ForumGeometricorum b Volume17(2017)359–372. bb b FORUMGEOM ISSN1534-1178 Radii of Circles in Apollonius’ Problem MiloradR.Stevanovic´ ,PredragB.Petrovic´,andMarinaM.Stevanovic´ Abstract. ThepaperpresentstherelationforradiioftheeightcirclesinApollo- nius’problemforcircleswhicharetangenttothreegivencircles. Analogously, we derived the relations for radii of the 16 spheres which are tangent to four givenspheres,withcoordinatesoftheircentersandwiththeirradii. 1. Introduction Itiswellknownthatforthreegivencirclesgenericallythereareeightdifferent circlesthataretangenttothem. Theproblemofrulerandcompassconstructability oftheseeightcirclesiswell-known. TherearefamousApollonius’andGergonne’s solutionstothisproblem[3]. Specialcasesofthethreegivencirclesareconsidered and a number of other problems is known [2]. The first case is when we consider three sides of the original triangle as three circles with infinite radii. The incircle and three excircles of the original triangle are four solutions to Apollonius’ prob- lem. The second case is when we have three excircles as a starting point. Three sides of the original triangle are three solutions to Apollonius’ problem with infi- nite radii [1]. The nine-point circle is tangent externally to the three excircles, by Feuerbach theorem, and a relatively new object - the Apollonius circle is tangent internallytothreeexircles(forsomeresultsaboutthiscirclesee[4]-[7]). Tothese five circles we can add three Jenkins circles which are tangent to three excircles, byaddingtwoofthemexternallyandthethirdoneinternally. 2. Mainresult LetusassumethatthethreegivencirclesareK1(O1,r1),K2(O2,r2),K3(O3,r3), Figure 1, with distances between centers O2O3 = a, O3O1 = b, O1O2 = c and with the area (O1O2O3) = ∆, which is different from 0. The following theorem holdstrue: Theorem1. LetusassumethattheradiioftheeightcircleswithcentersS given i inFigure1((a),(b),(c)and (d))arep ,(j = 1,2,...,8). Then j 1 1 1 1 1 1 1 1 − + − + − + − = 0. (1) p1 p2 p3 p4 p5 p6 p7 p8 Proof. Letusintroducetheanglesϕ1 = ∠O2SO3,ϕ2 = ∠O3SO1,ϕ3 = ∠O1SO2, whereS = S1 forFigure1(a),soastoobtain 2 2 2 cos ϕ1+cos ϕ2+cos ϕ3−2cosϕ1cosϕ2cosϕ3 = 1. (2) PublicationDate:June25,2017.CommunicatingEditor:PaulYiu. 360 M.R.Stevanovic´,P.B.Petrovic´,andM.M.Stevanovic´ O3 O3 b a S2S1 b a S4 S3 O1 c O2 O1 c O2 1A 1B O3 S8 b a O3 O1 c O2 S6 b a S7 S5 O1 c O2 1C 1D Figure1. Theeightdifferentcirclesthataretangenttothethreegivencircles. Ifwesubstitute 2 ϕ1 2 ϕ2 2 ϕ3 t1 = sin , t2 = sin , t3 = sin , 2 2 2 fromrelation(2)wehave 2 2 2 t1+t2+t3−2(t1t2+t2t3+t3t1)+4t1t2t3 = 0. (3) If we generally denote the center of the circle and radius by S and p, then for the first unknown circle L1 (see Figure 1 (a)) is SO1 = p+r1, SO2 = p+r2, RadiiofcirclesinApollonius’problem 361 SO3 = p+r3 and 2 2 2 2 2 (p+r2) +(p+r3) −a a −(r2−r3) cosϕ1 = =⇒ t1 = , 2(p+r2)(p+r3) 4(p+r2)(p+r3) andanalogously 2 2 2 2 b −(r3−r1) c −(r1−r2) t2 = , t3 = . 4(p+r3)(p+r1) 4(p+r1)(p+r2) Fromrelation(3)wenowhaverelation(4): 2 2 2 2 2 2 2 2 (a −(r2−r3) ) (p+r1) +(b −(r3−r1) ) (p+r2) 2 2 2 2 +(c −(r1−r2) ) (p+r3) 2 2 2 2 −2(a −(r2−r3) )(b −(r3−r1) )(p+r1)(p+r2) 2 2 2 2 −2(a −(r2−r3) )(c −(r1−r2) )(p+r1)(p+r3) 2 2 2 2 −2(b −(r3−r1) )(c −(r1−r2) )(p+r2)(p+r3) 2 2 2 2 2 2 +(a −(r2−r3) )(b −(r3−r1) )(c −(r1−r2) ) = 0. (4) orinanotherform F1(p, r1, r2, r3) = 0. (5) Equation(4)isoftheseconddegreeandisoftheform 2 A1p +B1p+C1 = 0, (6) where 2 2 2 A1 = 4(a (r1−r2)(r1−r3)+b (r2−r3)(r2−r1)+c (r3−r1)(r3−r2)) 2 −16∆ = f(r1,r2,r3), (7) 2 2 2 2 2 2 2 2 2 B1 = 2{r1(a −(r2−r3) ) +r2(b −(r3−r1) ) +r3(c −(r1−r2) ) 2 2 2 2 −(a −(r2−r3) )(b −(r3−r1) )(r1+r2) 2 2 2 2 −(b −(r3−r1) )(c −(r1−r2) )(r2+r3) 2 2 2 2 −(c −(r1−r2) )(a −(r2−r3) )(r3+r1)} = g(r1,r2,r3), (8) 2 4 2 4 2 4 2 2 2 C1 = r1a +r2b +r3c +a b c 2 2 2 2 2 2 2 2 2 2 2 2 −a b (r +r )−b c (r +r )−c a (r +r ) 1 2 2 3 3 1 2 2 2 2 2 2 2 2 2 2 +a (r −r )(r −r )+b (r −r )(r −r ) 1 2 1 3 2 3 2 1 2 2 2 2 2 +c (r −r )(r −r ) 3 1 3 2 = h(r1,r2,r3). (9) 362 M.R.Stevanovic´,P.B.Petrovic´,andM.M.Stevanovic´ For the second unknown circle L2 (see Figure 1 (a)) we have SO1 = p−r1, SO2 = p−r2,SO3 = p−r3andacorrespondingequationintheformofequation (4),and F1(p, −r1, −r2, −r3) = 0, (10) 2 A2p +B2p+C2 = 0, (11) with A2 = f1(−r1, −r2, −r3) = A1, B2 = g1(−r1, −r2, −r3) = B1, C2 = h1(−r1, −r2, −r3) = C1, whichimpliesthat 2 2 A1p1+B1p1+C1 = 0, A1p2−B1p2+C1 = 0, and 1 1 B1 − = − . (12) p1 p2 C1 ForthethirdcircleL3 (seeFigure1(b))wehaveSO1 = p−r1,SO2 = p+r2, 2 SO3 = p+r3 and we get F1(p, −r1, r2, r3) = 0 with A3p +B3p+C3 = 0, A3 = f1(−r1, r2, r3),B3 = g1(−r1, r2, r3),C3 = h1(−r1r2, r3) = C1. ForthefourthcircleL4(seeFigure1(b))wehaveSO1 = p+r1,SO2 = p−r2, 2 SO3 = p−r3 and we get F1(p, r1, −r2, −r3) = 0 with A4p +B4p+C4 = 0, A4 = f1(r1, −r2, −r3) = A3, B4 = g1(r1, −r2, −r3) = −B3, C4 = h1(r1,−r2,−r3) = C1 andagainweget 1 1 B3 − = − . (13) p3 p4 C1 Analogously,wehave 1 1 B5 − = − , (14) p5 p6 C1 1 1 B7 − = − , (15) p7 p8 C1 where B5 = g1(r1, −r2, r3), B7 = g1(r1, r2,−r3). Formula(1)followsfrom(12),(13),(14),(15)because g1(r1, r2, r3)+g1(−r1, r2, r3)+g1(r1, −r2, r3)+g1(r1, r2, −r3) = 0. (cid:3) Remark1. Iftheindexj ofthecirclewithradiusp isaneven(odd)number,then j 1/p (informula(1))hasthesign+(−). j RadiiofcirclesinApollonius’problem 363 Remark2. Inthefirstcaseofthethreegivencirclesmentionedintheintroduction, wegettheformula 1 1 1 1 = + + r r1 r2 r3 wherer,r1,r2,r3 aretheinradiusandexradiioftriangleABC. Remark3. Inthesecondcaseweget 1 1 1 1 1 + + + = , p1 p2 p3 q m wherep1,p2,p3aretheradiiofJenkinscircles,qistheradiusofApollonius’circle andm = R/2istheradiusofEulercircleornine-pointcircle. Thisformulacanbeprovedindependentlysince a b c p1 = q, p2 = q, p3 = q. b+c c+a a+b Remark 4. In the same way, the same result can be proved for the three given circles,providedthattwoofthemareinsideofthethirdone. 3. Positionsof8circles TheradicalcircleofthethreegivencirclesK1(O1,r1),K2(O2,r2),K3(O3,r3), is the circle orthogonal to all of them, and pairs of circles (L1,L2), (L3,L4), (L5,L6), (L7,L8) – Figure 1, are inversive with respect to the radical circle. For thisradicalcircleK0(S0,r0),Figure2,thefollowingholdstrue. O3 b a S1 S0 S2 O1 c O2 Figure2. TheradicalcircleofthethreegivencircleswiththecirclesL1andL2, inversivetotheradicalcircle,basedonFigure1(a) 364 M.R.Stevanovic´,P.B.Petrovic´,andM.M.Stevanovic´ Proposition 2. (1) The center S0(x0 : y0 : z0) has barycentric coordinates with respecttotriangleO1O2O3 2 2 2 2 x0 = a (b +c −a )+u0, 2 2 2 2 y0 = b (c +a −b )+v0, 2 2 2 2 z0 = c (a +b −c )+w0, (16) where 2 2 2 2 2 2 2 2 u0 = (r2 +r3 −2r1)a +(r −r3)(b −c ), (17) 2 2 2 2 3 2 2 2 v0 = (r3 +r1 −2r2)b +(r −r1)(c −a ), (18) 2 2 2 2 1 2 2 2 w0 = (r1 +r2 −2r3)a +(r −r2)(a −b ). (19) (2)Theradiusoftheradicalcircleisgivenbyformula 2 C1 r = . (20) 0 16∆2 (3)ThecoefficientsB1,B3,B5,B7 areexpressedintermsofthecoordinatesof S0,i.e., B1 = −2(r1x0+r2y0+r3z0), B3 = −2(r1x0−r2y0−r3z0), (21) B5 = −2(−r1x0+r2y0−r3z0), B7 = −2(−r1x0−r2y0+r3z0). (22) (4) The line S0O0, where O0 represents the circumcenter of triangle O1O2O3, 2 2 2 is orthogonal to the line q : r x + r y + r z = 0. This line passes through 1 2 3 the midpoints of segments M11M12, M21M22 and M31M32, where M11 and M12 are the inner and outer centers of similarity of circles (K2) and (K3), which can analogouslybeappliedtotheotherpoints. FortheeightsolutionsL (S ,p )ofApollonius’problem,withS (x : y : z ) j j j j j j j wehave Proposition3. (1)ThecoordinatesofthecentersS areasfollows: j x1 = 2p1u1+x0, y1 = 2p1v1+y0, z1 = 2p1w1+z0, x2 = −2p2u1+x0, y2 = −2p2v1+y0, z2 = −2p2w1+z0, where 2 2 2 u1 = (r2+r3−2r1)a +(r2−r3)(b −c ) = u1(r1,r2,r3), 2 2 2 v1 = (r3+r1−2r2)b +(r3−r1)(c −a ) = v1(r1,r2,r3), 2 2 2 w1 = (r1+r2−2r3)c +(r1−r2)(a −b ) = w1(r1,r2,r3). x3 = 2p3u3+x0, y3 = 2p3v3+y0, z3 = 2p3w3+z0, x4 = −2p4u3+x0, y4 = −2p4v3+y0, z4 = −2p4w3+z0, where u3(r1,r2,r3) = u1(r1,−r2,−r3), v3(r1,r2,r3) = v1(r1,−r2,−r3), w3(r1,r2,r3) = w1(r1,−r2,−r3). x5 = 2p5u5+x0, y5 = 2p5v5+y0, z5 = 2p5w5+z0, x6 = −2p6u5+x0, y6 = −2p6v5+y0, z6 = −2p6w5+z0, RadiiofcirclesinApollonius’problem 365 where u5(r1,r2,r3) = u1(r1,r2,−r3), v5(r1,r2,r3) = v1(r1,r2,−r3), w5(r1,r2,r3) = w1(r1,r2,−r3). x7 = 2p7u7+x0, y7 = 2p7v7+y0, z7 = 2p7w7+z0, x8 = −2p8u7+x0, y8 = −2p8v7+y0, z8 = −2p8w7+z0, where u7(r1,r2,r3) = u1(r1,−r2,r3), v7(r1,r2,r3) = v1(r1,−r2,r3), w7(r1,r2,r3) = w1(r1,−r2,r3). (2)Therearecollineartripletsofpoints(S0,S1,S2),(S0,S3,S4),(S0,S5,S6) and(S0,S7,S8),and S0S1 ⊥ q1 : r1x+r2y+r3z = 0, S0S3 ⊥ q3 : −r1x+r2y+r3z = 0, S0S5 ⊥ q5 : r1x−r2y+r3z = 0, S0S7 ⊥ q7 : r1x+r2y−r3z = 0, where q1, q3, q5, q7 are the lines M12M22M32, M12M21M31, M11M22M31, and M11M21M32 respectively. (3) 1 1 2 − = , (23) S0S1 S2S0 S0V1 where U1 = S0S1 ∩q1 and V1 and U1 are inversive to each other with respect to theradicalcircle. Analogously,thisisassumedfortheothercentersS . j 4. Three-dimensionalcase Inthiscasewehavefourspheresandamaximumof16spheres,eachofwhich beingtangenttoallofthefourgivenspheres. Analogousrelationsforradiiofthese 16 spheres will be found subsequently. Let us assume that the four spheres are Φ1(O1,r1),Φ2(O2,r2),Φ3(O3,r3),Φ4(O4,r4). Wecantakethebasictetrahedron ABCDtobetetrahedronO1O2O3O4 withO1 = A(1 : 0 : 0 : 0),O2 = B(0 : 1 : 0 : 0), O3 = C(0 : 0 : 1 : 0), O4 = D(0 : 0 : 0 : 1) given in the barycentric coordinateswithmutualdistancesAB = c,AC = b,AD = d,BC = a,BD = e, CD = f. AnimportantroleinfurtherinvestigationsisplayedbyCayley-Menger determinant∆0 oftetrahedronABCD givenasfollows: 0 1 1 1 1 2 2 2 (cid:12)1 0 c b d (cid:12) (cid:12) 2 2 2(cid:12) ∆0 = (cid:12)1 c 0 a e (cid:12). (24) (cid:12) 2 2 2(cid:12) (cid:12)1 b a 0 f (cid:12) (cid:12) 2 2 2 (cid:12) (cid:12)1 d e f 0(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) The known result is that the v(cid:12)olume V of tetrahedr(cid:12)on ABCD is given by for- mula 2 ∆0 = 288V . 366 M.R.Stevanovic´,P.B.Petrovic´,andM.M.Stevanovic´ Ifweapply∆ todenotethealgebraiccofactorofelementwithrow-columnposi- ij tion(i,j)incorrespondingCayley-Mengermatrix,weobtainthefollowingresult. Proposition4. (1)ThecenterOofthecircumscribedsphereoftetrahedronABCD (orcircumcenter)hasbarycentriccoordinates O(∆12 : ∆13 : ∆14 : ∆15). (25) (2)ThecircumradiusRoftheuppercircumsphereisgivenby 2 ∆11 R = − . (26) 2∆0 (3)IfforpointP(x : y : z : t)weintroducetworelevantexpressions τ = τ(P) = x+y+z+t, (27) 2 2 2 2 2 2 T = T(P) = a yz+b zx+c xy+d xt+e yt+f zt, (28) thenwehave 1 τ(O) = ∆0, T(O) = ∆0·∆11. (29) 2 LetusnowintroducetheradicalsphereΦ0(S0,r0),i.e.,thespherewithproperty 2 2 2 2 2 2 2 2 2 S0A −r1 = S0B −r2 = S0C −r3 = S0D −r4 = r0, (30) orthespherewhichisorthogonaltothefourgivenspheresΦ1, Φ2, Φ3, Φ4. Then wehave Proposition5. (1)Thisradicalspherecorrespondstotheequation 2 2 2 2 T = τ(r x+r y+r z+r t). (31) 1 2 3 4 (2)ThecenterS0(x0 : y0 : z0 : t0)hascoordinates 2 2 2 2 x0 = ∆12+r1∆22+r2∆32+r3∆42+r4∆52, (32) 2 2 2 2 y0 = ∆13+r1∆23+r2∆33+r3∆43+r4∆53, (33) 2 2 2 2 z0 = ∆14+r1∆24+r2∆34+r3∆44+r4∆54, (34) 2 2 2 2 t0 = ∆15+r1∆25+r2∆35+r3∆45+r4∆55. (35) (3)Fortheradiusr0,thefollowingformulaholds. 2 2 2 2 2 2 r = R − r x(M)+r y(M)+r z(M)+r t(M) , (36) 0 1 2 3 4 (cid:0) (cid:1) whereM isthemidpointofthesegmentS0O. In Figure 3 we introduce corresponding ordered quadruplets. An appropriate number j in illustration (from (a) to (p)) denotes that sphere L is tangent to the j fourgivenspheres. Theplussigninthesecondposition(giveninbracketsineach figure)meansthatspherewithcenterB isoutside-externallytangenttosphereL , j while the minus sign at the fourth position means that sphere with center D is insidesphereL –internallytangent,andsimilarlyinothercases. Foreachofthe j 16 possible layouts, corresponding signs are given immediately under the figure, RadiiofcirclesinApollonius’problem 367 C D C D C D C D A A B B B B A A 3a(++++) 3b(−−−−) 3c(−+++) 3d(+−−−) C D D C C D C D A A B B B B A A 3e(+−++) 3f(−+−−) 3g(++−+) 3h(−−+−) C D C D D C C D A A B B B B A A 3i(+++−) 3j(−−−+) 3k(++−−) 3l(−−++) D C D C C D C D A A B B B B A A 3m(−+−+) 3n(+−+−) 3o(+−−+) 3p(−++−) Figure3. The16possiblequadruplets-sphereseachofwhichbeingtangentto allofthefourgivenspheres 368 M.R.Stevanovic´,P.B.Petrovic´,andM.M.Stevanovic´ related to the respective spheres with centers A, B, C and D, depending on their positioninrelationtosphereL . j First of all, we will investigate sphere L1. If we generally denote the center of the sphere and the radius by S and p, then for the first unknown sphere L1 (see Figure3)is SO1 = p+r1, SO2 = p+r2, SO3 = p+r3, SO4 = p+r4, ′ ′ ′ ′ andequationsofspheresΦ1(A,p+r1),Φ2(B,p+r2),Φ3(C,p+r3),Φ4(D,p+r4) are 2 2 2 2 2 2 2 T = τ{−(p+r1) x+(c −(p+r1) )y+(b −(p+r1) )z+(d −(p+r1) )t}, (37) 2 2 2 2 2 2 2 T = τ{(c −(p+r2) )x−(p+r2) y+(a −(p+r2) )z+(e −(p+r2) )t}, (38) 2 2 2 2 2 2 2 T = τ{(b −(p+r3) )x+(a −(p+r3) )y−(p+r3) z+(f −(p+r3) )t}, (39) 2 2 2 2 2 2 2 T = τ{(d −(p+r4) )x+(e −(p+r4) )y+(f −(p+r4) )z−(p+r4) t}. (40) TheseequationsdeterminethepointS1(x1 : y1 : z1 : t1)whichisthecenterof thesphereL1 andradiusp = p1 ofthatsphere. Forthemwehave x1 = x0+2p(r1∆22+r2∆32+r3∆42+r4∆52), (41) y1 = y0+2p(r1∆23+r2∆33+r3∆43+r4∆53), (42) z1 = z0+2p(r1∆24+r2∆34+r3∆44+r4∆54), (43) t1 = t0+2p(r1∆25+r2∆35+r3∆45+r4∆55), (44) andtheseformulaeleadustotheequationforp = p1 2 F1(p, r1, r2, r3, r4) = A1p +B1p+C1 = 0, (45) where A1 = 2r1(r1∆22+r2∆32+r3∆42+r4∆52) +2r2(r1∆23+r2∆33+r3∆43+r4∆53) +2r3(r1∆24+r2∆34+r3∆44+r4∆54) +2r4(r1∆25+r2∆35+r3∆45+r4∆55)+∆0 = f(r1,r2,r3,r4), (46) 2 2 2 2 B1 = 2r1(∆12+r1∆22+r2∆32+r3∆42+r4∆52) 2 2 2 2 +2r2(∆13+r1∆23+r2∆33+r3∆43+r4∆53) 2 2 2 2 +2r3(∆14+r1∆24+r2∆34+r3∆44+r4∆54) 2 2 2 2 +2r4(∆15+r1∆25+r2∆35+r3∆45+r4∆55) = 2(r1x0+r2y0+r3z0+r4t0) = g(r1,r2,r3,r4), (47)
Description: