ebook img

Radiation Dose Reduction Strategies for the Dose-Image Optimisation in Abdominal CT and a ... PDF

341 Pages·2012·5.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radiation Dose Reduction Strategies for the Dose-Image Optimisation in Abdominal CT and a ...

Radiation Dose Reduction Strategies for the Dose-Image Optimisation in Abdominal CT and a Demonstration of Validity of Visual Grading Analysis Submitted by Myeongsoo Kim BSc (Biology) (Kyung Hee University) BMSc (Medical Imaging) (Charles Sturt University) A thesis submitted for the requirement of the degree of Doctor of Philosophy Medical Radiation Science Faculty of Science Charles Sturt University ©2016 Table of contents List of Figures .................................................................................................................................. vii List of Tables ................................................................................................................................... xix Certificate of Authorship ........................................................................................................... xxvi Acknowledgements ................................................................................................................... xxvii Radiation Safety Approval………………………………………………………………………..………………xxix Human Research Ethic Approval……………………………………………………………………………….xxix Institutional Review Board Approval…………………………………………………………………………xxix Professional Editorial Assistance……………………………………………………………………….........xxix Proceedings………………………………………………………………………………………………………………xxx Statement from Presenters' Confirming……………………………………………………………........xxxi Abstract .......................................................................................................................................... xxx Chapter 1. INTRODUCTION ............................................................................................... 1 1.1 Background ........................................................................................................... 1 1.2 Computed Tomography and Radiation Doses ...................................................... 4 1.3 Problem in Optimisation....................................................................................... 6 1.4 Problems in Visual Grading scale .......................................................................... 9 1.5 Objectives of the Study ...................................................................................... 10 1.6 Structure of the Thesis ....................................................................................... 11 Chapter 2. REVIEW OF THE LITERATURE ......................................................................... 12 2.1 Introduction ........................................................................................................ 12 2.2 Dose Optimization on Computed Tomography .................................................. 13 ii 2.3 Image Quality and Radiation Dose ..................................................................... 18 2.4 Diagnostic Reference Levels (DRLs) .................................................................... 20 2.5 Subjective Image Quality Assessments .............................................................. 21 2.6 Patient Size and CTDI ....................................................................................... 25 vol 2.6.1 Cross-sectional Area (mm2) ...................................................................... 27 2.7 The Reference Man Models ............................................................................... 27 2.8 Radiation Protection in Computed Tomography ................................................ 29 2.9 Radiation Dose Units in CT ................................................................................. 32 2.9.1 Effective Dose Equivalent .......................................................................... 32 2.9.2 Overview of the CT Dose Index ................................................................. 34 2.9.3 CTDI , CTDI , and DLP ............................................................................. 35 vol w 2.9.4 Dose Conversion Factor ............................................................................ 38 2.10 Dose Reduction Strategies ................................................................................ 41 2.10.1 Dose Management .................................................................................. 41 2.10.2 Operators Training .................................................................................. 42 2.10.3 Technological Advance in CT Scanner ..................................................... 43 2.11 Using AEC systems ............................................................................................ 47 2.11.1 Advanced AEC Techniques in CT systems ............................................... 47 2.11.2 Manufacturers and AEC systems ............................................................ 48 Chapter 3. METHODOLOGY ............................................................................................. 50 3.1 Introduction ........................................................................................................ 50 3.2 Practical Problems and Needs ............................................................................ 54 3.3 Study Instruments .............................................................................................. 55 iii 3.3.1 Instruments for the Dose-Image Quality Optimisation ............................ 56 3.3.2 Instruments for the comparison of visual grading study .......................... 60 3.4 Study Variables ................................................................................................... 61 3.5 Quantitative assessment Procedures ................................................................. 61 3.5.1 CT Imaging Systems .................................................................................. 62 3.5.2 Image Protocols for Abdominal CT ........................................................... 64 3.5.3 Dose Measurement .................................................................................. 65 3.5.4 Image Acquisition with Anthropomorphic Phantom ................................ 67 3.5.5 Image Noise Measurement ....................................................................... 69 3.5.6 Contrast-to-Noise Ratio Measurement .................................................... 72 3.5.7 Logistic Psychometric Function ................................................................. 73 3.5.8 Body Mass Index (BMI), Body Weight, and Cross-Sectional Area ............ 75 3.6 Qualitative assessment procedures ................................................................... 77 3.7 Institutional Review Board (IRB) and Ethics Approval ........................................ 77 3.8 Radiation Safety Issue ......................................................................................... 78 3.9 Statistic Procedure .............................................................................................. 79 Chapter 4. EVALUATION OF VGA IN CT ........................................................................... 80 4.1 Task Ⅰ; CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis ..................................................................................... 80 4.1.1 Introduction .............................................................................................. 80 4.1.2 Materials and methods ............................................................................. 83 4.1.3 Results ....................................................................................................... 92 4.1.4 Discussion ............................................................................................... 145 iv 4.1.5 Conclusion ............................................................................................... 147 4.2 Task Ⅱ; Studies of CT system performances using visual grading scaling: a methodological comparison among visual grading characteristics, ordinal regressions and visual grading psychometric functions. ........................................ 148 4.2.1 Introduction ............................................................................................ 148 4.2.2 Materials and methods ........................................................................... 150 4.2.3 Results ..................................................................................................... 152 4.2.4 Discussion ............................................................................................... 168 4.2.5 Conclusion ............................................................................................... 168 Chapter 5. DOSE REDUCTION AND DRLS IN ABDOMINAL CT ....................................... 169 5.1 Task Ⅰ; Feasibility study for using the 50th percentile levels in the DRLs estimated by an evaluation of image noise, CNR, CTDI and VGA-Score .............................. 169 vol 5.1.1 Introduction ............................................................................................ 169 5.1.2 Materials and method ............................................................................ 171 5.1.3 Results ..................................................................................................... 178 5.1.4 Discussion ............................................................................................... 207 5.1.5 Conclusion ............................................................................................... 209 5.2 Task Ⅱ; The effectiveness of patient size indices to precise kVp selection: A retrospective study using MDCT abdominal imaging under AEC systems ............. 210 5.2.1 Introduction ............................................................................................ 210 5.2.2 Materials and methods ........................................................................... 212 5.2.3 Results ..................................................................................................... 219 5.2.4 Discussion ............................................................................................... 243 v 5.2.5 Conclusion ............................................................................................... 258 Chapter 6. CONCLUSION ............................................................................................... 259 REFERENCES .................................................................................................................. 261 APPENDICES .................................................................................................................. 279 Appendix 1 .............................................................................................................. 279 Appendix 2 .............................................................................................................. 280 Appendix 3 .............................................................................................................. 282 Appendix 4 .............................................................................................................. 284 Appendix 5…………………………………………………………………………………………………………286 Appendix 6…………………………………………………………………………………………………………300 vi LIST OF FIGURES CHAPTER 1 Figure 1-1 Comparison of total annual doses for Australia, the USA and the UK Figure 1-2 Scan concept of single-slice detector and multi-slice detector system Figure 1-3 Basic concept of protocol and dose-image quality optimisation CHAPTER 2 Figure 2-1 Simplified qualitative relationship between physical image quality and diagnostic performance Figure 2-2 (a) 75th percentile for DRLs in survey of dose distribution (Cordy,2011); & (b) Dose Length Production (DLP) dose distribution for chest CT examination Figure 2-3 Signal detection theory; the distance between signal (true-positive) and noise (false-positive) can be affected by radiation dose in CT; the area of triangle represents the error in the observer’s decision and small radiation dose can lead to a short distance between both mean values of signal and noise Figure 2-4 Explanation of the basic concept of the ROC method with AUC. A high percentile of AUC represents real validity of tested systems Figure 2-5 Area under the curve (AUC ) statistically obtained from the VGC- VGC curve data presented in Table 2-3 and 2-4 Figure 2-6 Human body types with BMI classification Figure 2-7 (a) Schematic drawing of a DNA molecule and damage that may result from one X-ray photon. X-ray photons interact with water to produce reactive free radicals and recoil electrons, which in turn cause DNA damage. When ionising radiation breaks the double stranded backbone (in dark grey) of the DNA in multiple places the DNA cannot repair the damage itself. Such damage may lead to vii cancer. (b) Free radical damage causes inflammation and production of antioxidants from the radiation exposure Figure 2-8 Human exposure to ionising radiation in Australia Figure 2-9 Auto-exposure control system and tube current selection. Average tube current is used to calculate CTDI for automatic dose report vol by CT scanner (a) A solid-state real-time dosimeter (arrow) is located in the core of Figure 2-10 a head phantom to measure the CTDI . (b) The analogue signal 100 data is transferred to a computer and used to depict dose profile. Figure 2-11 The anterior-posterior (AP) and a lateral dimension, along with effective diameter are illustrated in this figure. The lateral dimension can determine from a PA or AP of CT radiograph, and a lateral CT radiograph can identify the AP dimension. The effective diameter corresponds to a circle having an area equal to that of the patient’s cross section on a CT image. Figure 2-12 The best-fit curve between normalised dose coefficient vs effective diameter. Figure 2-13 Photograph of multi-detector computed tomography (CT) components. Figure 2-14 (a) This illustration of dual-energy technique shows hypothetical elements A and B, which have K edges of 90 keV and 190 keV, respectively. The percentage of x-ray photon absorption is plotted as a function of x-ray energy (in keV). (b) DSCT with two tubes running at different voltages and corresponding detectors mounted orthogonally in one gantry Figure 2-15 Demonstration of the FBP algorithm Figure 2-16 Adaptive statistical iterative reconstruction (ASIR) images by using GE 750HD. (a) Filtered back projection image obtained at 120 kVp and 300 mA at 11.3 mGy. (b) 60% ASIR image generated through multiple iterations by noise reduction model rules Figure 2-17 (a) The tube current may be modulated as a function of projection angle, (b) longitudinal location. (c) x and y-axis combination viii CHAPTER 3 Figure 3-1 Example CT images with 100 kVp and tube currents from 10 to 580 mA; (a) 10 mA; (b) 50 mA; and (m)580 mA Figure 3-2 Toshiba Aquilion ONETM 320 MDCT scanner Figure 3-3 GE DiscoveryTM 750HD 64 MDCT scanner Figure 3-4 Philips Ingenuity 64 MDCT scanner Figure 3-5 CTDIvol summary; (a) Toshiba Aquilion ONETM 320 MDCT, (b) GE DiscoveryTM 750HD 64 MDCT, and (c) Philips Ingenuity 64 MDCT Figure 3-6 (a) Appearance of the PH-5 Abdominal CT phantom, (b) scout view (120 kVp; 30 mA; CTDI 0.085mGy) vol Figure 3-7 Internal structures; (a) lungs and heart. (b) liver (include hepatic veins, hepatic arteries, bile duct), stomach with gas, spleen, IVC, and abdominal aorta, (c) pancreas, spinal column, (d) kidneys enhanced with contrast media (Iodine) Figure 3-8 Examples of characteristics of manual noise measurement; (a) two typical homogeneous ROIs with air-space between the anatomical structures in the CT image. (b) the magnified local area within ROI 1. (C) magnified local area within ROI 2. (d) 3D surface plot of the ROI 1. (e) 3D surface plot of ROI 2 Figure 3-9 Diameter measurement by using a “set scale” tool of Image J computational programme CHAPTER 4 Figure 4.1-1 Scout view and scan range Figure 4.1-2 Example of FBP and iterative reconstruction images using the Toshiba Aquilion OneTM 320 slices MDCT with 80 kVp, 400 mA, CTDI mGy; vol (a) FBP image, (b) AIDR Mild image, (c) AIDR STD image, (d) AIDR STR image Figure 4.1-3 Example of FBP and iterative reconstruction images using the GE DiscoveryTM 750HD 64-slice MDCT with 80 kVp, 400 mA, CTDI mGy; vol (a) FBP image, (b) ASiR 20% image, (c) ASiR 40% image, (d) ASiR 60% image ix Figure 4.1-4 Example of FBP and iterative reconstruction images using the Philips Ingenuity (PI) 64-slice MDCT with 80 kVp, 400 mA, CTDI mGy; (a) vol FBP image, (b) iDOSE 20% image, (c) iDOSE 40% image, (d) iDOSE 60% image Figure 4.1-5 Graph of CTDI (mGy) values of 80, 100, and 120 kVp corresponding vol to 10-580mA using the Toshiba Aquilion OneTM Figure 4.1-6 Graph of CTDI (mGy) values of 80, 100, and 120 kVp corresponding vol to 10-580mA using the GE DiscoveryTM 750HD Figure 4.1-7 Graph of CTDI (mGy) values of 80, 100, and 120 kVp corresponding vol to 10-580mA using the Philips Ingenuity CT Figure 4.1-8 Graph of Image noise (HU) values of FBP image, AIDR MILD, STD, and STR images using 80 kVp corresponding to 10-580mA under the Toshiba Aquilion OneTM Figure 4.1-9 Graph of Image noise (HU) values of FBP image, AIDR MILD, STD, and STR images using 100 kVp corresponding to 10-580mA under the Toshiba Aquilion OneTM Figure 4.1-10 Graph of Image noise (HU) values of FBP image, AIDR MILD, STD, and STR images using 120 kVp corresponding to 10-580mA under the Toshiba Aquilion OneTM Figure 4.1-11 Graph of image noise (HU) values of FBP image, ASiR 20, 40, and 60% images using 80 kVp corresponding to 10-580mA under the GE DiscoveryTM 750HD Figure 4.1-12 Graph of image noise (HU) values of FBP image, ASiR 20, 40, and 60% images using 100 kVp corresponding to 10-580mA under the GE DiscoveryTM 750HD Figure 4.1-13. Graph of image noise (HU) values of FBP image, ASiR 20, 40, 60% images using 120 kVp corresponding to 10-580mA under the GE DiscoveryTM 750HD Figure 4.1-14 Graph of image noise (HU) values of FBP image, iDOSE 20, 40, and 60% images using 80 kVp corresponding to 10-580mA under the Philips Ingenuity CT Figure 4.1-15. Graph of image noise (HU) values of FBP image, iDOSE 20, 40, and 60% images using 100 kVp corresponding to 10-580mA under the Philips Ingenuity CT Figure 4.1-16 Graph of image noise (HU) values of FBP image, iDOSE 20, 40, and x

Description:
Summary of radiation dose quantities commonly encountered in medical imaging. Table 3-8. Example of human body characteristics and CTDIvol Pelvic CT. 3–4. Abdominal and pelvic CT. 8–12. Coronary artery calcium CT study. 1–3. Coronary CT angiography. 5–14. 2.9.2 Overview of the CT Dose
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.