ebook img

Radiative decays with scalar mesons a0(980) and f0(980) in Resonance Chiral Theory PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radiative decays with scalar mesons a0(980) and f0(980) in Resonance Chiral Theory

9 Radiative decays with scalar mesons a (980) and f (980) in Resonance 0 0 0 0 Chiral Theory 2 S. Ivashyna and A. Korchina n ∗ † a a Institute for Theoretical Physics, NSC “KharkovInstitute of Physics and Technology”, J 1, Akademicheskaya str., Kharkov 61108,Ukraine 6 2 The φ(1020) radiative decays form a good playground for study of the low-lying a0(980) and f0(980) scalar ] mesons. Thecomplicated interplayof kaonloop mechanism,isoscalar meson mixingand momentumdependence h of the effective couplings manifests itself in the invariant mass distributions in the φ(1020) → π0π0γ and πηγ p spectra. These distributions are fitted in framework of Resonance Chiral Theory. - p e h − 1. Introduction e γ [ ∗ γ φ 1 Thee+e− experimentsinNovosibirsk[1,2]and v Frascati [3,4] allow one to study the φ(1020) 5 ππγ (and πηγ) radiative decays. The invaria→nt + S e 4 mass distributions of the pseudoscalar (P) pairs 0 in these decays are of considerable interest. The 4 . scalarmesons(S)f0(980)anda0(980)areimpor- 1 tant intermediate resonances in the ππ and πη 0 Figure 1. The e+e annihilation to ππγ (and 9 channel correspondingly, and thereby they show − πηγ) via the φ vector resonance. S denotes 0 up in these spectra. the intermediate scalar resonance. Blob shows : Itis believedthat the kaonloop(KL) coupling v schematically the kaon loop mechanism. i of S to the vector meson φ is very important X (see, e.g. the data analysis [1,5,6]). Fig.1 shows r schematically the processes with scalar mesons. a Although many authors relate the dominance of the KL mechanism to a large KK¯ component sal: one can use either the analytical expression in the a (980) and f (980) mesons and to the for I(a,b) [10], or calculate it numerically. 0 0 proximity of the KK¯ threshold to the scalar me- The φ decays are rather suitable for study of son mass, in fact the KL mechanism is a feature the chiral dynamics, and the framework is out- of the chiral dynamics and reflects the impor- linedinSection2. WeshouldnotethatRχTleads tant role of the pseudoscalar mesons in low- and toanimportantfeature–momentumdependence intermediate-energy interactions. It is shown in of the scalar meson effective couplings. Employ- Refs. [7,8] that the kaon loops in the φ Sγ ing the RχTLagrangian of [9] we obtained [7] a transitions naturally arise in the leading→order completesetof (p4)contributionstovariousra- O in Resonance Chiral Theory (RχT) [9], irrespec- diative decays with the scalar mesons. Later on tivelyofthethresholdandmassposition,andthe this model was applied [8] to the study of π0π0 internalstructureofthe scalars. Theloopcontri- andπ0ηinvariantmassdistributions. InRef.[7,8] butionis convergent,gauge invariantanduniver- we compared the model results with estimates of other related approaches [11,12]. ∗Partly supported by NASU grant for young researchers The free parameters of the model are c , c , (contract 8.63/2008) and Joint NASU-RFFR scientific d m c˜ and c˜ , which are the coupling constants in projectN38/50-2008. d m †SupportedbytheINTASgrant05-1000008-8328. the Lagrangian [9]. It is possible to fix their val- 1 2 1.2 themomentum-independentvertexicSPP/fπ2and 2eV] 1 .11 momentum-decpoennsdtaenntt t(hseeemToambleen1tu),mw-dheepreenfden=t9o2n.e4iMcˆSePVP.(Tp1h·epse2)v/efrπ2- G 0.9 π π4 [ 0.8 tices vanish in the chiral limit, as soon as cSPP 2)/ 0.7 is proportional to the pseudoscalar meson mass p (-K 0.6 squared. The f ππ tree-level decay width is +a K0 00..45 then 0 → 2 G 0.3 0.2 Γ (p2) = Γ˜ (p2)Θ(p2 4m2), 0.5 0.6 0.7 0.8 0.9 1 f0→ππ f0→ππ − π p2 [GeV2] where Θ(x) is the Heaviside step function. For 4 the further convenience we employ the analytic 2] 3.5 momentum-dependent function of p2 2πp)/4 [GeV 2 .235 constant Γ˜f0→ππ(p2) = 23 21p2rp42 −m2πG2f0π4ππ(p2), (1) (-K +K 1.5 which is defined above the threshold and 2Gf 0 1 below the threshold with p2/4 m2 = − π 0.5 i p2/4 m2 . Thefactor3/2accountsforboth 0.5 0.6 0.7 0.8 0.9 1 | − π| p p2 [GeV2] πp+π− and π0π0 final states and Gf0ππ is a cou- pling ofthef to π+π . The analogousformulae 0 − holdforotherdecays. Wesupposethatthescalar iso-singletf (980)=(Ssing cosθ Soct sinθ)isa 0 − 8 mixture of the singlet Ssing and the eights com- Figure 2. Effective couplings G2 (p2)/4π a0K+K− ponent of octet Soct with the angle θ. (upper panel) and G2 (p2)/4π (lower 8 f0K+K− It is important to note that the scalar me- panel). The values c = c = f /2 46.2MeV[13]arechosenm. Mixingdangleθπ=27.3≈8 son couplings G2SPP(p2)/4π are the essentially momentum-dependent functions, see Table 1 for istakenfromourfitwithFlatt´e-likepropagators. explicit expressions. As an example, in Fig. 2 The horizontallines indicate the constantvalues, we compare the functions G2 (p2)/4π and see [4]. a0K+K− G2 (p2)/4π to the corresponding constant f0K+K− values of these couplings, which are often dis- cussed. uesfromthelimitoflargenumberofquarkcolors The total widths Γ (p2) of the scalar S,tot (N ), and by imposing the constraints sug- mesons are c →∞ gested in Ref. [13]. In the present paper we use the corresponding values in the description of in- Γf0,tot(p2) = Γf0→ππ(p2)+Γf0→KK¯(p2), (2) avanrdiaπnηtγmdaescsaydsi.stributions in φ(1020) → π0π0γ Γa0,tot(p2) = Γa0→π0η(p2)+Γa0→KK¯(p2). (3) The application of the model is presented in In Fig. 1 the mechanism of the scalar-meson Section3andfutureprospectsareoutlinedinSec- production is depicted. The scalar meson propa- tion 4. gatesanddecaystoapairofpseudoscalarmesons. Thefiniteresonancewidtheffectsintheinvariant 2. Scalar meson vertices and propagators mass distributions for π0π0 and π0η in the φ ra- in RχT diative decays are known to be important [14]. For the scalar meson propagator one may use IntheRχTascalarmesonS(p)decaysintothe pseudoscalar meson pair P (p )P (p ) through D (p2) = [p2 m2 +i p2Γ (p2)] 1, (4) 1 1 2 2 S − S S,tot − p 3 Table 1 Numerical values of these couplings, in princi- RχTeffective couplings (see Table 9 in Ref. [7]). ple,canbedeterminedfromtheunderlyingQCD. ccfππ == −mm22π((44c˜c˜mccoossθθ−+2 22//33ccmssiinnθθ)),. Fstrroamtedth[9e]athssautmthpetioocnteNtcan→dsi∞gletit(wwiaths “dteimldoe”n)- fKK − K m p m chiral couplings obey the constraints cˆ = 4c˜ cosθ 2 2/3pc sinθ, fππ d d c c − m d cˆfKK = 4c˜dcosθ+ p2/3cdsinθ. c˜m = √3, c˜d = √3. (8) caKK = −√2cmm2Kp, Inthislimitthe octetandsingletmesonsbecome caπη = −2Z 2/3cmm2π . degenerate and have equal masses. We use the latter constraintalthough one may cˆ = √2c p, aKK d arguewhetherthelarge-N considerationisappli- c cˆ = 2 2/3c . aπη Z d cable to the scalar mesons, especially in view of G 1 pcˆ (m2 p2/2)+c , so-called Inverse Amplitude Method results [17]. Gf0fK0πKπ ≡≡ ff1ππ22 (cid:0)cˆff00KππK(m2πK−−p2/2)+cf0fπ0πKK, (cid:1) oTnhaenucensuwsuaaslrleacregnet-lNycsubmehmavairoizreodfitnhe[1s8c].alar res- G 1 cˆ (m2 p2/2)+c , a0KK ≡ fπ2 (cid:0) a0KK K − a0K(cid:1)K In Ref. [13] based on the short-distance con- G 1 cˆ (m2 +m2 p2)/2+c . a0πη ≡ fπ2 (cid:0) aπη η π − aπ(cid:1)η straints on the flavor-changing Kπ, Kη and Kη′ The factor Z = co(cid:0)scθo0s−(θ√8−2θs0in)θ8 ≈ 1.53, where θ0(cid:1) socfaclamr faonrdm-cfdacctoourspliitngwsasinshtohwen t(hpa2t)trheesovnaalnucees and θ are the η - η mixing angles. O 8 ′ chiral Lagrangiansatisfy the relation f π c =c = 46.2MeV. (9) m d 2 ≈ wherethescalarmesonmassisdenotedbym . A S This relation, in particular, allows us to reduce more advanced form of the propagator including the number of adjustable parameters in the fit. bothrealandimaginarypartsofthescalar-meson selfenergyΠ (p2)wasproposedrecently[15]. As The expressionfor the invariantmassdistribu- S tionintheKLmodelisobtainedinRef.[10],and anoption,inthepresentworkweusetheso-called its physical meaning is explained in terms of the Flatt´e-likeform[16] the scalar-mesonpropagator SPP andφPP couplings[6]. Takingintoaccount DS(p2) = [p2−m2S +i p2Γ˜S,tot(p2)]−1, (5) the momentum-dependent vertices we obtain where p dB =1 1 α p2 1−4m2π/p2 (10) dm 2Γ 4 48π4m4 Γ˜f0,tot(p2) = Γ˜f0→ππ(p2)+Γ˜f0→KK¯(p2), (6) π0π0 φI,(tao,tb)p2 ×pM2 p2K3 Γ˜a0,tot(p2) = Γ˜a0→π0η(p2)+Γ˜a0→KK¯(p2), (7) × (cid:12)Df0(p2)(cid:12) φM−φ ! wyshisic,hseiess[6u]p.pTohrteedprboypathgeatpohreinnotmheenfoolromgiocafleaqn.(a5l)- G(cid:12)(cid:12)(cid:12) 2f0ππ(p2)(cid:12)(cid:12)(cid:12)G2f0KK(p2) √2GVMφ 2 accountsforacontributionoftheKK¯ channelto × 4π 4π fπ2 ! the imaginary part of the self energy above the KK¯ threshold. It also approximately describes for the π0π0 invariant mass (mπ0π0 p2) dis- ≡ tribution, here a = M2/m2 , b = p2/m2 and the real part of the self energy below the thresh- φ K p K α 1/137. Thefactor1/2takesintoaccountthe old via the analytic continuation. ≈ identity oftheneutralpions. Theformulaforthe π0η case is analogous to (10). 3. Application to the radiative decays The φ(1020) π0π0γ (and πηγ) spectra fit- → A priorithe scalar octet and singlethave inde- ted by varying only the masses of scalar mesons pendent couplings c ,c and c˜ ,c˜ respectively. andthesinglet-octetmixing angleθ areshownin d m d m 4 MM..NN..AAcchhaassoovv eett aall.. [[PPLL,, BB448855,, 334499 ((22000000))]] MM..NN..AAcchhaassoovv eett aall.. [[PPLL,, BB447799,, 5533 ((22000000))]] AA..AAllooiissiioo eett aall.. ((KKLLOOEE)) [[PPLL,, BB553377,, 2211 ((22000022))]] CC..BBiinnii eett aall.. [[KKLLOOEE nnoottee 117733,, 0066//0022]] FFRRllaaeettttΠΠee ((RRpp22ee))ΠΠ==00((pp,, 22MM)),,ff 00MM==ff((0011==00((77888888..1144..5522 77++ ++//--// --77 ..6644..6633))88 ))MM MMeeVVeeVV,, θθ,, ==θθ==227711..5533..8899oo22 oo++ ++//--// --11 ..1166..8855oo11,,oo χχ,, 22χχ//22dd//..ddoo....ooff....==ff..== 88 6655..9955..33336699////22229999 FFRRllaaeettttΠΠee ((RRpp22ee))ΠΠ==00((pp,, 22 )) ,, MM MMaaaa0000====((((1111000022885599..44..668811 ++ ++//--//-- 11 9911....00116655)))) MMMMeeeeVVVV,,,, χχχχ2222////dddd....oooo....ffff....==== 1188000066..00..00668844////33332222 9900 116600 8800 114400 7700 112200 -1-1MeV]MeV] 6600 -1-1MeV]MeV] 110000 88mm x 10 [ x 10 [0000ππππ 45450000 88mm x 10 [ x 10 [00ηπηπ 68680000 dB/ddB/d 3300 dB/ddB/d 4400 2200 1100 2200 00 00 770000 775500 880000 885500 990000 995500 11000000 770000 775500 880000 885500 990000 995500 11000000 mmππ00ππ00 [[MMeeVV]] mmηηππ00 [[MMeeVV]] Figure 3. The invariant mass distributions in φ πoπoγ (left panel) and φ πoηγ (right panel). → → Theoretical calculation is performed with the values of parameters c = c = f /2 46.2 MeV [13]. m d π ≈ The scalar resonance masses and the mixing angle θ obtained from the fit are shown in the legend. The two variants of the scalar meson propagator are discussed in the text. Data: [1,3] (left) and [2,4] (right). Fig. 3. We focus on the region near the f (980) Usually the experimental results are inter- 0 peak and correspondingly use the data above pretedintermsoftheconstantvaluesoftheSPP 700MeV.The σ =f (600)meson is not included couplings g2 /4π instead of G (p2) func- 0 SPP SPP in the analysis. tions. Constantg couplingscanbejustifiedin SPP The figure also illustrates an effect from the thephenomenologicalapproaches,howeverthisis Flatt´e-likemodificationofthescalar-mesonprop- not supported by chiral models. An importance agator. The shape of the π0π0 and πη distribu- of the derivative-coupling interactions was em- tions is well reproduced. For the both forms of phasized in Ref. [11] some time ago,and recently the propagator(4) and (5) the value of χ2/d.o.f. discussed in [19]. The replacement of G (p2) SPP is relatively small. functions by the constantvalues may have a dra- Themassofthef (980)andthemixingangleθ matic influence on the invariant mass distribu- 0 turn out to be strongly correlatedin the fit. The tions. In fact, in these distributions p2 varies massesofthescalarresonancesobtainedfromthe within the wide region – from the PP thresh- fitwiththepropagator(4)areoverestimated. We old up to the φ mass squared – and the scalar observe that the account for the real part of the resonances may “feel” the variation of G (p2) SPP scalar-mesonself energy, even in a simple Flatt´e- alongthespectrum. Thisbecomesmoremanifest like approximation, results in a considerable de- in the case of a broad σ meson, which is some- creaseofthef massinthefit. Thereforethereis times included in the fit. 0 a strong motivation for the careful treatment of theself-energyandtheeffectsrelatedtoaspecific 4. Prospects and conclusion behavior of the scalar meson spectral function. The importance ofthese aspects is discussedalso We fit the φ(1020) π0π0γ and πηγ spec- in Ref. [14]. tra by varying only the→masses of scalar mesons 5 and the singlet-octet mixing angle θ. The σ = REFERENCES f (600) meson is not included yet. It is interest- 0 1. M.N.Achasovetal., Phys. Lett. B485,349 ing that the strict constraint c = c = f /2 m d π ≈ (2000) [arXiv:hep-ex/0005017]. 46.2 MeV [13] still leaves a possibility to fit the data with a reasonably small χ2/d.o.f. At the 2. M. N. Achasovet al., Phys. Lett. B 479, 53 (2000) [arXiv:hep-ex/0003031]. same time one realizes that the subtraction of a 3. A. Aloisio et al. [KLOE Collabora- rather nontrivial non-scalar resonance contribu- tion], Phys. Lett. B 537, 21 (2002) tionsmaybe veryimportantfora studyofscalar [arXiv:hep-ex/0204013]. resonance features. 4. C. Bini, P. Gauzzi, S. Giovanella, D. Leone Althoughourfitgivessomewhatoverestimated and S. Miscetti, KLOE Note 173 06/02, values for the mass of f (980) scalar resonance, 0 http://www.lnf.infn.it/kloe/. there may be a wayout. An inclusionof the self- 5. N. N. Achasov and A. V. Kiselev, Phys. Rev. energy in the scalar meson propagator in an ad- D 73, 054029 (2006) [Erratum-ibid. D 74, vanced form may result in the mass lowering. 059902 (2006)], [arXiv:hep-ph/0512047]. The dominantscalar resonancecontributionof Fig.1 exhibits just a part of the e+e ππγ 6. D. V. Bugg, Eur. Phys. J. C 47, 45 (2006) − and e+e πηγ mechanisms. The oth→er con- [arXiv:hep-ex/0603023]. − → 7. S.IvashynandA.Yu.Korchin, Eur.Phys.J. tributions, which interfere with the scalar meson C 54, 89 (2008) [arXiv:0707.2700[hep-ph]]. contribution, are in general complicated. For ex- 8. S. Ivashyn and A. Korchin, AIP Conf. Proc. ample, in the case of the neutral particles in the final state there are φ ρ0π0 π0π0γ, φ 1030,123(2008).[arXiv:0805.4088[hep-ph]]. ωη ηπ0γ, φ ρ0π0→ ηπ0γ→and other pr→o- 9. G. Ecker, J. Gasser, A. Pich, E. de Rafael, → → → Nucl. Phys. B 321, 311 (1989). cesses. Such non-scalar resonance channels and 10. F. Close, N. Isgur, S. Kumano, background are important for the precise analy- Nucl. Phys. B 389, 513 (1993). sis of the data (see, for example, Ref. [6]). These 11. D. Black, M. Harada and J. Schechter, contributions can also be included in framework Phys. Rev. Lett. 88, 181603 (2002) of RχTwith a relatively few number of free pa- [arXiv:hep-ph/0202069]. rameters. The approach can be extended to a wide interval of the e+e center-of-mass energy, 12. H.Nagahiro,L.RocaandE.Oset,Eur.Phys. − J.A36,73(2008),[arXiv:0802.0455[hep-ph]]. covering not only the φ resonance [20]. 13. M. Jamin, J. A. Oller and A. Pich, The model allows for an extension to the charged particles production in e+e annihila- Nucl. Phys. B 622 279 (2002) − [arXiv:hep-ph/0110193]. tion. In addition to the φ decays, the framework 14. J. A. Oller, Nucl. Phys. A 714, 161 (2003) is useful for a detailed study of other radiative [arXiv:hep-ph/0205121]. decays involving the light scalar mesons. Among 15. N.N.AchasovandA.V.Kiselev, Phys. Rev. the most interesting ones there are the radiative D 70, 111901 (2004) [arXiv:hep-ph/0405128] decaysintovectormesonsf /a γV,V =ρ,ω, 0 0 → 16. S. M. Flatte, Phys. Lett. B 63, 224 (1976). currently under study in Ju¨lich [21]. 17. J. R. Pelaez, Phys. Rev. Lett. 92, 102001 To summarize, the RχTapproach for the de- cays with scalar mesons at order p4 is outlined. (2004), [arXiv:hep-ph/0309292]. 18. R. L. Jaffe, AIP Conf. Proc. 964, 1 (2007) Thoughit does not specify the internal structure [Prog. Theor. Phys. Suppl. 168, 127 (2007)]. of scalar mesons, the important features of these 19. F. Giacosa and G. Pagliara, arXiv:0804.1572 resonances are reproduced. The model allows to [hep-ph]. investigate a complicated interplay of kaon loop 20. S. Ivashyn, A. Korchin, O. Shekhovtsova, in mechanism,scalar-mesonmixingandmomentum preparation. dependence of the effective couplings in the in- 21. M.Buscher,AIPConf. Proc.103040(2008), variant mass distributions. [arXiv:0804.2452[hep-ph]].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.