ebook img

Radiative and pionic transitions from the $D_{s1}(2460)$ to the $D_{s0}^\ast(2317)$ PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radiative and pionic transitions from the $D_{s1}(2460)$ to the $D_{s0}^\ast(2317)$

Radiativeand pionictransitions from the D (2460)to the D (2317) s1 ∗s0 Cheng-Jian Xiao1,4, Dian-Yong Chen1,2 , and Yong-Liang Ma3 ∗† 1Instituteof Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 2ResearchCenterforHadronandCSRPhysics,LanzhouUniversity&InstituteofModernPhysicsofCAS,Lanzhou730000,China 3 CenterofTheoreticalPhysicsandCollegeofPhysics, JilinUniversity, Changchun, 130012, China 4 University of Chinese Academy of Sciences, Beijing 100049, China (Dated:May16,2016) WeestimatethepartialwidthsfortheradiativeandpionictransitionsfromtheD (2460) tothe D (2317) s1 s0 inamolecularscenario,inwhichtheD (2460)andD (2317)areconsideredashadronicmolecularstatesof s1 ∗s0 DKandD K,respectively. ThepartialwidthsfortheD (2460) D (2317)π0 andD (2460) D (2317)γ ∗ s1 → ∗s0 s1 → ∗s0 areevaluatedtobeabout 0.19–0.22and3.0–3.1keV, respectively. Inaddition, theratioof the D (2460) 6 s1 → D (2317)γ and D (2460) D π0 is estimated to be about (6.6–10.6) 10 2, which is safely under the 1 s0 s1 → ∗s × − 0 measuredupperlimit. 2 PACSnumbers:14.40.Pq,13.20.Gd,12.39.Fe y a M I. INTRODUCTION atthe90%confidencelevel. Theoretically,thequarkmodelpredictedthemassesofthe 3 1 In the last decade, great experimental progress in the D∗s0andDs1tobe2480MeVand2530MeV[2],respectively, charmed-strange meson spectrum has been achieved. Some which are about 160 and 70 MeV, respectively, above the ] radially or orbitally excited charmed-strange mesons have experimental measured values. This disagreement between h beenobserved[1], andthese observationsnotonlymakethe thequarkmodelexpectationsandexperimentalmeasurements p charmed-strange meson family lengthy, but also raise some makes these two states unlike conventionalcharmed-strange - p challengestotheconventionalquarkmodel[2]. Amongthese mesons. he newly observedcharmed-strangemesons, the D∗s0(2317)and The particular properties of the D∗s0(2317) and Ds1(2460) [ Ds1(2460)aretwoparticularstates,sincetheirmassesarefar have stimulated the theorists’ interest in the nature of these belowthequarkmodelexpectations[2]. two states. The coupledchannelestimates indicatedthat the v2 oraTtihoenDin∗s0(t2h3e1D7)+πw0asinfivrasrtiarnetpomratesds bspyecthtreumBAoBfAtRheCoBlldabe-- mstraosnsegscoofupthlienDg∗os0f(2th3e1P7)-wanadveDcsh1a(2rm46e0d)-sctoraunldgeremsuelstofnrsomtotthhee 9 s cay processand its mass was measured to be (2316.8 0.4) DK and D K, respectively [10, 11]. With some fine-tuning 9 ± ∗ MeV [3]. Later, the CLEO Collaboration confirmed the parameters,themassesoftheD (2317)andD (2460)could 3 ∗s0 s1 6 existence of this state and also reported another state, the bereproducedinarelativisticquarkmodel[12]. Thedecays 0 D (2460), in the D +π0 invariant mass distribution, which of the D (2317) and D (2460) were investigated in a con- s1 ∗s ∗s0 s1 . is 351.2 1.7(stat.) 1.0(syst.) MeV heavier than the D ventionalcharmed-strangemesonsframewithdifferentmeth- 01 [4]. Besid±esthe D∗sπ0±mode,someotherdecaymodesofthe∗s ods,suchasthequarkpair-creationmodel[13,14],QCDsum 6 Ds1(2460)–like Dsγ, D∗sγ, Dsπ+π− and D∗s0γ–have also been rules[15–19], andchiraleffectivetheory[20]. However,the 1 measured[4]. large-N expansioncalculationsindicatedthat the D (2317) c ∗s0 : AftertheobservationsfromtheBABARandCLEOcollab- couldnotbea standardquark-antiquarkmeson[21]. A cs¯qq¯ v Xi orations[3,4],theexistenceofthe D∗s0(2317)andDs1(2460) tetraquarkinterpretationwasproposedtounderstandthemass was confirmedbythe Belle Collaboration[5, 6] and BABAR anddecaybehavioroftheD (2317)[22–24]. TheQCDsum ∗s0 r Collaboration[7–9].Andnow,theParticleDataGroup(PDG) rule calculations also supported the idea that the D (2317) a ∗s0 averagesofthemassesoftheD (2317)andD (2460)are[1] couldbeatetraquarkstate[25,26]. ∗s0 s1 SincethemassesoftheD (2317)andD (2460)areabout m (2317) = (2317.7 0.6)MeV, ∗s0 s1 D∗s0 ± 40 MeV below the thresholds of the DK and D∗K, respec- mDs1(2460) = (2459.5±0.6)MeV. tively, a possible explanation of the structures of D∗s0(2317) and D (2460) is that they are DK and D K hadronic Inaddition,thedecaymodeofD (2460) D (2317)γwas s1 ∗ s1 → ∗s0 molecules, respectively. The calculations in the Bethe- measuredbytheCLEOandBABARcollaborations[4,8]and Salpeterapproach[27]andpotentialmodel[28]showedthat theratioofΓ(D (2460) D (2317)γ)andΓ(D (2460) D π0)wasreporst1edtobe→ ∗s0 s1 → the D∗s0(2317) could indeed be a DK hadronic molecule. In ∗ Ref. [29], the D (2317) and D (2460) were considered as ∗s0 s1 Γ(DΓs(1D(2s41(6204)6→0)D→∗s0D(2∗s3π107))γ)( <<00..5282,, CBALBEAOR[4[8],], (1) dkteeancosaniyviceblmyeohinlaevvcieuoslrteisgsaobtfoeduthniednbDthy∗se0s(tD2ro3Kn1g7a)snhdaonrDdt-rDKans1hg(ae2da4rt6otr0na)icctwimoenore.leTechxue-- ∗ lar scenario [30–32]. The production of the D (2317) and ∗s0 D (2460) from the nonleptonic B decay were calculated in s1 Ref.[33],inwhichD (2317)andD (2460)wereconsidered ∗Correspondingauthor ∗s0 s1 †Electronicaddress:[email protected] ashadronicmolecularstatesofDK andD∗K,respectively. 2 In thispaper,we study the radiativeandpionictransitions ofthecorrelationfunctionshoulddropfastenoughintheul- from the D (2460) to the D (2317) in a hadronic molec- traviolet region. Here we choose the Fourier transformation s1 ∗s0 ular scenario. With the assignment that the D (2317) and ofthecorrelationintheGaussianform, ∗s0 D (2460) are the hadronic molecules of DK and D K, re- s1 ∗ spectively,onecouldfindthattheradiativeandpionictransi- Φ˜M(−p2,Λ2M)=exp(p2/Λ2M), M =(D∗s0, Ds1), (5) tionsfromthe D (2460)tothe D (2317)occurviathesub- s1 ∗s0 withΛ beingthesizeparameterwhichcharacterizesthedis- processesD DγandD Dπ0,respectively. Asforthe M ∗ ∗ D (2460) →D (2317)π0,it→isanisospin-violatingprocess, tributionofcomponentsinsidethemolecule. s1 → ∗s0 whichcouldresultfromthemass differencesof chargedand neutralDandKmesonsandη π0mixing.Inaddition,thera- D D∗ − tioofthepartialwidthsfortheD (2460) D (2317)γand D (2460) D π0 wasmeasuresd1bytheC→LEO∗s0andBABAR D∗s0 D∗s0 Ds1 Ds1 s1 ∗ → collaborations[4,8].Inthepresentwork,wecantesttheD K ∗ assignmentoftheD (2460)bycomparingtheestimatedratio K K s1 of Γ(Ds1(2460) Ds0(2317)γ) and Γ(Ds1(2460) D∗π0) (a) (b) → → withtheexperimentalmeasurements. This work is organized as follows. The the hadronic FIG.1:MassoperatorsoftheD∗s0(2317)(a)andDs1(2460)(b). molecular structures of the D (2317) and D (2460) are ∗s0 s1 dDi∗ss0c(u2s3s1e7d)πin0,SDec∗s.0(I2I3.1T7h)γeapnadrtDia∗slπw0iadrtehesstfiomraDtesd1(i2n4S6e0c).I→II. (3)ThceouclodupbleindgecteornmstiannetdsgbDy∗s0DthKeancodmgpDos1sDi∗tKenienssEqcso.n(d2i)tiaonnds Thenumericalresultsare presentedin Sec.IV andSec. V is [30, 31, 34–36], where the renormalization constants of the dedicatedtoashortsummary. compositeparticlesshouldbezero,i.e., Z 1 Σ (m2 )=0, II. HADRONICMOLECULARSTRUCTURESOFTHE D∗s0 ≡ − ′D∗s0 D∗s0 D∗s0(2317)ANDDs1(2460) ZDs1 ≡ 1−Σ′Ds1(m2Ds1)=0, (6) with Σ (m2 ) being the derivative of the mass operator of DsI1n(24th6e0)haarderoansiscigmneodlecauslaSr-wscaevnearDioK, tahnedDD∗s∗0K(23h1a7d)roannidc the D∗s0′D(∗s20317D)∗s0. As forthe Ds1(2460),the massoperatorΣµDνs1 molecules, respectively. Here, we adoptthe followingeffec- presentedinFig. 1(b)canbedecomposedintothetransverse tiveLagrangianstodescribetheinteractionsoftheD∗s0(2317) ΣDs1 andlongitudinalΣLDs1 componentsas and D (2460)andtheir constituents. Theconcreteformsof s1 theLagrangiansare[30,31] Σµν (p)=gµνΣ (p2)+ pµpνΣL (p2), (7) Ds1 ⊥ Ds1 p2 Ds1 (x) = g D (x) dyΦ (y2)DT(x+w y) LD∗s0 D∗s0DK ∗s0 Z D∗s0 KD with gµν = gµν pµpν/p2. The concrete forms of the mass ×K(x−wDKy)+H.c., (2) operato⊥rs of the−D∗s0(2317) and Ds1(2460) corresponding to thediagramsinFig.1are (x) = g Dµ (x) dyΦ (y2)D T(x+w y) LDs1 Ds1D∗K s1 Z Ds1 ∗µ KD∗ d4q ×K(x−wD∗Ky)+H.c., (3) ΣD∗s0 = g2D∗s0DKZ (2π)4Φ˜2[−(q−wDKp)2,Λ2] where 1 1 , (8) K+ ×(p q)2 m2 q2 m2 D(∗)T =(D(∗)0,D(∗)+), K = K0 !. − −d4qK − D Σµν = g2 Φ˜2[ (q w p)2,Λ2] Thewij =mi/(mi+mj)iskinematicalparameterwithmibeing Ds1 Ds1D∗KZ (2π)4 − − D∗K themassofthecorrespondingmeson. 1 gµν+qµqν/m2 ThecorrelationfunctionsΦ (y2)andΦ (y2),whichde- − D∗. (9) D∗s0 Ds1 ×(p q)2 m2 q2 m2 pend only on the Jacobian coordinate y, are introduced to − − K − D∗ depict the distributions of the components in the hadronic molecule.TheFouriertransformationofthecorrelationfunc- III. RADIATIVEANDPIONICTRANSITIONSFROMTHE tionis, D (2460)TOTHED (2317) s1 ∗s0 d4p Φ (y2)= e ipyΦ˜ ( p2,Λ2 ), M =(D , D ). M Z (2π)4 − M − M ∗s0 s1 We estimatethe partialwidthsfortheradiativeandpionic (4) transitionsfromtheD (2460)totheD (2317)inaneffective s1 ∗s0 The introduced correlation function also plays the makes Lagrangianapproach. Theinteractionsofthe D (2317)and ∗s0 the Feynman diagrams finite in the ultraviolet region of Eu- D (2460)withtheircomponentsarepresentedinEqs.(2)and s1 clideanspace,whichindicatesthattheFouriertransformation (3). Besides these effective Lagrangians, in our calculation, 3 weemploythefollowingphenomenologicalLagrangians[37– thebranchingratiosofthe D 0 D0γand D 0 D0π0 are ∗ ∗ → → 40] measured. Here,wecanroughlyestimatethepartialwidthof the D 0 D0π0 from that of the D + D+π0 via isospin ∗ ∗ LD∗Dπ =−ig√D∗2DPD†∂µ~π·~τD∗µ, sDy0mγm) aentrd→yΓ[4(D5,046]. WDi0thπ0t)h,ewmeecaasunreodbtra→aitniothoeftphaertΓia(lDw∗0id→th ∗ LD∗Dη =−igD∗DηD†∂µηD∗µ, ogf the Da∗s0g→ D0→γ=a2n.0dGtheeVco1r.respondingcoupling constant LD∗sDK =igD∗DP(D∗s−µD∂µK†), DI∗0nD0γthe prDe∗0sDe0nγt work, the− decays of the Ds1(2460) LD∗D∗π = 2√12gD∗D∗PǫµναβD∗†µ∂ν~π·~τ↔∂ αD∗β, pDr∗so0c(e2s3s1e7s),πw0haincdhDarse1(a2ls4o60co)n→triDbustπe0dafrreomthethiesoηspinπ-0vmioilxatiinn→gg. − Theη π0mixingschemeisintheform[47], =g ǫ D µ∂νη↔∂ αD β, − D D η D Dη µναβ ∗† ∗ L ∗ ∗ ∗ ∗ (m m ) LD∗sD∗K = 21gD∗D∗PǫµναβD∗s−µ∂νK† ↔∂ ∂αD∗β, Lηπ0 =µ d√−3 u π0η, (16) wherem andm arethecurrentquarkmassesoftheuandd =ig D ν ↔∂ µD K u d LD∗sD∗K∗ D∗D∗V ∗s− ∗ν µ∗† quarks,respectively,andµisthecondensateparameter. +4if D (∂µK ν ∂νK µ)D , D∗D∗V ∗sµ− ∗† − ∗† ∗ν =ig K ~π ~τ↔∂ µK, (10) A. ThedecayofD (2460) D (2317)π0 LK∗Kπ K∗Kπ µ∗† · s1 → ∗s0 = ig K η↔∂ µK, (11) LK∗Kη − K∗Kη µ∗† where A ↔∂ B A(∂B) (∂A)B,~τisthePaulimatrix,~π rep- D+ D∗ π0 D+ D∗ η π0 resentsthepio≡ntriplets,−andK( ) andD( ) arethedoubletsof s1 D s1 D ∗ ∗ strangeandcharmedmesons,respectively, K D∗+ K D∗+ s0 s0 K( )+ D( )0 (a) (b) K( ) = ∗ , D( ) = ∗ . (12) ∗ K(∗)0 ! ∗ D(∗)+ ! FIG. 2: Diagrams contributing to the pionic transition from the D (2460) tothe D (2317). Diagram (a) isthedirect contribution In the heavy quark-limit, the coupling constants g s1 ∗s0 DD()P anddiagram(b)isthecontributionfromη π0mixing. ∗ ∗ couldberelatedtothegaugecouplingconstantgvia − The decay of the D (2460) D (2317)π0 occurs via a 2g 2g s1 → ∗s0 gD∗D∗P = fπ , gD∗DP = fπ √mD∗mD, (13) sthuebphraodcreosnsicD-∗le→velDdπes0cirniptthioenhaodfrtohnisicpmroocleescsuliasrppriecsteunrete,danind where f =132MeVisthedecayconstantofthepionandthe Fig. 2(a). Since this decay is an isospin-violating process, π gaugecouplingg = 0.59is estimated fromthe experimental we also include the contribution from the η π0 mixing as − valueofthepartialwidthfortheD + D+π0. Theinvolved presented in Fig. 2(b). With the effective interactions listed ∗ couplingconstantsofK are[38], → above,wecangettheamplitudecorrespondingtoFig. 2(a)as ∗ d4q gD∗sD∗K∗ = β√g2V, fD∗sD∗K∗ = λ√g2V √mD∗sD∗, (14) Ma = (i)3Z (2π)4(cid:2)gDs1D∗KǫDφs1Φ˜Ds1(−P212,Λ2Ds1)i ig g Φ˜ ( P2 ,Λ2 ) D∗DP( ipµ) wherethegaugecouplingsβ=0.9,λ=0.56andgV =mρ/fπ. × D∗s0DK D∗s0 − 20 D∗s0 √2 − 3 h ih i As for the coupling constants of g and g , we adopt gK∗Kπ =3.21andgK∗Kη =4.47,whiKc∗hKaπreevaluKa∗KteηdbySU(3) −gφµ+pφ1pµ1/m21 1 1 , (17) symmetry[41]. × p2 m2 p2 m2q2 m2 1− 1 2− 2 − q Theinvolvedinteractionrelatedtothephotonfieldandthe where P = (p w p w ) and P = qw p w . charmedmesonsisintheform[42], 12 1 D∗K − 2 KD∗ 20 DK − 2 KD TheamplituderelatedtoFig. 2(b)is, g LD∗Dγ =(cid:26) D∗4+D+γeǫµναβFµνD∗α+βD− Mb = (i)3Z (d2π4q)4 gDs1D∗KǫDφs1Φ˜Ds1(−P212,Λ2Ds1) + gD∗0D0γeǫµναβF D 0D¯0 +H.c., (15) (cid:2) ig i 4 µν ∗αβ (cid:27) × gD∗s0DKΦ˜D∗s0(−P220,Λ2D∗s0) √D∗2Dη(−ipµ3) h ih i wherethe field-strengthtensorsare definedas Fµν = ∂µAν − gφµ+pφpµ/m2 1 1 ∂νAµ, D∗αβ = ∂αD∗β−∂βD∗α. ThecouplingconstantgD∗+D+γ = ×− p2 1m21 1 p2 m2q2 m2 0.5 GeV−1 is estimated from the partial width of D∗+ 1− 1 2− 2 − q D−+γ: theminussignisadoptedaccordingtothelatticeQC→D µmd−mu 1 , (18) andQCDsumrulecalculations[43,44]. AsforgD∗0D0γ,only × √3 m2π−m2η 4 wherem2π = (mu+md)µ, m2η = 32(m+2ms)µandm = (mu + K π0 D∗ π0 D∗ π0 m )/2.Theaboveamplitude canbereducedto D+ D+ D+ d Mb s1 K∗ s1 D s1 D∗ √3(m m ) D∗ D∗+ K D∗+ K D∗+ = d− u , (19) s s s Mb Ma|π0→η 4 (ms m) (a) (b) (c) − K η π0 D∗ η π0 D∗ η π0 twhheerreelaMteda|πc0o→uηpilnindgiccaotenssttahnetsamofpπli0tuwdiethobthtaoisneeodfbηy.rTehpelatcoitnagl Ds+1 K∗ Ds+1 D Ds+1 D∗ amplitudeoftheDs1(2460)→D∗s0(2317)π0is D∗ Ds∗+ K Ds∗+ K Ds∗+ (d) (e) (f) = + . (20) MDs1→D∗s0π0 Ma Mb FIG.4: DiagramscontributingtoprocessD+ D+π0. Diagrams s1 → ∗s (a),(b)and(c)aredirectprocesses,wheretheπ0 directlycouplesto B. ThedecayofD (2460) D (2317)γ strange mesons or charmed mesons. Diagrams (d), (e) and (f) are s1 → ∗s0 indirectprocesses, whereπ0 couplestostrangemesonsorcharmed mesonsviaη π0mixing. − γ γ D∗+ D∗0 Ds+1 D+ Ds+1 D0 C. ThedecayofDs1(2460)→D∗sπ0 K0 D∗+ K+ D∗+ WecanestimatethepartialwidthofD (2460) D π0and s0 s0 s1 → ∗s (a) (b) comparetheevaluatedratiooftheΓ(Ds1(2460)→ D∗s0γ)and Γ(D (2460) D π0) to furthertest the hadronicmolecular FIG. 3: Diagrams contributing to the radiative transition from the intersp1retation→softh∗seD (2460)andD (2317).Similartothe s1 ∗s0 cDhsa1r(m24e6d0m) etosotnhseanDd∗s0((b2)3i1s7t)h.ec(oa)ntirsibtuhteiocnofnrotrmibuthtieonnefurtoramlcchhaarrmgeedd processDs1(2460)→D∗s0π0,thedecayofDs1(2460)→D∗sπ0 is also an isospin-violating process, which also arises from mesons.. thedirectπ0 couplingandη π0 mixingasshowninFig. 4. − In our calculations, in addition to the diagrams considered AsforthedecayofD (2460) D (2317)γ,itoccursvia the subprocess D Ds1γ as sho→wn in∗s0Fig. 3. With the ef- in Ref. [31], we include the diagramsdue to the D∗D∗π and fectiveLagrangian∗s→givenabove,wecanobtaintheamplitude D∗D∗ηinteractions.Theconcreteformsoftheamplitudescor- respondingtoFigs. 4(a)–4(c)are correspondingtoFig. 3(a)as d4q Ma = (i)3Z (d2π4q)4hgDs1D∗KǫDφs1Φ˜Ds1(−P212,Λ2Ds1)i Ma = (i)3igZ (2(πip)4ηh+gDisp1Dη)∗KǫigDφs1Φ˜Ds1ǫ(τ−gPτ21ρ2(,iΛpσ2Ds+1)iipσ) ××hǫgµνDα∗sβ0DǫγηK(Φi˜pDν3∗sg0(µ−ηP−22i0p,ν3Λg2Dνη∗s0))(iihpeα1ggDβ4∗τ+D−+iγpβ1gατ) +×h4ifKD∗∗KDπ∗VǫDτ1∗s(iqτg3ρσih−iDq∗ρDg∗Vτσ)Di∗sp21−1m221 4 ×−gφτp+21−pφ1mp21τ1/m21 p22−1m22q2−1m2q. i (21) ×−gρφp+22−pρ2mp22φ2/m22−gησq+2−qηmq2qσ/m2q , (25) As for the amplitude corresponding to Fig. 3(b), it can be d4q = (i)3 g ǫφ Φ˜ ( P2 ,Λ2 ) obtained from the above amplitude by replacing the masses Mb Z (2π)4 Ds1D∗K Ds1 Ds1 − 12 Ds1 h i andcouplingconstantswiththoseinFig. 3(b),i.e., ig − D∗DP( ipµ) ig ǫν (ipν) Mb =Ma(cid:12)mgDD∗∗++D→+γm→Dg∗0D,∗m0DD0+γ→mD0,mK0→mK+ . (22) ×h gφ√µ2+pµ−pφ/m3 2ih D1∗DP D∗s 12 i (cid:12)(cid:12) − 1 1 1 , (26) Thenthetotalamplit(cid:12)udeforD (2460) D (2317)γis × p2 m2 p2 m2q2 m2 s1 → ∗s0 1− 1 2− 2 − q d4q MDs1→D∗s0γ =Ma+Mb. (23) Mc = (i)3Z (2π)4 gDs1D∗KǫDφs1Φ˜Ds1(−P212,Λ2Ds1) h i Itshouldbenoticedthatafterperformingtheloopintegral,the 1 g ε ( ipτ)(ipρ+iqρ) aboveamplitudecanbereducedtotheform, × 2√2 D∗D∗P ητρσ − 3 1 h i 1 MDs1→D∗s0γ =gDs1D∗s0γεµναβǫDµs1ǫγνpαγpβDs1, (24) ×h2gD∗D∗PεµναβǫDµ∗s(ipν2)(iqα+ipα4)i whichisobviouslygaugeinvariantandthecouplingconstant −gσφ+pσ1pφ1/m21 1 −gηβ+qηqβ/m2q .(27) g couldbeestimatedfromtheamplitudeinEq. (23). × p2 m2 p2 m2 q2 m2 Ds1D∗s0γ 1− 1 2− 2 − q 5 As for the contributionsfrom η π0 mixing, the amplitudes − 13 correspondingtoFigs. 4(d)-4(f)by, g ∗ Ds0DK Md = Ma|π0→η √43((mmds−mmu)), 12 gDs1D∗K − ) V = √3(md−mu), Ge Me Mb|π0→η 4 (ms−m) ng( 11 = √3(md−mu). (28) upli Mf Mc|π0→η 4 (ms m) Co − ThetotalamplitudeofD (2460) D π0is 10 s1 → ∗s f MDs1→D∗sγ =Xn=aMn. (29) 91.0 1.2 1.4 1.6 1.8 2.0 Λ(GeV) With the total amplitudes defined in Eqs. (20), (23) and (29),onecanestimatethepartialwidthby, FIG. 5: The Λ dependence of the coupling constants g and g ,whereΛ =Λ =Λ. D∗s0DK 1 1 ~p Ds1D∗K Ds1 D∗s0 Γ= | | 2, (30) 38πm2 |M| Ds1 0.4 where ~p is the momentumof thefinalstate in the Ds1(2460) ΛD∗ =2.0 GeV restframeandtheoverlineindicatessumoverpolarizationsof ΛDs∗0 =1.5 GeV vectormesons. keV) ΛDs∗s00 =1.0 GeV ( 0.3 ) 0 π IV. NUMERICALRESULTS ∗+Ds0 → +Ds1 0.2 TABLEI:ThemassesoftheinvolvedparticlesinunitsofGeV[1]. Γ( State Mass State Mass State Mass State Mass D0 1.8648 D 1.8696 D0 2.0069 D 2.0102 ± ∗ ∗± K0 0.4976 K 0.4936 K 0 0.8958 K 0.8916 ± ∗ ∗± D 2.1121 D 2.3177 D 2.4595 π0 0.1349 0.1 ∗s± ∗s0± ±s1 1.0 1.2 1.4 1.6 1.8 2.0 η 0.5478 ΛD (GeV) s1 AllthemassesoftheinvolvedparticlesarelistedinTableI. FIG.6: . TheΛDs1 dependenceofthedecaywidthforDs1(2460)→ BesidesthecouplingconstantsdiscussedinSec.III,thecou- D∗s0(2317)π0. plingconstantsof D (2460)/D (2317)to their components . s1 ∗s0 couldbeestimatedbythecompositenessconditionsgivenby Eq.(6). ThephenomenologicalparametersΛ andΛ are ofdsrefeonnomtceredd1seirontof1FtG2ihgee.GV5ce.o.VuHTphe[lr3eiens0,eg,wtc3weo1on]v.sactroaTynuhtptsehliegnΛDgpDsa1csDr1oa∗nKm=setaatnΛendrtDsDs∗gs0smΛ1D∗s=Do0Dns1KoΛatoandrndDeeo∗s0ΛpupesrDnel∗sy0-- ppfinraaogrrmtaiomafl0e.Λtw2e5rDidsst1tohΛo0Dfr.os21Λr1aDtnhk∗s0dee.VΛDIwDns1∗si0(tt,2hh4eaΛ6nc0dDa)ss1de→eincocrferDeaΛas∗se0sDi(s∗sn20g3w=1ift7rho)1πm.t00he1dG.e0iencVrcteor,ae2tsahe.s0es- decrease with the increasingof the parameter Λ. In particu- GeV. In the considered parameter region, the partial width l1a1r.,7t3hetoc1o0u.p2l5inGgecVonasntdanftrsomgD1s11D.∗2K0atnod9.g8D5∗s0GDKeVd,ercersepaescetifvreolmy, f0o.1r9the0D.2s51(k2e4V6.0) → D∗s0(2317)π0 is predicted to be about ∼ whenΛincreasesfrom1to2GeV. The Λ dependence of the partial width for the Ds1 Thepartialwidthofthe D (2460) D (2317)π0ispre- D (2460) D (2317)γis presented in Fig. 7. Similar to s1 → ∗s0 s1 → ∗s0 sentedinFig.6. Inthepresentcalculation,wevarytheΛ thepionictransitionfromtheD (2460)totheD (2317),the Ds1 s1 ∗s0 from1.0to2.0GeVandtaketypicalvaluesofΛ =1.0,1.5 partial width for the D (2460) D (2317)γ also weakly D∗s0 s1 → ∗s0 and 2.0GeV. Our calculations indicate that the partial width depends on the parameters Λ and Λ . In the consid- oftheD (2460) D (2317)π0isoforder0.1keV,whichis eredparameterregion,thepartDias1lwidthfDo∗sr0the D (2460) s1 → ∗s0 s1 → rathersmallsincethephasespaceofthisprocessisverylim- D (2317)γvaries from 2.96 to 3.13 keV. The PDG average ∗s0 ited. In addition, this partial width weakly depends on the of the branching ratio of the D (2460) D (2317)γ is s1 → ∗s0 6 D (2460) D (2317)γand D (2460) D π0 havebeen 4.0 s1 → ∗s0 s1 → ∗s estimatedinthepresentwork,andtheratioofΓ(D (2460) V) ΛΛΛDDD∗s∗s∗s000 ===211...050 GGGeeeVVV (sD6a∗sf.06e(l−2y31u10n7.2d))eγ×r)t1ha0en−du2piΓnp(etDhrsel1imc(2oi4nt6srei0dp)eorr→etdedpDbary∗saπtmh0)eetiCesrLerEesOtgiimoas1nant,dewdBhAtiocBhA→biRes e k ( 3.5 collaborations[4,8]. ) γ ∗+Ds0 → TABLEII:Acomparisonofthethepartialwidths(inunitsofkeV) +Ds1 3.0 fromChdainffneerlentmoPdreelsse.nt Ref.[48] Ref.[18] Ref.[49] Ref.[50] ( Γ D D γ 3.0 3.1 2.74 0.5 0.8 0.012 s1 → ∗s0 ∼ ∼ ··· D D π0 0.19 0.22 0.0079 s1 → ∗s0 ∼ ··· ··· ··· D D π0 31.3 45.2 21.5 10 11.9 s1 → ∗s ∼ ··· ∼ 2.5 1.0 1.2 1.4 1.6 1.8 2.0 In Table II, we collect our estimates of the partial widths ΛDs1(G eV) oftheDs1(2460)→ D∗s0(2317)γ, D∗s0(2317)π0,andD∗sπ0and compare with the results evaluated in the P-wave charmed- FIG.7: ThesameasFig. 6butforDs1(2460) → D∗s0(2317)γpro- strange meson scheme. In Ref. [48], the decays of the cess. D (2460)wereestimatedin a fullchiraltheoryandthepar- s1 . tialwidthsfortheD (2460) D γandD (2460) D π0 s1 → ∗s0 s1 → ∗ are very similar to the present results obtained in a molec- ular scenario, but for the D (2460) D (2317)π0 mode, 3.7+52..04%. However,thewidthof Ds1(2460)isnotwelldeter- the resultsfromRef. [48] arse1 muchs→malle∗sr0thanthe present min−ed,asonecannotcomparethetheoreticalvalueofthepar- one. The light-cone sum rule calculation for D (2460) tialwidthwiththeexperimentalmeasurement. Here,wealso s1 → D (2317)γis about20%ofthatobtainedin thepresentcal- noticethatbothwidthsfortheD (2460) D (2317)π0and ∗s0 s1 → ∗s0 culation[18]. Theestimationsintherelativisticquarkmodel D (2460) D (2317)γ weakly depend on the model pa- rams1eters, an→d the∗s0former one is about 1 order smaller than indicated that the partial widths of Ds1(2460) → D∗s0γ and D (2460) D π0 were 0.012 and about 10 keV, respec- the latter one, which indicates that the branching ratio of s1 → ∗s tively [49, 50], which are rather different with the results in D (2460) D (2317)π0shouldbeoforder10 3. s1 → ∗s0 − thepresentwork. 50 V. SUMMARY ) In the present work, we estimated the partial widths for V 45 (ke theradiativeandpionictransitionsfromtheDs1(2460)tothe 0π) D∗s0(2317) in a molecular scenario, in which the Ds1(2460) + andthe D (2317)areassignedasa DK anda D K hadronic ∗Ds 40 molecule,∗sr0espectively. Tofurthertestthemolecu∗larinterpre- → tationsoftheD (2460)andtheD (2317),wealsocalculated +Ds1 thepartialwidths1forD (2460) ∗sD0 π0.Intheconsideredpa- ( s1 → ∗s Γ 35 rameterregion,thepartialwidthsareevaluatedtobe Γ(D (2460) D (2317)π0) = 0.19 0.22keV, s1 → ∗s0 ∼ Γ(D (2460) D (2317)γ) = 3.0 3.1keV, 30 s1 → ∗s0 ∼ 1.0 1.2 1.4 1.6 1.8 2.0 Γ(D (2460) D π0) = 31.3 45.2keV. (31) ΛD (GeV) s1 → ∗s ∼ s1 Our estimates indicate that the partial width for the FDI∗sGπ.0.8: TheΛDs1 dependenceofthepartialwidthforDs1(2460) → tDhsa1t(2o4f6D0)s1(→2460D)∗s0→(23D17∗s)0π(203i1s7)aγb.ouTth1e borradnecrhsimngalrlaetriothfaonr . Ds1(2460) → D∗s0(2317)γ is measured to be 3.7+52..04% [1], and thus the branching ratio for D (2460) D−(2317)π0 widInthFfiogr.th8e,Dwe(p2r4e6s0e)nt thDe ΛπD0sw1 hdiecphenindcernecaeseosfwtihtehtphaertiina-l is roughly determined to be of ordse1r 10−3. →In ad∗sd0ition, we creasing of Λ s1. In par→ticula∗sr, the partial width varies from furtherestimatetheratioofΓ(Ds1(2460)→D∗s0(2317)γ)and 32to46keVwDsi1thΛDs1 increasingfrom1.0to2.0GeV,which Γ(Ds1(2460)→D∗s+π0)tobe ismuchlargerthanthepartialwidthsfortheD (2317)γand Γ(D (2460) D (2317)γ) ∗s0 s1 → ∗s0 =(6.6 10.6) 10 2, (32) D∗s0(2317)π0 modes. In addition, the partial widths for the Γ(Ds1(2460)→D∗s+π0) − × − 7 whichisconsistentwiththeexperimentalmeasurementsfrom L.M.issupportedinpartbytheNationalScienceFoundation theCLEOandBABARcollaborations[4,8]. ofChina(NSFC)underGrantNo. 11475071,11547308and Atpresent,theexperimentalinformationontheD (2460) theSeedsFundingofJilinUniversity. s1 and D (2317)isstill notabundant. Inparticular,the widths s0 ofthesestatesarenotwelldetermined. Themeasurementsof their decay behaviors at LHCb and the forthcomingBelle II couldprovideafurthertesttotheresultsinthepresentwork. Acknowledgements TheworkofD.-Y.C.issupportedbytheNationalNatural ScienceFoundationofChinaunderGrantNo. 11375240. Y.- [1] K. A. Olive et al. [Particle Data Group], Review of particle Lett.B570,180(2003). physics,Chin.Phys.C38,090001(2014). [18] P.Colangelo,F.DeFazioandA.Ozpineci,Radiativetransitions [2] S.GodfreyandN.Isgur,Mesonsinarelativizedquarkmodel ofD (2317)andD (2460),Phys.Rev.D72,074004(2005). ∗sJ sJ withchromodynamics,Phys.Rev.D32,189(1985). [19] P. Colangelo, F. De Fazio, F. Giannuzzi and S. Nicotri, New [3] B.Aubertetal.[BABARCollaboration],Observationofanar- mesonspectroscopywithopencharmandbeauty,Phys.Rev.D rowmesondecayingtoD+π0 atamassof2.32GeV/c2,Phys. 86,054024(2012). s Rev.Lett.90,242001(2003). [20] S. Fajfer and A. P.Brdnik, Chiral loops in the isospin violat- [4] D.Bessonetal.[CLEOCollaboration], Observationofanar- ing decays of D (2460)+ and D (2317)+, Phys. Rev. D 92 , s1 ∗s0 row resonance of mass 2.46 GeV/c2 decaying to D+π0 and 074047(2015). ∗s confirmationofthe D (2317) state, Phys.Rev. D68, 032002 [21] Z.H.Guo,U.G.Meiner,andD.L.Yao,Newinsightsintothe ∗sJ (2003). D (2317)andothercharmscalarmesons,Phys.Rev.D92,no. ∗s0 [5] K.Abeetal.[BelleCollaboration], Measurements of the D 9,094008(2015). sJ resonanceproperties,Phys.Rev.Lett.92,012002(2004). [22] M.Nielsen,R.D.Matheus,andF.S.Navarra,Tetraquarkstates, [6] P. Krokovny et al. [Belle Collaboration], Observation of the Nucl.Phys.B, Proc.Suppl.174,138(2007). D (2317) and D (2457) in B decays, Phys. Rev. Lett. 91, [23] M.Nielsen,D+(2317) D+π0decaywidth,Phys.Lett.B634, sJ sJ sJ → s 262002(2003). 35(2006). [7] B. Aubert et al. [BABAR Collaboration], Study of B [24] K. Terasaki, BABAR resonance as a new window of hadron D(s∗J)+D¯(∗)decays,Phys.Rev.Lett.93,181801(2004). → physics,Phys.Rev.D68,011501(2003). [8] B.Aubertetal.[BABARCollaboration],Observationofanar- [25] Z.G.WangandS.L.Wan,D (2317)asatetraquarkstatewith s rowmesondecayingtoD+π0γatamassof2.458-GeV/c2,Phys. QCD sum rules in heavy quark limit, Nucl. Phys. A778, 22 s Rev.D69,031101(2004). (2006). [9] B. Aubert et al. [BABAR Collaboration], A study of the [26] M. E. Bracco, A. Lozea, R. D. Matheus, F. S. Navarra and D (2317) and D (2460) mesons in inclusive cc¯ production M. Nielsen, Disentangling two- and four-quark state pictures ∗sJ sJ near √s=10.6GeV,Phys.Rev.D74,032007(2006). ofthecharmedscalarmesons,Phys.Lett.B624,217(2005). [10] M.F.M.LutzandM.Soyeur, Open-charm mesonsystemsin [27] Z.X.Xie,G.Q.Feng,andX.H.Guo,AnalyzingD (2317)+in ∗s0 the hadrogenesis conjecture, Prog. Part. Nucl. Phys. 61, 155 the DK moleculepictureintheBeth-Salpeterapproach, Phys. (2008). Rev.D81,036014(2010). [11] D.S.HwangandD.W.Kim,Massof D (2317)andcoupled [28] Y.J.Zhang,H.C.Chiang,P.N.ShenandB.S.Zou,Possible ∗sJ channeleffect,Phys.Lett.B601,137(2004). S-wavebound-states of two pseudoscalar mesons, Phys. Rev. [12] J. B. Liu and M. Z. Yang, Spectrum of the charmed and b- D74,014013(2006) flavoredmesonsintherelativisticpotentialmodel,J.HighEn- [29] P. Bicudo, The Family of strange multiquarks as kaonic ergyPhys.07(2014)106. moleculesboundbyhardcoreattraction,Nucl.Phys.A748,537 [13] X.Liu,Y.M.Yu, S.M.Zhao,andX.Q.Li,Studyondecays (2005). ofD (2317)andD (2460)intermsoftheCQMmodel,Eur. [30] A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y. L. Ma, ∗sJ sJ Phys.J.C47,445(2006). StrongandradiativedecaysoftheD (2317)mesonintheDK- ∗s0 [14] J.Lu,X.L.Chen,W.Z.DengandS.L.Zhu,Pionicdecaysof moleculepicture,Phys.Rev.D76,014005(2007). D (2317), D (2460)and B (5718), B (5765),Phys.Rev.D [31] A.Faessler,T.Gutsche,V.E.LyubovitskijandY.L.Ma,D K sJ sJ sJ sJ ∗ 73,054012(2006). molecularstructureoftheD (2460)meson, Phys.Rev.D76, s1 [15] Z.G.Wang,RadiativedecaysoftheD (2317),D (2460)and 114008(2007). s0 s1 therelatedstrongcouplingconstants,Phys.Rev.D75,034013 [32] M. Cleven, H. W. Griehammer, F. K. Guo, C. Hanhart and (2007). U. G. Mei ner, Strong and radiative decays of the D (2317) ∗s0 [16] Y.B.Dai,C.S.Huang,C.LiuandS.L.Zhu,Understandingthe andD (2460),Eur.Phys.J.A50,149(2014). s1 D+(2317)andD+(2460)withsumrulesinHQET,Phys.Rev. [33] A. Datta and P. J. O’donnell, Understanding the nature of sJ sJ D68,114011(2003). D (2317) and D (2460) through nonleptonic B decays, Phys. s s [17] P.ColangeloandF.DeFazio,UnderstandingD (2317),Phys. Lett.B572,164(2003). sJ 8 [34] S.Weinberg,Elementaryparticletheoryofcompositeparticles, [43] D. Becirevic and B. Haas, D Dπ and D Dγ decays: ∗ ∗ → → Phys.Rev.130,776(1963). axialcouplingandmagneticmomentof D meson,Eur.Phys. ∗ [35] A.Salam,Lagrangiantheoryofcompositeparticles,NuovoCi- J.C71,1734(2011). mento25,224(1962). [44] S. L. Zhu, W. Y. P. Hwang, and Z. S. Yang, D Dγ and ∗ → [36] K.Hayashi, M.Hirayama, T.Muta, N.Seto, andT.Shirafuji, B BγasderivedfromQCDsumrules,Mod.Phys.Lett.A ∗ → Compositenesscriteriaofparticlesinquantumfieldtheoryand 12,3027(1997). S-matrixtheory,Fortschr.Phys.15,625(1967). [45] Y. B. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, [37] O. Kaymakcalan, S. Rajeev and J. Schechter, Nonabelian Estimateforthe X(3872) γJ/ψdecaywidth, Phys.Rev.D → anomaly and vector meson decays, Phys. Rev. D 30, 594 77,094013(2008). (1984). [46] D. Y. Chen and Y. B. Dong, Radiative decays of the neutral [38] Y. S. Oh, T. Song and S. H. Lee, J/ψ absorption by π and ρ Z (3900),Phys.Rev.D93,014003(2016). c mesonsinmesonexchangemodelwithanomalousparityinter- [47] J.GasserandH.Leutwyler,Chiralperturbationtheory: expan- actions,Phys.Rev.C63,034901(2001). sionsinthemassofthestrangequark, Nucl.Phys.B250,465 [39] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, (1985). F. Feruglio and G. Nardulli, Phenomenology of heavy meson [48] W.A.Bardeen,E.J.EichtenandC.T.Hill,Chiralmultipletsof chiralLagrangians,Phys.Rep.281,145(1997). heavy-lightmesons,Phys.Rev.D68(2003)054024. [40] P.Colangelo,F.DeFazioandT.N.Pham,B K χ decay [49] S. Godfrey, Testing the nature of the D (2317)+ and fromcharmedmesonrescattering,Phys.Lett.−B→542,−71c0(2002). D (2463)+ statesusingradiativetransitions,Ph∗syJs.Lett.B568 sJ [41] W. Liu, C. M. Ko and L. W. Chen, η absorption by mesons, (2003)254. Nucl.Phys.A765,401(2006). [50] Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki, Charmed- [42] D.Y.Chen,Y.B.Dong,andX.Liu,Long-distantcontribution strangemesonsrevisited:massspectraandstrongdecays,Phys. andχ radiativedecaystolightvectormeson,Eur.Phys.J.C Rev.D91,054031(2015). c1 70,177(2010).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.