 0.05 Thiswork 2455761 — 5.5 <0.3 0.1 Ubachetal.(2012) 2456123 363 5.5 <0.1 0.04 Thiswork WWCha 2454980 — 44 9.1±0.35 0.2 Ubachetal.(2012) 2456143 1163 44 3.9±0.2 0.1 Thiswork 2455761 — 9.9 <0.3 0.1 Ubachetal.(2012) 2456123 363 9.9 <0.15 0.05 Thiswork 2455761 — 5.5 <0.45 0.1 Ubachetal.(2012) 2456123 363 5.5 <0.12 0.04 Thiswork Sz111 2454680 — 44 <0.6 0.2 Lommenetal.(2010) 2454980 300 44 0.5±0.1 0.1 Ubachetal.(2012) 2456143 1163 44 0.6±0.2 0.1 Thiswork 2456223 81 44 0.4±0.1 0.03 Thiswork MYLup 2454680 — 45 1.3 0.1 Lommenetal.(2010) 2454980 300 44 1.1±0.1 0.1 Ubachetal.(2012) 2456143 1163 44 1.0±0.2 0.1 Thiswork 2456223 81 44 1.2±0.2 0.03 Thiswork GQLup 2455430 — 44 0.6±0.1 0.04 Ubachetal.(2012) 2455753 323 44 0.6±0.3 0.07 Ubachetal.(2012) 2456144 391 44 1.2±0.1 0.05 Thiswork 2456223 79 44 0.5±0.1 0.04 Thiswork 2455751 — 18 0.07±0.03 0.01 Ubach(2014) 2455761 10 18 0.08±0.04 0.02 Ubach(2014) 2456223 462 18 <0.09 0.03 Thiswork Sz111andMYLup.Thissurveyhighlightsthesignificanceofflux 3.2 Graingrowth monitoringovermultipletimescales,foronefluxdetectionwillnot alwaysbeagoodindicationofapurethermaldustemissionsource Forthissampleof11protoplanetarydiscs,thetwosourceswithno at7mmandbeyond. detectedfluxvariabilityat7mm,MYLupandSz111,alsohave α < 3. The four sources with high to extreme 7 mm fractional excess all have α > 3, while all sources with moderate to low fractional excess—with the exception of Glass I— have α < 3. MNRAS000,1–10(2015) RadioMonitoringofProtoplanetaryDiscs 5 100 CR Cha 2.5 CR Cha 10-1 10-2 2.0 Flux (Jy)111000---543 Flux (mJy)11..05 10-6 0.5 10-7 10-8 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) 100 3.5 CS Cha CS Cha 10-1 3.0 10-2 2.5 Flux (Jy)1100--43 Flux (mJy)21..05 10-5 1.0 10-6 0.5 10-7 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) 100 DI Cha DI Cha 10-1 10-2 1.5 Flux (Jy)111000---543 Flux (mJy)1.0 10-6 0.5 10-7 10-8 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) 100 T Cha 5 T Cha 10-1 10-2 4 Flux (Jy)111000---543 Flux (mJy)32 10-6 1 10-7 10-8 10-3 10-2 10-1 00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) Figure1.Radiospectrum(left)andtemporalfluxmonitoring(right)foreachsourceinthesurvey.Detectionsaredenotedbyastarandupperlimitsbyan arrow.Errorsbarsincludethefluxfituncertaintyandprimaryfluxcalibrationuncertainties.Theredsolidlineinthespectrum(left)representsthe1–3mm spectralslopeα,thereddashedlinetheexpectedαff = −0.6,andthegreyshadedarearepresentstheregionofuncertainlyintheestimatedthermaldust emissionfromstandarderrorpropagationinthespectralslopecalculation.Thegreendiamond(left)andgreenline(right)correspondtotheestimatedthermal dustemissionat7mm.Continuedonthenextpage. MNRAS000,1–10(2015) 6 Ubachet al. Table3.Summaryof7mmanalysisofthespectralslope,estimated7mmthermaldustemission,maximum7mmemissionobserved,andthefractional7mm excessabovethermal.TheαvaluesarefromUbachetal.(2012),exceptforWWChawhichwasobtainedfromLommenetal.(2009).Theestimatedthermal dustisobtainedbyextrapolatingαto44GHz.Thefractional7mmexcessabovethermalistheestimated7mmexcess,(F7mm(max)−F7mm(therm)), dividedbytheestimatedthermaldust,F7mm(therm). Source α F7mm(therm) F7mm(max) Fractional (mJy) (mJy) 7mmexcess CRCha 3.4 0.6 1.7 1.8 CSCha 2.9 1.2 1.5 0.3 DICha 3.2 0.3 0.9 2.0 TCha 3.1 0.8 4.1 4.1 GlassI 3.1 0.5 0.6 0.2 SZCha 2.9 0.8 0.7 -0.1 Sz32 3.8 0.2 1.2 5.0 WWCha 2.8 5.5 9.1 0.7 Sz111 2.5 1.1 0.6 -0.5 MYLup 2.3 1.8 1.2 -0.3 GQLup 2.2 0.7 1.2 0.7 ApplyingthesimplifiedDraine(2006)relationshipofβ ∼ α−2, hotspotscreatedbyanaccretionshock,variablecircumstellarex- our results suggest that the majority of the sources have β < 1, tinction, or a combination of these processes (Scholz 2012). Al- indicativeofgraingrowthuptocmsizes,andthefourmostactive thoughvariabilityabove20percentintheopticalandNIRisrare, sourceswithclearsignsofexcessemissionabovethermaldusthave ithasbeendocumented. Additional opticalimagesintheRandI β >1,suggestinglittlegraingrowth.Theseresultsshowthatboth bands and NIR images in the J and K bands have provided evi- variability and evidence for grain growth can be present for the dencethatSz32isvariableatthesewavelengthsbymorethanthe same protoplanetary disc, but that grain growthappears inhibited expected 20 per cent (Rodgers-Leeetal. 2014). The cause of the inthemostactivesources,atleastforthissmallsample. additionalfluxvariabilityisstillunderinvestigation. 3.3 Excessemissionatmillimetrewavelengths 4 CONCLUSIONS Wehavethusfardeterminedthatthepresenceofemissionmecha- nismsotherthanthermaldustemissionat7mmiscommoninpro- We present a radio flux monitoring survey of 11 T Tauri stars in toplanetarydiscs,andthatsignaturesofgraingrowthcanbefound the Chamaeleon and Lupus Southern star forming regions over insourceswithandwithout7mmfluxvariability.The7mmflux timescales of 100s of days. We found that the 7 mm flux varies variabilityof∼30percentoveraperiodof100sofdaysisconsis- byatleast30percentanduptoafactorof3formostsources,in- tentwiththecharacteristicsofthermalfree-freeemission.Thepres- dicatingthatprocessesotherthanjustthermaldustarecontributing enceoffluxvariabilityhasalsobeendetectedatotherwavelengths, totheemission.FluxmonitoringofCSChaandGQLupat15mm suchasintheX-ray,optical,andinthenear-infrared(NIR). over the course of a year found consistent fluxes, suggesting no Allthesourcesinoursample(withtheexceptionofMYLup variabilityoverthesetimescalesfortheseobservations.Monitoring andSz111)havebeendetectedintheX-raywithalog(Lx/Lbol) of T Cha, Sz 32 and WW Cha at 3 and 6 cm also suggests ex- between −3 and −4, classifying these stars as X-ray active (e.g. cessemissionabove thermaldust. Fromour analysisof theradio Stelzeretal. 2004; Feigelson&Lawson 2004). A few sources in spectrumandfluxmonitoring,onlytwosourcesshownovariabil- our sample have been studied more closely in the literature. Us- ityandseemtobedominatedbythermaldustemission:Sz111and ingtheXMM-NewtonobservationsofCRCha,Robrade&Schmitt MYLup. (2006) detected a small flare and flux variability consistent with Additionally, we looked at the flux variability in the X-ray, coronalactivityandthepresenceofaccretion.CSCha,TChaand optical and near-infrared wavelengths, and found further support GQ Lup were included in Güdeletal. (2010) analyses of Spitzer fortheneedformultipleepochandmulti-wavelengthobservations [NeII]lineandXMM-Newtonarchivedata,wheretheyclassified todeterminethecauseofthefluxvariability. CS Cha as a jet-driving object with a transitional disc, T Cha as We found seven sources with β < 1, indicative of grain atransitional discand GQ Lupas anopticallythick discwithout growthuptocentimetresizedgrainsandfoursourceswithaβ>1, a known jet. Similarly, X-ray flares have also been detected for suggestinglittletonograingrowth.Theseresults,withtheexcep- Sz32 and WWCha(Feigelson&Lawson2004). Itisinteresting tionofSz32,areconsistentwithreportedvaluesforspectralslope to note that sources with flux variability at mm wavelengths are from1–3mm.Ofthesevensourceswithsignaturesofgraingrowth, alsovariableintheX-ray;specificallythesourceswithhighampli- onlyCRChaandMYLuphavenoreported7mmfluxvariability. tude variabilityintheradio(CS Cha, GQLup, Sz32, WWCha) Thus,theseresultsshow thatbothsignaturesofgraingrowthand arealsoveryactiveintheX-ray.Thissuggeststhatthecauseofthe evidenceofotheremissionmechanismat7mmmaybepresentfor variability could be the same at both wavelengths. Simultaneous thesameprotoplanetarydisc. observationsatbothwavelengthswouldbeneededtoconfirmthis In the near future, the high resolution and sensitivity of At- relationship. acama Large Millimeter/Submillimeter Array (ALMA) will play Flux variability of up to 20 per cent is commonly found in animportantroleinansweringthesequestionsbysignificantlyre- young stellar objects in the optical and NIR wavebands (Scholz ducing the uncertainties in the 1 mm fluxes for the Chamaeleon 2012;Rodgers-Leeetal.2014).Thisvariabilitycanbecausedby sources, and thusreducing theuncertainties inthe1–3 mmspec- MNRAS000,1–10(2015) RadioMonitoringofProtoplanetaryDiscs 7 100 Glass I Glass I 10-1 1.6 10-2 1.4 1.2 Flux (Jy)111000---543 Flux (mJy)01..80 0.6 10-6 0.4 10-7 0.2 10-8 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) 100 SZ Cha SZ Cha 10-1 2.0 10-2 1.5 Flux (Jy)1100--43 Flux (mJy)1.0 10-5 0.5 10-6 10-7 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) 100 Sz 32 Sz 32 10-1 2.0 10-2 10-3 1.5 Flux (Jy)1100--54 Flux (mJy)1.0 10-6 10-7 0.5 10-8 10-9 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) 101 WW Cha WW Cha 12 100 10 10-1 Flux (Jy)1100--32 Flux (mJy) 68 10-4 4 10-5 2 10-6 10-3 10-2 10-1 00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) Figure1.Continued. tralslopeandβvalues,andprovidingabetterunderstandingofthe ACKNOWLEDGEMENTS signaturesofgraingrowthintheseprotoplanetarydiscs. We thank Hans Guenther and Scott Wolk for their help with the XMM-NewtonSerendipitousSourceCatalogueandforhelpfuldis- cussions. We also thank Leondardo Testi for useful discussions, and the referee for their useful comments and constructive feed- MNRAS000,1–10(2015) 8 Ubachet al. 100 Sz 111 Sz 111 10-1 2.5 10-2 2.0 Flux (Jy)1100--43 Flux (mJy)1.5 1.0 10-5 10-6 0.5 10-7 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) 100 MY Lup 4.0 MY Lup 10-1 3.5 10-2 3.0 Flux (Jy)10-3 Flux (mJy)22..05 10-4 1.5 1.0 10-5 0.5 10-6 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) 100 GQ Lup GQ Lup 2.0 10-1 10-2 1.5 Flux (Jy)1100--43 Flux (mJy)1.0 10-5 0.5 10-6 10-7 10-3 10-2 10-1 0.00 500 1000 1500 2000 Wavelength (m) Julian Date (-2454500) Figure1.Continued. back.TheAustraliaTelescopeCompactArrayispartoftheAus- Ghez A. M., McCarthy D. W., Patience J. L., Beck T. L., 1997, ApJ, traliaTelescopeNationalFacilitywhichisfundedbytheCommon- 481,378 wealthofAustraliaforoperationasaNationalFacilitymanagedby GonzálezR.F.,CantóJ.,2002,ApJ,580,459 CSIRO.ThisresearchwassupportedinpartbyaSwinburneUni- GüdelM.,etal.,2010,A&A,519,A113 versityPostgraduate Research Awardand CSIROOCEPostgrad- GuentherE.W.,EspositoM.,MundtR.,CovinoE.,AlcaláJ.M.,Cusano uate Top Up Scholarship. CMW acknowledges support from the F.,StecklumB.,2007,A&A,467,1147 AustralianResearchCouncilthroughDiscoveryGrantDP0345227 HenningT.,PfauW.,ZinneckerH.,PrustiT.,1993,A&A,276,129 HerbstW.,HerbstD.K.,GrossmanE.J.,WeinsteinD.,1994,AJ,108,1906 andFutureFellowshipFT100100495. HughesJ.,HartiganP.,KrautterJ.,KelemenJ.,1994,AJ,108,1071 KuijpersJ.,vanderHulstJ.M.,1985,A&A,149,343 LommenD.,WrightC.M.,MaddisonS.T.,2007,A&A,462,211 REFERENCES LommenD.,Maddison S.T.,Wright C.M.,vanDishoeck E.F.,Wilner D.J.,BourkeT.L.,2009,A&A,495,869 AndrewsS.M.,WilliamsJ.P.,2007,ApJ,671,1800 ChiangE.,PhillipsR.B.,LonsdaleC.J.,1996,AJ,111,355 LommenD.J.P.,etal.,2010,A&A,515,A77 ComerónF.,2008,TheLupusClouds.TheSouthernSkyASPMonograph LuhmanK.L.,2004,ApJ,602,816 Publications,p.295 NeuhäuserR.,MugrauerM.,SeifahrtA.,SchmidtT.O.B.,VogtN.,2008, DonatiJ.-F.,etal.,2012,MNRAS,425,2948 A$&$A,484,281 DraineB.T.,2006,ApJ,636,1114 PhillipsR.B.,LonsdaleC.J.,FeigelsonE.D.,1991,ApJ,382,261 FeigelsonE.D.,KrissG.A.,1989,ApJ,338,262 PhillipsR.B.,LonsdaleC.J.,FeigelsonE.D.,1993,ApJL,403,L43 FeigelsonE.D.,LawsonW.A.,2004,ApJ,614,267 RobradeJ.,SchmittJ.H.M.M.,2006,A&A,449,737 MNRAS000,1–10(2015) RadioMonitoringofProtoplanetaryDiscs 9 APPENDIXB: RESULTSAT15MM 0.5 GQ Lup at 18 GHz 0.4 y)0.3 mJ x ( u Fl0.2 0.1 0.0 1300 1400 1500 1600 1700 Julian Date (-2454500) Figure2.The15mmcontinuumfluxesforGQLupplottedfromthefirst recordedepoch.Theerrorbarsrepresentedthefluxuncertainties. Noflux variabilitywasobservedoverayeartimescale,suggestingtheemissionde- tectedisprimarilyfromthermaldust.Thegreendiamondsymbol/linecor- respondtothethermaldustemissioncomponentofthefluxesat15mm, errorbars arethe uncertainties fortheestimated value. Continued inthe nextpage Rodgers-LeeD.,ScholzA.,NattaA.,RayT.,2014,MNRAS,443,1587 RodmannJ.,HenningT.,ChandlerC.J.,MundyL.G.,WilnerD.J.,2006, A&A,446,211 Sault R. J.,Teuben P. J.,Wright M. C. H., 1995, in Shaw R. A.,Payne H.E.,HayesJ.J.E.,eds,AstronomicalSocietyofthePacificConfer- enceSeriesVol.77,AstronomicalDataAnalysisSoftwareandSystems IV.p.433(arXiv:astro-ph/0612759) ScholzA.,2012,MNRAS,420,1495 SkinnerS.L.,BrownA.,1994,AJ,107,1461 SmithK.,PestalozziM.,GüdelM.,ConwayJ.,BenzA.O.,2003,A&A, 406,957 StelzerB.,MicelaG.,NeuhäuserR.,2004,A&A,423,1029 TestiL.,NattaA.,ShepherdD.S.,WilnerD.J.,2003,A&A,403,323 Ubach C., 2014, PhD thesis, Swinburne University of Technology, Mel- bourne,Australia UbachC.,MaddisonS.T.,WrightC.M.,WilnerD.J.,LommenD.J.P., KoribalskiB.,2012,MNRAS,425,3137 WhittetD.C.B.,PrustiT.,FrancoG.A.P.,GerakinesP.A.,KilkennyD., LarsonK.A.,WesseliusP.R.,1997,A&A,327,1194 WilnerD.J.,D’AlessioP.,CalvetN.,ClaussenM.J.,HartmannL.,2005, ApJL,626,L109 WilsonW.E.,etal.,2011,MNRAS,416,832 vandenAnckerM.E.,deWinterD.,TjinADjieH.R.E.,1998,A&A, 330,145 APPENDIXA: OBSERVINGLOGS MNRAS000,1–10(2015) 10 Ubachet al. TableA1.ATCAobservinglogforLupussourcesfromthisworkandliterature. (1)Sourcename.(2)Dateofobservations. (3)Frequencypair.(4)Flux calibrator.(5)ATCAarrayconfiguration.(6)Synthesizedbeamsize.(7)Totalintegrationtimeusedforanalysis.(8)RMS.(9)Reference. (1) (2) (3) (4) (5) (6) (7) (8) (9) Source Date Freq. Flux Antenna(s) Beamsize Tint RMS Reference Pair(GHz) Cal. Config. arcsec (min) (mJy/Beam) Sz111 Aug-08 43+45 Uranus H214 4 — 0.2 Lommenetal.(2010) May-09 43+45 Uranus H214 5.2×3.5 60 0.1 Ubachetal.(2012) Aug-12 43+45 PKSB1934-638 H75 14.6×10.3 60 0.1 Thiswork Oct-12 43+45 PKSB1934-638 H214 5.0×3.6 60 0.03 Thiswork Oct-12 17+19 PKSB1934-638 H214 13.1×9.8 90 0.02 Thiswork MYLup Aug-08 44.2+46.2 Uranus H214 4 0.1 Lommenetal.(2010) May-09 43+45 Uranus H214 4.8×3.4 50 0.1 Ubachetal.(2012) Aug-12 43+45 PKSB1934-638 H75 14.8×10.5 50 0.1 Thiswork Oct-12 43+45 PKSB1934-638 H214 4.7×3.4 80 0.03 Thiswork Oct-12 17+19 PKSB1934-638 H214 13.6×9.7 40 0.02 Thiswork GQLup 21-Aug-10 43+45 Uranus H168 6.7×4.4 80 0.04 Ubachetal.(2012) 10-Jul-11 43+45 Uranus H214 6.8×3.6 18 0.07 Ubachetal.(2012) 4-Aug-12 43+45 PKSB1934-638 H75 22.2×9.2 53 0.05 Thiswork 22-Oct-12 43+45 PKSB1934-638 H214 5.0×3.6 30 0.04 Thiswork 8-Jul-11 17+19 PKSB1934-638 H214 18.3×9.7 24 0.01 Ubach(2014) 18-Jul-11 17+19 PKSB1934-638 H214 17.8×9.1 20 0.02 Ubach(2014) 22-Oct-12 17+19 PKSB1934-638 H214 13.2×9.4 30 0.03 Thiswork APPENDIXC: SUMMARYOFWWCHARADIO MONITORING MNRAS000,1–10(2015)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.