Online: http://dust.ess.uci.edu/facts Updated: Thu18th Nov,2010,14:22 Radiative Transfer in the Earth System byCharlieZender UniversityofCalifornia,Irvine DepartmentofEarthSystemScience [email protected] UniversityofCalifornia Voice: (949)891-2429 Irvine,CA 92697-3100 Fax: (949)824-3256 Copyright(cid:13)c 1998–2010,CharlesS.Zender Permissionisgrantedtocopy,distributeand/ormodifythisdocumentunderthetermsoftheGNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. The li- censeisavailableonlineathttp://www.gnu.org/copyleft/fdl.html. Facts about FACTs: This document is part of the Freely Available Community Text (FACT) project. FACTs are created, reviewed, and continuously maintained and updated by members of the international academic community communicating with eachother through a well-organized project website. FACTs are intended to standardize and disseminate our fundamental knowledge of Earth System Sciences in a flexible, adaptive, distributed framework which can evolve to fit the changing needs and technology of the geosciences community. Currently available FACTs and theirURLsarelistedinTable1. Becauseofitsinternationalscopeandavailabilitytostudentsofall Table1: FreelyAvailableCommunityTexts Format URL Location RadiativeTransferintheEarthSystem DVI http://dust.ess.uci.edu/facts/rt/rt.dvi PDF http://dust.ess.uci.edu/facts/rt/rt.pdf Postscript http://dust.ess.uci.edu/facts/rt/rt.ps ParticleSizeDistributions: TheoryandApplicationtoAerosols,Clouds,andSoils DVI http://dust.ess.uci.edu/facts/psd/psd.dvi PDF http://dust.ess.uci.edu/facts/psd/psd.pdf Postscript http://dust.ess.uci.edu/facts/psd/psd.ps NaturalAerosolsintheClimateSystem DVI http://dust.ess.uci.edu/facts/aer/aer.dvi PDF http://dust.ess.uci.edu/facts/aer/aer.pdf Postscript http://dust.ess.uci.edu/facts/aer/aer.ps incomelevels,theFACTprojectmayimpactmorestudents,andtoagreaterdepth,thanimaginable to before the advent of the Internet. If you are interested in learning more about FACTs and how youmightcontributetoorbenefi[email protected]. ii Notes for Students of ESS 223, Earth System Physics: This monograph on Radiative Transfer provides some core and some supplementary reading ma- terial for ESS 223. We will discuss much of the material in the first twenty pages, and the figures attheend. TheIndexbeginningonpage168isalsohelpful. Notes for Students of ESS 236, Radiative Transfer and Remote Sensing: Yadayadayada. CONTENTS iii Contents Contents iii ListofFigures vi ListofTables 1 1 Introduction 1 1.1 PlanetaryRadiativeEquilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 RadiativeTransferEquation 4 2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 MeanIntensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 ActinicFlux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.5 ActinicFluxEnhancement . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.6 EnergyDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.7 Spectralvs.Broadband . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.8 ThermodynamicEquilibria . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.9 PlanckFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.10 HemisphericQuantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.11 Stefan-BoltzmannLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.12 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.13 ExtinctionandEmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.14 OpticalDepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.15 GeometricDerivationofOpticalDepth . . . . . . . . . . . . . . . . . . . 26 2.1.16 StratifiedAtmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 IntegralEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.1 FormalSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 ThermalRadiationInAStratifiedAtmosphere . . . . . . . . . . . . . . . 31 2.2.3 AngularIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.4 ThermalIrradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.5 GreyAtmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.6 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.7 PhaseFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.8 LegendreBasisFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.9 Henyey-GreensteinApproximation . . . . . . . . . . . . . . . . . . . . . 40 2.2.10 DirectandDiffuseComponents . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.11 SourceFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.12 RadiativeTransferEquationinSlabGeometry . . . . . . . . . . . . . . . 42 2.2.13 AzimuthalMeanRadiationField . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.14 AnisotropicScattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 CONTENTS iv 2.2.15 DiffusivityApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.16 Transmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3 Reflection,Transmission,Absorption . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3.1 BRDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.2 LambertianSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.3 Albedo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.4 FluxTransmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4 Two-StreamApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.1 Two-StreamEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.2 LayerOpticalProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.3 ConservativeScatteringLimit . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 SolarHeating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.6 ChapterExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 RemoteSensing 62 3.1 RayleighLimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 AnomalousDiffractionTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 GeometricOpticsApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4 SingleScatteredIntensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5 SatelliteOrbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.6 AerosolCharacterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.6.1 MeasuringAerosolOpticalDepth . . . . . . . . . . . . . . . . . . . . . . 69 3.6.2 AerosolIndirectEffectsonClimate . . . . . . . . . . . . . . . . . . . . . 69 3.6.3 AerosolEffectsonSnowandIceAlbedo . . . . . . . . . . . . . . . . . . 69 3.6.4 A˚ngstro¨mExponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 GaseousAbsorption 70 4.1 LineShape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.1 LineShapeFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.2 NaturalLineShape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.3 PressureBroadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.4 DopplerBroadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.5 VoigtLineShape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 MolecularAbsorption 81 5.1 MechanicalAnalogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.1.1 VibrationalTransitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.1.2 IsotopicLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.3 CombinationBands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 PartitionFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 DipoleRadiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4 TwoLevelAtom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5 LineStrengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.5.1 HITRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6 Line-By-LineModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 CONTENTS v 5.6.1 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 BandModels 96 6.1 Generic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 BeamTransmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 BeamAbsorptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1.3 EquivalentWidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.1.4 MeanAbsorptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2 LineDistributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.1 LineStrengthDistributions . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.2.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2.3 MeanLineIntensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.4 MeanAbsorptanceofLineDistribution . . . . . . . . . . . . . . . . . . . 106 6.2.5 Transmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2.6 MultiplicationProperty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3 TransmissioninInhomogeneousAtmospheres . . . . . . . . . . . . . . . . . . . . 116 6.3.1 Constantmixingratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.2 H-C-GApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.4 TemperatureDependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.5 TransmissioninSphericalAtmospheres . . . . . . . . . . . . . . . . . . . . . . . 120 6.5.1 ChapmanFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7 RadiativeEffectsofAerosolsandClouds 121 7.1 SingleScatteringProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.1.1 MaxwellEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.2 SeparationofVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.2.1 AzimuthalSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2.2 PolarSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2.3 RadialSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.2.4 PlaneWaveExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.5 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2.6 MieTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2.7 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.8 OpticalEfficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2.9 OpticalCrossSections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2.10 OpticalDepths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.11 SingleScatteringAlbedo . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.12 AsymmetryParameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.13 MassAbsorptionCoefficient . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.3 EffectiveSingleScatteringProperties . . . . . . . . . . . . . . . . . . . . . . . . 134 7.3.1 EffectiveEfficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.3.2 EffectiveCrossSections . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.3.3 EffectiveSpecificExtinctionCoefficients . . . . . . . . . . . . . . . . . . 136 7.3.4 EffectiveOpticalDepths . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.3.5 EffectiveSingleScatteringAlbedo . . . . . . . . . . . . . . . . . . . . . . 136 LISTOFFIGURES vi 7.3.6 EffectiveAsymmetryParameter . . . . . . . . . . . . . . . . . . . . . . . 136 7.4 MeanEffectiveSingleScatteringProperties . . . . . . . . . . . . . . . . . . . . . 136 7.4.1 MeanEffectiveEfficiencies . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.4.2 MeanEffectiveCrossSections . . . . . . . . . . . . . . . . . . . . . . . . 138 7.4.3 MeanEffectiveSpecificExtinctionCoefficients . . . . . . . . . . . . . . . 138 7.4.4 MeanEffectiveOpticalDepths . . . . . . . . . . . . . . . . . . . . . . . . 138 7.4.5 MeanEffectiveSingleScatteringAlbedo . . . . . . . . . . . . . . . . . . 138 7.4.6 MeanEffectiveAsymmetryParameter . . . . . . . . . . . . . . . . . . . . 139 7.5 BulkLayerSingleScatteringProperties . . . . . . . . . . . . . . . . . . . . . . . 139 7.5.1 AdditionofOpticalProperties . . . . . . . . . . . . . . . . . . . . . . . . 139 7.5.2 BulkOpticalDepths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.5.3 BulkSingleScatteringAlbedo . . . . . . . . . . . . . . . . . . . . . . . . 140 7.5.4 BulkAsymmetryParameter . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.5.5 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8 GlobalRadiativeForcing 140 9 ImplementationinNCARmodels 150 10 Appendix 151 10.1 VectorIdentities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.2 LegendrePolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.3 SphericalHarmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.4 BesselFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.4.1 SphericalBesselFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.4.2 RecurrenceRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.4.3 PowerSeriesRepresentation . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.4.4 AsymptoticValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.5 GaussianQuadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.6 Gauss-LobattoQuadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.7 ExponentialIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Bibliography 161 Index 168 List of Figures 1 CrossSectionandQuantumYieldofNitrogenDioxide . . . . . . . . . . . . . . . 11 2 VerticalDistributionofPhotodissociationRates . . . . . . . . . . . . . . . . . . . 12 3 ClimatologicalMeanAbsorbedSolarRadiation . . . . . . . . . . . . . . . . . . . 141 4 ClimatologicalMeanEmittedLongwaveRadiation . . . . . . . . . . . . . . . . . 142 5 ENSOTemperatureandOLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6 SeasonalShortwaveCloudForcing . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7 ZonalMeanShortwaveCloudForcing . . . . . . . . . . . . . . . . . . . . . . . . 145 8 SeasonalLongwaveCloudForcing . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9 ZonalMeanLongwaveCloudForcing . . . . . . . . . . . . . . . . . . . . . . . . 147 10 ClimatologicalMeanNetCloudForcing . . . . . . . . . . . . . . . . . . . . . . . 148 11 ENSOCloudForcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 List of Tables 1 FACTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 2 WaveParameterConversionTable . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 ActinicFluxEnhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 SurfaceAlbedo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 TemperatureDependenceofα . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 p 6 Pressure-BroadenedHalfWidths . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7 MechanicalAnaloguesofImportantGases . . . . . . . . . . . . . . . . . . . . . . 85 8 HITRAN database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9 Full-rangeGaussianquadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10 Half-rangeGaussianquadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 1 Introduction This document describes mathematical and computational considerations pertaining to radiative transfer processes and radiative transfer models of the Earth system. Our approach is to present a detailed derivation of the tools of radiative transfer needed to predict the radiative quantities (irradiance, mean intensity, and heating rates) which drive climate. In so doing we begin with discussion of the intensity field which is the quantity most often measured by satellite remote sensinginstruments. OurapproachowesmuchtoBohrenandHuffman[1983](particlescattering), Goody and Yung [1989] (band models), and Thomas and Stamnes [1999] (nomenclature, discrete ordinate methods, general approach). The nomenclature follows these authors where possible. These sections will evolve and differentiate from their original sources as the manuscript takes on theflavoroftheresearcherswhocontributetoit. 1.1 Planetary Radiative Equilibrium Theimportantrolethatradiationplaysintheclimatesystemisperhapsbestillustratedbyasimple example showing that without atmospheric radiative feedbacks (especially, ironically, the green- house effect), our planet’s mean temperature would be well below the freezing point of water. Earthissurroundedbythenearvacuumofspacesotheonlywaytotransportenergytoorfromthe planet is via radiative processes. If E is the thermal energy of the planet, and FASR and FOLR are theabsorbedsolarradiationandemittedlongwaveradiation,respectively,then ∂E = FASR −FOLR (1) ∂t On timescales longer than about a year the Earth as a whole is thought to be in planetary radiative equilibrium. That,is,theglobalannualmeanplanetarytemperatureisnearlyconstantbecausethe 1 INTRODUCTION 2 absorbedsolarenergyisexactlycompensatedbythermalradiationlosttospaceoverthecourseof ayear. Thus FASR = FOLR (2) The total amount of solar energy available for the Earth to absorb is the incoming solar flux (or irradiance)atthetopofEarth’satmosphere,F (akathesolarconstant),timestheinterceptingarea (cid:12) of Earth’s disk which is πr2. Since Earth rotates, the total mean incident flux πr2F is actually ⊕ ⊕ (cid:12) distributed over the entire surface area of the Earth. The surface area of a sphere is four times its cross-sectional area so the mean incident flux per unit surface area is F /4. The fraction of (cid:12) incident solar flux which is reflected back to space, and thus unable to heat the planet, is called the aplanetary albedo or spherical albedo, R. Satellite observations show that R ≈ 0.3. Thus only (1−R)ofthemeanincidentsolarfluxcontributestowarmingtheplanetandwehave FASR = (1−R)F /4 (3) (cid:12) Earthdoesnotcooltospaceasaperfectblackbody(41a)ofasingletemperatureandemissivity. NeverthelessthespectrumofthermalradiationFOLR whichescapestospaceandthuscoolsEarth does resemble blackbody emission with a characteristic temperature. The effective temperature T of an object is the temperature of the blackbody which would produce the same irradiance. E InvertingtheStefan-BoltzmannLaw(73)yields T ≡ (FOLR/σ)1/4 (4) E For a perfect blackbody, T = T . For a planet, the difference between T and the mean surface E E temperatureT is dueto theradiative effectsof theoverlying atmosphere. The insulatingbehavior s oftheatmosphereismorecommonlyknownasthegreenhouseeffect. Substituting(3)and(4)into(2) (1−R)F /4 = σT4 (5) (cid:12) E (cid:18)(1−R)F (cid:19)1/4 (cid:12) T = (6) E 4σ For Earth, R ≈ 0.3 and F ≈ 1367Wm−2. Using these values in (6) yields T = 255K. (cid:12) E ObservationsshowthemeansurfacetemperatureT = 288K. s 1.2 Fundamentals The fundamental quantity describing the electromagnetic spectrum is frequency, ν. Frequency measures the oscillatory speed of a system, counting the number of oscillations (waves) per unit time. Usually ν is expressed in cycles-per-second, or Hertz. Units of Hertz may be abbreviated Hz, hz, cps, or, as we prefer, s−1. Frequency is intrinsic to the oscillator and does not depend on the medium in which the waves are travelling. The energy carried by a photon is proportional to itsfrequency E = hν (7) 1 INTRODUCTION 3 where h is Planck’s constant. Regrettably, almost no radiative transfer literature expresses quanti- tiesinfrequency. Arelatedquantity,theangularfrequencyω measurestherateofchangeofwavephaseinradi- ans per second. Wave phase proceeds through 2π radians in a complete cycle. Thus the frequency andangularfrequencyaresimplyrelated ω = 2πν (8) Since radians are considered dimensionless, the units of ω are s−1. However, angular frequency is also rarely used in radiative transfer. Thus some authors use the symbol ω to denote the element ofsolidangle,asindω. Thereadershouldbecarefulnottomisconstruethetwomeanings. Inthis textweuseω onlyinfrequently. Most radiative transfer literature use wavelength or wavenumber. Wavelength, λ (m), mea- sures the distance between two adjacent peaks or troughs in the wavefield. The universal relation betweenwavelengthandfrequencyis λν = c (9) wherecisthespeedoflight. Sincecdependsonthemedium,λalsodependsonthemedium. Thewavenumber ν˜m−1,isexactlytheinverseofwavelength 1 ν ν˜ ≡ = (10) λ c Thus ν˜ measures the number of oscillations per unit distance, i.e., the number of wavecrests per meter. Using (9) in (10) we find ν˜ = ν/c so wavenumber ν˜ is indeed proportional to frequency (andthustoenergy). Historicallyspectroscopistshavefavoredν˜ratherthanλorν. Becauseofthis history, it is much more common in the literature to find ν˜ expressed in CGS units of cm−1 than in SI units of m−1. The CGS wavenumber is used analogously to frequency and to wavelength, i.e., to identify spectral regions. The energy of radiative transitions are commonly expressed in CGS wavenumber units. The relation between ν˜ expressed in CGS wavenumber units (cm−1) and energyinSIunits(J)isobtainedbyusing(10)in(7) E = 100hcν (11) Thereisanother,distinctquantityalsocalledwavenumber. Thissecondaryusageofwavenum- berinthistextisthetraditionalmeasureofspatialwavepropagationandisdenotedbyk. k ≡ 2πν˜ (12) The wavenumber k is set in Roman typeface as an additional distinction between it and other symbols1. Table 2 summarizes the relationships between the fundamental parameters which describe wave-likephenomena. 1ThescriptkisalreadyusedforBoltzmann’sconstant,absorptioncoefficients,andvibrationalmodes 2 RADIATIVETRANSFEREQUATION 4 Table2: WaveParameterConversionTableab Variable ν λ ν˜ ω k τ Units s−1 m cm−1 s−1 m−1 s c ν 2πν 1 ν − 2πν ν 100c c ν c 1 2πc 2π λ λ − λ 100λ λ λ c 1 ν˜ 1 ν˜ 100cν˜ − 200πν˜ 100ν˜ 200πc 100cν˜ ω 2πc ω ω 2π ω − 2π ω 200πc c ω kc 2π k 2π k ck − 2π k 200π ck 1 1 2π 2π τ cτ − τ 100cτ τ cτ aThespeedoflightiscms−1. bTableentriesexpressthecolumnintermsoftherow. 2 Radiative Transfer Equation 2.1 Definitions 2.1.1 Intensity The fundamental quantity defining the radiation field is the specific intensity of radiation. Spe- cific intensity, also known as radiance, measures the flux of radiant energy transported in a given direction per unit cross sectional area orthogonal to the beam per unit time per unit solid angle per unit frequency (or wavelength, or wavenumber). The units of I are Joule meter−2 second−1 λ steradian−1 meter−1. InSIdimensionalnotation,theunitscondensetoJm−2s−1sr−1m−1. TheSI unitofpower(1Watt≡1Joulepersecond)ispreferred,leadingtounitsofWm−2sr−1m−1. Often the specific intensity is expressed in terms of spectral frequency I with units Wm−2sr−1Hz−1 or ν spectralwavenumber(alsoI )withunitsWm−2sr−1(cm−1)−1. ν˜ Consider light travelling in the direction Ωˆ through the point r. Construct an infinitesimal elementofsurfaceareadS intersectingrandorthogonaltoΩˆ. TheradiantenergydE crossingdS intimedtinthesolidangledΩinthefrequencyrange[ν,ν +dν]isrelatedtoI (r,Ωˆ)by ν dE = I (r,Ωˆ,t,ν)dSdtdΩdν (13) ν It is not convenient to measure the radiant flux across surface orthogonal to Ωˆ, as in (13), when we consider properties of radiation fields with preferred directions. If instead, we measure the intensity orthogonal to an arbitrarily oriented surface element dA with surface normal nˆ, then we